CONTENTS

1.	Historical remarks. Outlines of Cantor's theory	1
2.	Ordered sets. A theorem of Hausdorff	7
3.	Axiomatic set theory. Axioms of Zermelo and Fraenkel	12
4.	The well-ordering theorem	19
5.	Ordinals and alephs	22
6.	Some remarks on functions of ordinal numbers	28
7.	On the exponentiation of alephs	32
8.	Sets representing ordinals	35
9.	The notions "finite" and "infinite"	38
10.	The simple infinite sequence. Development of arithmetic $\dots \dots$	41
11.	Some remarks on the nature of the set-theoretic axioms. The set-theoretic relativism	45
12.	The simple theory of types	48
13.	The theory of Quine	50
14.	The ramified theory of types. Predicative set theory	52
15.	Lorenzen's operative mathematics	61
16.	Some remarks on intuitionist mathematics	64
17.	Mathematics without quantifiers	68
18	The possibility of set theory based on many-valued logic	69