Appendix B

A THEOREM BY M. CUGIANI

Roth's Theorem suggests the following problem.
Let ξ be a real algebraic number. To find a function $\epsilon(Q)>0$ of the integral variable Q , with the property

$$
\lim _{\mathbf{Q} \rightarrow \infty} \epsilon(\mathbf{Q})=0
$$

such that there are at most finitely many distinct rational numbers $\frac{\mathbf{P}}{\mathbf{Q}}$ with positive denominator for which

$$
\left|\frac{\mathbf{P}}{\mathbf{Q}}-\xi\right|<\mathbf{Q}^{-2-\epsilon(\mathbf{Q})} .
$$

Unfortunately, the method of Roth does not seem strong enough for solving this problem and finding such a function $\epsilon(\mathbb{Q})$.

A weaker result may, however, be obtained and was, in fact, recently found by Marco Cugiani ${ }^{1}$. It states:

Theorem of Cuglani: Let ξ be a real algebraic number of degree f; let

$$
\epsilon(Q)=9 f(\log \log \log Q)^{-\frac{1}{2}} ;
$$

and let $\frac{\mathbf{P}^{(1)}}{\mathrm{Q}^{(1)}}, \frac{\mathbf{P}^{(2)}}{\mathbf{Q}^{(2)}}, \frac{\mathbf{P}^{(\mathrm{s})}}{\mathbf{Q}^{(3)}}, \ldots$, where $\mathrm{e}^{\mathrm{e}}<\mathrm{Q}^{(1)}<\mathrm{Q}^{(2)}<\mathrm{Q}^{(\mathrm{s})}<\ldots$, be an infinite sequence of reduced rational numbers satisfying

$$
\left|\frac{P^{(k)}}{Q^{(k)}}-\xi\right|<Q^{(k)-2-\epsilon\left(Q^{(k)}\right)} \quad(k=1,2,3, \ldots)
$$

Then

$$
\limsup _{k \rightarrow \infty} \frac{\log Q^{(k+1)}}{\log Q^{(k)}}=\infty
$$

This theorem is thus an improvement of that by Th. Schneider ${ }^{2}$ which was mentioned already in the Introduction to Part 2.

In this appendix we shall sketch a proof of the following theorem which contains Cugiani's result as the special case $\lambda=\mu=1$.

Theorem 1: Denote by $\xi \neq 0$ a real algebraic number of degree f; by $\mathrm{g}^{\prime} \geqslant 2$ and $\mathrm{g}^{\prime \prime} \geqslant 2$ two integers that are relatively prime; by λ and μ two real numbers satisfying

1. Collectanea Mathematica, N. 169, Milano 1958.
2. J. reine angew. Math. 175 (1936), 182-192.

$$
0 \leqslant \lambda \leqslant 1, \quad 0 \leqslant \mu \leqslant 1, \quad \lambda+\mu>0 ;
$$

by c_{1}, c_{2}, and c_{3} three positive constants; by $\epsilon(H)$ the function

$$
\epsilon(H)=5 \sqrt{\log (4 f)}(\log \log \log H)^{-\frac{1}{2}} ;
$$

and by $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(s)}, \ldots\right\}$ an infinite sequence of distinct rational numbers

$$
\begin{aligned}
& \kappa^{(k)}=\frac{P^{(k)}}{Q^{(k)}} \text { where } P^{(k)} \neq 0, Q^{(k)}+0,\left(P^{(k)}, Q^{(k)}\right)=1, \\
& H^{(k)}=\max \left(\left|\mathbf{P}^{(k)}\right|,\left|Q^{(k)}\right|\right)>e^{e},
\end{aligned}
$$

with the properties
(1):

$$
\left|\kappa^{(k)}-\xi\right| \leqslant c_{1} H^{(k)-\lambda-\mu-\epsilon\left(H^{(k)}\right)}
$$

and
(2):

$$
\left|P^{(k)}\right| g^{\prime} \leqslant c_{2} H^{(k) \lambda-1},\left|Q^{(k)}\right| g^{\prime \prime} \leqslant c_{3} H^{(k) \mu-1}
$$

Then

$$
\limsup _{k \rightarrow \infty} \frac{\log H^{(k+1)}}{\log H^{(k)}}=\infty .
$$

1. The proof of Theorem 1 is indirect. It will be assumed that Σ has the properties (1) and (2), but that the assertion is false; i.e., there exists a constant $\mathrm{c}_{4}>1$ such that, for all k ,

$$
H^{(k+1)} \leqslant H^{(k) c_{4}} .
$$

Hence if X is any sufficiently large positive number, there is an element $\kappa^{(k)}$ of Σ for which

$$
H \leqslant H^{(k)} \leqslant H^{c_{4}} .
$$

From now on we put for shortness

$$
a=\sqrt{\log (4 f)}
$$

and denote by m a very large positive integer. We further put

$$
s=\frac{a}{\sqrt{m}}, \quad t=e^{-m \cdot 2^{m-1}}, \quad X=e^{\frac{2}{t} m^{3}}
$$

and note that $\epsilon(\mathrm{H})$ is given by

$$
\epsilon(H)=5 a(\log \log \log H)^{-\frac{1}{2}} .
$$

2. By hypothesis Σ contains infinitely many distinct elements $\kappa^{(k)}$, so that

$$
\lim _{k \rightarrow \infty} H^{(k)}=\infty .
$$

It is therefore possible to select m elements

$$
\kappa_{h}=\kappa^{\left(i_{h}\right)}=\frac{P_{h}}{Q_{h}}=\frac{P^{\left(i_{h}\right)}}{Q^{\left(i_{h}\right)}} \quad(h=1,2, \ldots, m)
$$

of Σ, of heights

$$
H_{h}=H^{\left(i_{h}\right)}=\max \left(\left|P_{h}\right|,\left|Q_{h}\right|\right)>e^{e},
$$

such that

$$
X_{h} \leqslant H_{h} \leqslant X_{h}^{c_{4}} \quad(h=1,2, \ldots, m)
$$

where

$$
X_{1}=X, X_{2}=H_{2}^{\frac{2}{t}} \leqslant X_{1}^{\frac{2 c_{4}}{t}}, X_{3}=H_{2}^{\frac{2}{t}} \leqslant \frac{2 c_{4}}{X_{2}^{t}}, \ldots, X_{m}=H_{m-1}^{\frac{2}{t}} \leqslant X_{m-1}^{\frac{2 c_{4}}{t}}
$$

It follows that

$$
\frac{\log H_{h+1}}{\log H_{h}} \geqslant \frac{2}{t} \quad(h=1,2, \ldots, m-1)
$$

whence, in particular,

$$
\mathrm{H}_{1}<\mathrm{H}_{2}<\ldots<\mathrm{H}_{\mathrm{m}}
$$

Further, for all h,

$$
X_{h} \leqslant X^{\left(\frac{2 c_{4}}{t}\right)^{h-1}}, H_{h} \leqslant X^{\left(\frac{2 c_{4}}{t}\right)^{h-1} c_{4}} \leqslant X^{\left(\frac{2 c_{4}}{t}\right)^{h}} \leqslant X^{\left(\frac{2 c_{4}}{t}\right)^{m}}
$$

These inequalities, however, imply that
(3):

$$
H_{h} \leqslant e^{e^{e^{m}}}
$$

$$
(h=1,2, \ldots, m)
$$

because
as soon as m is sufficiently large.
From (3),

$$
\epsilon\left(H_{h}\right) \geqslant \frac{5 a}{\sqrt{m}} \quad(h=1,2, \ldots, m)
$$

Hence the sum

$$
\sigma=\sum_{h=1}^{m} \epsilon\left(H_{h}\right)
$$

satisfies the inequality,

$$
\sigma \geqslant 5 a \sqrt{m} .
$$

3. Just as in 82 , Chapter 7, define $\mathbf{m - 1}$ positive integers r_{2}, \ldots, r_{m} in terms of a further positive integer r_{1} by the formulae

$$
\left(r_{h}-1\right) \log H_{h}<r_{1} \log H_{1} \leqslant r_{h} \log H_{h} \quad(h=2,3, \ldots, m) .
$$

Here r_{1} will be chosen so large that the quantity

$$
\theta=\max _{h=1,2, \ldots, m} \frac{1}{r_{h}-1}
$$

is already so small that

$$
0<\theta \leqslant \frac{1}{\mathrm{~m}}<1
$$

Evidently

$$
r_{h} \log H_{h}=\left(1+\frac{1}{r_{h}-1}\right)\left(r_{h}-1\right) \log H_{h}<(1+\theta) r_{1} \log H_{1}<2 r_{1} \log H_{1}
$$

hence

$$
2 r_{h-1} \log H_{h-1} \geqslant 2 r_{1} \log H_{1}>r_{h} \log H_{h},
$$

and therefore

$$
r_{h-1}>\frac{1}{2} \frac{\log H_{h}}{\log H_{h-1}} r_{h} \geqslant \frac{1}{2} \cdot \frac{2}{t} \cdot r_{h}=\frac{1}{t} r_{h} \quad(h=2,3, \ldots, r) .
$$

In particular, we find again that

$$
r_{1}>r_{2}>\ldots>r_{m}, \sum_{h=1}^{m} r_{h} \leqslant m r_{1}
$$

4. Apply now Theorem 2 of the Appendix A, with $F(x)$ a minimum polynomial for ξ. The choice in 81 ,

$$
s=\frac{a}{\sqrt{m}}, \quad m^{2}=a^{2}=\log (4 f)
$$

is allowed because m may be assumed so large that the additional condition of the theorem,

$$
0 \leqslant s \leqslant \frac{1}{2}
$$

is likewise satisfied.
Next fix the parameters ρ_{h}, σ_{h}, and τ_{h} of the Theorem by

$$
\rho_{h}=\sigma_{h}=r_{h}, \quad \tau_{h}=\frac{(\lambda+\mu) r_{h}}{\lambda+\mu+\epsilon\left(\mathrm{H}_{h}\right)} \quad(\mathrm{h}=1,2, \ldots, \mathrm{~m})
$$

Since

$$
0<\frac{r_{h}}{\tau_{h}}-1=\frac{\epsilon\left(\mathrm{H}_{h}\right)}{\lambda+\mu}
$$

the further condition of the theorem,

$$
\left|\frac{r_{h}}{\tau_{h}}-1\right| \leqslant \frac{1}{10},
$$

also holds provided m and hence X, H_{1}, \ldots, H_{m} are sufficiently large.
There follows then from the theorem the existence of a positive constant c depending only on ξ, and that of a polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1} \ldots i_{m}} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

with the following properties.
(i): The coefficients $a_{i_{1}} \ldots i_{m}$ are integers such that

$$
\left|a_{i_{1} \ldots i_{m}}\right| \leqslant c^{r_{1}+\ldots+r_{m}} \leqslant c^{m r_{1}}
$$

and they vanish unless

$$
\left(\frac{1}{2}-s\right) m<\sum_{h=1}^{m} \frac{i_{h}}{r_{h}}<\left(\frac{1}{2}+s\right) m
$$

(ii): $A_{j_{1}} \ldots j_{m}(\xi, \ldots, \xi)$ vanishes for all suffixes j_{1}, \ldots, j_{m} such that

$$
0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{j_{h}}{\tau_{h}} \leqslant\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\tau_{h}}
$$

(iii): The following majorants hold,

$$
\begin{aligned}
& A_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right) \ll c^{r_{1}+\ldots+r_{m}}\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}} \\
& A_{j_{1} \ldots j_{m}}(x, \ldots, x) \ll c^{r_{1}+\ldots+r_{m}}(1+x)^{r_{1}+\ldots+r_{m}}
\end{aligned}
$$

We next apply Roth's Lemma of Chapter 5 to the derivatives of $A\left(x_{1}, \ldots, x_{m}\right)$ at $x_{1}=\kappa_{1}, \ldots, x_{m}=\kappa_{m}$. This lemma is applicable provided that

$$
H_{1} \geqslant 2^{\frac{1}{t} m(m-1)(2 m+1)} \text { and } c^{m r_{1}} \leqslant H_{1}{ }^{\frac{1}{m} r_{1} t} \text {, i.e. } H_{1} \geqslant c^{\frac{1}{t} m^{2}} \text {. }
$$

For large m both conditions are satisfied because

$$
H_{1} \geqslant X=e^{\frac{2}{t} m^{s}} .
$$

It follows then from Roth's Lemma that there exist suffixes l_{1}, \ldots, l_{m} satisfying

$$
0 \leqslant l_{1} \leqslant r_{1}, \ldots, 0 \leqslant l_{m} \leqslant r_{m}, \quad \sum_{h=1}^{m} \frac{l_{h}}{r_{h}} \leqslant 2^{m+1} \frac{1}{t^{2 m-1}}
$$

for which the rational number

$$
A_{(l)}=A_{1_{1}} \ldots 1_{m}\left(\kappa_{1}, \ldots, \kappa_{m}\right)=A_{1_{1}} \ldots 1_{m}\left(\frac{P_{1}}{Q_{1}}, \ldots, \frac{P_{m}}{Q_{m}}\right)
$$

is distinct from zero.
Put again

$$
\Lambda=\sum_{h=1}^{m} \frac{l_{h}}{r_{h}}
$$

The choice of t implies now that

$$
0 \leqslant \Lambda \leqslant 2^{m+1}\left(e^{-m \cdot 2^{m-1}}\right) \frac{1}{2^{m-1}}=2\left(\frac{2}{e}\right)^{m} \leqslant 1
$$

as soon as m is sufficiently large.
5. From here on the proof runs very similar to that of the case $d=1$ of the First Approximation Theorem in Chapter 7. The slight change in notation with respect to s (which corresponds to $\frac{\mathrm{s}}{\mathrm{m}}$ in the former proof) does not affect the discussion.

Denote by c_{5}, c_{8}, and c_{7} three further positive constants that depend on ξ, but not on m . Further let J^{*} be the set of all systems of m integers $\left(\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}\right)$ such that

$$
l_{1} \leqslant j_{1} \leqslant r_{1}, \ldots, l_{m} \leqslant j_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{j_{h}}{\tau_{h}}>\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\tau_{h}} .
$$

Then, just as in 84 of Chapter 7,

$$
A_{(1)}=\sum_{(j) \in J *} A_{j_{1}} \ldots \mathrm{jm}_{m}(\xi, \ldots, \xi)\binom{j_{1}}{l_{1}} \ldots\binom{\mathrm{j}_{\mathrm{m}}}{l_{\mathrm{m}}}\left(\kappa_{1}-\xi\right)^{j_{1}-l_{1}} \ldots\left(\kappa_{\mathrm{m}}-\xi\right)^{\mathrm{j}_{\mathrm{m}}-1_{m}}
$$

and here

$$
\sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j_{m}=0}^{r_{m}}\left|A_{j_{1}} \ldots j_{m}(\xi, \ldots, \xi)\right|\binom{j_{1}}{l_{1}} \ldots\binom{j_{m}}{l_{m}} \leqslant c_{5}^{m r_{1}} .
$$

Now the τ_{h} were chosen such that

$$
\lambda+\mu+\epsilon\left(H_{h}\right)=(\lambda+\mu) \frac{r_{h}}{\tau_{h}}, \frac{r_{h}}{\tau_{h}}=1+\frac{\epsilon\left(H_{h}\right)}{\lambda+\mu} \quad(h=1,2, \ldots, m)
$$

It follows then from the construction of H_{h} and r_{h} that

$$
\max _{(j) \epsilon J^{*}}\left|\kappa_{1}-\xi\right|^{j_{1}-l_{1}} \ldots\left|\kappa_{m}-\xi\right|^{j_{m}-l_{m}} \leqslant c_{1}^{m r_{1}} \max _{(j) \in J^{*}} \prod_{h=1}^{m} H_{h}-\left(j_{h}-l_{h}\right)\left\{\lambda+\mu+\epsilon\left(H_{h}\right)\right\} \leqslant
$$

(this inequality is continued on the following page)

$$
\begin{aligned}
& \left.\leqslant c_{1}^{m r_{1}} \max _{(j) \epsilon J *} \prod_{h=1}^{m} H_{h}^{-(j h-1}\right)(\lambda+\mu) \frac{r_{h}}{\tau_{h}} \leqslant \\
& \leqslant c_{1}^{m r_{1}} \max _{(j) \epsilon J^{*}} H_{1}^{-(\lambda+\mu) r_{1}} \sum_{h=1}^{m} \frac{j_{h}-l_{h}}{\tau_{h}} \leqslant \\
& \leqslant c_{1}^{m r_{1}} H_{l}^{-(\lambda+\mu) r_{1}}\left\{\left(\frac{1}{2}-s\right) \sum_{h=1}^{m} \frac{r_{h}}{\tau_{h}}-\sum_{h=1}^{m} \frac{l_{h}}{\tau_{h}}\right\} .
\end{aligned}
$$

Here

$$
\sum_{h=1}^{m} \frac{r_{h}}{\tau_{h}}=\sum_{h=1}^{m}\left(1+\frac{\epsilon\left(\mathrm{H}_{h}\right)}{\lambda+\mu}\right)=m+\frac{\sigma}{\lambda+\mu}
$$

and

$$
\tau_{h} \geqslant \frac{9}{10} r_{h}>\frac{1}{2} r_{h}, \quad \text { hence } \quad \sum_{h=1}^{m} \frac{l_{h}}{\tau_{h}} \leqslant 2 \sum_{h=1}^{m} \frac{l_{h}}{r_{h}}=2 \Lambda .
$$

Therefore

$$
\max _{(j) \in J^{*}}\left|\kappa_{1}-\xi\right|^{j_{1}-1_{1}} \ldots\left|\kappa_{m}-\xi\right|^{j_{m}-1_{m}} \leqslant c_{1}^{m r_{1}} H_{1}^{-(\lambda+\mu) r_{1}}\left\{\left(\frac{1}{2}-s\right)\left(m+\frac{\sigma}{\lambda+\mu}\right)-2 \Lambda\right\}
$$

and so, finally,

$$
\begin{equation*}
\left|A_{(1)}\right| \leqslant\left(c_{1} c_{5}\right)^{m r_{1}} H_{1}^{-(\lambda+\mu) r_{1}}\left\{\left(\frac{1}{2}-s\right)\left(m+\frac{\sigma}{\lambda+\mu}\right)-2 \Lambda\right\} \tag{4}
\end{equation*}
$$

6. We next express again

$$
A_{(1)}=\frac{N(1)}{D_{(1)}}
$$

as the quotient of two integers $N(1)^{\neq 0}$ and $\mathrm{D}(1)^{\neq 0}$ that are relatively prime. The discussion in 886-7 of Chapter 7, specialised for the case $d=1$, may be repeated without any essential change and leads to the inequalities

$$
\left|D_{(1)}\right| \leqslant c_{6}^{m r_{1}} H_{1}^{(1-\mu)(1+\theta) r_{1}\left\{\left(\frac{1}{2}+8\right) m-\Lambda\right\}+\mu(1+\theta) r_{1}(m-\Lambda)}
$$

and

$$
|N(1)| \geqslant c_{7}^{-m r_{1}} H_{1}^{(1-\lambda) r_{1}\left\{\left(\frac{1}{2}-s\right) m-\Lambda\right\} . ~ . ~}
$$

On dividing these, it follows that

$$
\begin{equation*}
\left|A_{(1)}\right| \geqslant\left(c_{6} c_{7}\right)^{-m r_{1}} H_{1}^{E^{*} r_{1}} \tag{5}
\end{equation*}
$$

where E^{*} denotes the expression

$$
E^{*}=(1-\lambda)\left\{\left(\frac{1}{2}-s\right) m-\Lambda\right\}-(1-\mu)(1+\theta)\left\{\left(\frac{1}{2}+s\right) m-\Lambda\right\}-\mu(1+\theta)(m-\Lambda)
$$

7. We finally combine the upper bound (4) for $\left|A_{(1)}\right|$ with the lower bound (5). Then we obtain the inequality

$$
\begin{equation*}
H_{1}^{E} \leqslant\left(c_{1} c_{5} c_{6} c_{7}\right)^{m}, \tag{6}
\end{equation*}
$$

where the exponent

$$
E=(\lambda+\mu)\left\{\left(\frac{1}{2}-s\right)\left(m+\frac{\sigma}{\lambda+\mu}\right)-2 \Lambda\right\}+E^{*}
$$

after a trivial simplification, may be written as

$$
E=\left(\frac{1}{2}-s\right) \sigma-\{2+\theta(1-\mu)\} \mathrm{ms}-\frac{1+\mu}{2} \theta \mathrm{~m}-(\lambda+2 \mu-\theta) \Lambda .
$$

Now

$$
0 \leqslant \lambda \leqslant 1,0 \leqslant \mu \leqslant 1, s=\frac{a}{\sqrt{m}}, \sigma \geqslant 5 a \sqrt{m}, 0<\theta \leqslant \frac{1}{m}, 0 \leqslant \Lambda \leqslant 1
$$

and hence

$$
\begin{aligned}
E & \geqslant\left(\frac{1}{2}-\frac{a}{\sqrt{m}}\right) \cdot 5 a \sqrt{m}-\left(2+\frac{1}{m}\right) m \cdot \frac{a}{\sqrt{m}}-1 \cdot \frac{1}{m} \cdot m-3 \times 1= \\
& =\frac{1}{2} a \sqrt{m}-\left(5 a^{2}+\frac{a}{\sqrt{m}}+1+3\right)>\frac{1}{3} a \sqrt{m}
\end{aligned}
$$

as soon as m is sufficiently large. Therefore (6) implies that

$$
H_{1} \leqslant\left(c_{1} c_{5} c_{6} c_{7}\right)^{\frac{3}{\mathrm{a}} \sqrt{m}},
$$

contrary to the assumption that

$$
H_{1} \geqslant X=e^{\frac{2}{t} m^{3}}
$$

when m is sufficiently large. This proves the assertion.
8. It would not be difficult to extend Theorem 1 to the more general case treated in the First Approximation Theorem. There may even be a corresponding analogue of the Second Approximation Theorem; but a proof of such an analogue would perhaps require new ideas.

At present it does not seem possible to replace the function $\epsilon(H)$ by any much smaller function of H. Such an improvement would require a stronger result on the zeros of polynomials in many variables than Roth's Lemma.
9. Two simple deductions from Theorem 1 have some interest in themselves and may therefore be mentioned here.

Theorem 2: Let p be a prime and q an integer such that

$$
p>q \geqslant 2, \text { hence }(p, q)=1
$$

Let $\mathrm{N}=\left\{\mathrm{n}^{(1)}, \mathrm{n}^{(2)}, \mathrm{n}^{(3)}, \ldots\right\}$ be a strictly increasing sequence of positive integers such that

$$
\left|\left(\frac{p}{q}\right)^{n}-g_{n}\right| \leqslant \exp \left(-\frac{10 n \log p}{\sqrt{\log \log n}}\right) \quad \text { if } n \in N
$$

where g_{n} is the integer nearest to $\left(\frac{p}{q}\right)^{n}$. Then

$$
\lim _{k \rightarrow \infty} \frac{\mathbf{n}^{(k+1)}}{n^{(k)}}=\infty
$$

Proof: For every positive integer n put

$$
P_{n}=\frac{p^{n}}{d_{n}}, \quad Q_{\mathbf{n}}=\frac{g_{n}}{d_{n}} \cdot q^{n}
$$

where

$$
d_{n}=\left(p^{n}, g_{n} q^{n}\right)=\left(p^{n}, g_{n}\right)
$$

Both d_{n} and P_{n} are powers of $p ; \mathbf{Q}_{\mathbf{n}}$ is divisible by $\mathbf{q}^{\mathbf{n}}$ so that

$$
\mathrm{n} \leqslant \frac{\log Q_{n}}{\log q}
$$

and it is obvious from

$$
\left|\left(\frac{p}{q}\right)^{n}-g_{n}\right| \leqslant \frac{1}{2}
$$

that

$$
\lim _{n \rightarrow \infty} \frac{P_{n}}{Q_{n}}=1
$$

It follows that there are three positive constants γ_{1}, γ_{2}, and γ_{3} such that

$$
0<Q_{n} \leqslant \gamma_{1} P_{n} \leqslant \gamma_{1} p^{n} \quad \text { and hence } \quad n \geqslant \frac{\log Q_{n}-\log \gamma_{1}}{\log p},
$$

and

$$
\left|Q_{n}\right|_{q} \leqslant q^{-n} \leqslant \gamma_{2} Q_{n}^{\mu-1}, 0<g_{n}^{-1} \leqslant \gamma_{3} Q_{n}^{-\mu}
$$

where

$$
\mu=\frac{\log \left(\frac{p}{q}\right)}{\log p}, \quad 1-\mu=\frac{\log q}{\log p}
$$

Here the upper bound for $\mathrm{g}_{\mathrm{n}}^{-1}$ is a consequence of the asymptotic relation

$$
g_{n} \sim\left(\frac{p}{q}\right)^{n}
$$

The lower bound for n in terms of Q_{n} implies that for all sufficiently large n,

$$
\frac{10 n \log p}{\sqrt{\log \log n}} \geqslant \frac{.9 \log Q_{n}}{\sqrt{\log \log \log Q_{n}}} .
$$

From now on let $n \in N$. By the hypothesis,

$$
\begin{aligned}
\left|\frac{P_{n}}{Q_{n}}-1\right|=\frac{1}{g_{n}}\left|\left(\frac{p}{q}\right)^{n}-g_{n}\right| & \leqslant \frac{1}{g_{n}} \exp \left(-\frac{10 n \log p}{\sqrt{\log \log n}}\right) \leqslant \\
& \leqslant \gamma_{3} Q_{n}^{-\mu-9\left(\log \log \log Q_{n}\right)^{-\frac{1}{2}}}
\end{aligned}
$$

We apply now Theorem 1, with

$$
\xi=1, f=1, \lambda=0, \mu=\frac{\log \left(\frac{p}{q}\right)}{\log p}, g^{\prime}=p, g^{\prime \prime}=q, \kappa^{(k)}=\frac{P_{n}(k)}{Q_{n}(k)} .
$$

Since

$$
5 \sqrt{\log (4 f)}=5 \sqrt{\log 4}<9
$$

the theorem gives

$$
\lim _{k \rightarrow \infty} \frac{\sup }{} \frac{(k+1)}{\log Q_{n}}(k) \quad=\infty,
$$

and from this, by

$$
\frac{\log Q_{n}-\log \gamma_{1}}{\log p} \leqslant n \leqslant \frac{\log Q_{n}}{\log q}
$$

the assertion follows at once.
10. As a second application we construct a class of trancendental numbers which, in general, are not Liouville numbers.

Theorem 3: Let $\mathrm{g} \geqslant 2$ be a fixed integer, θ a constant such that $0<\theta<1,\left\{\omega_{n}\right\}$ an increasing infinite sequence of positive numbers tending to infinity, $\left\{\nu_{n}\right\}$ a strictly increasing infinite sequence of positive integers satisfying

$$
\nu_{1} \geqslant 3, \quad \nu_{\mathrm{n}+1} \geqslant \nu_{\mathrm{n}} \quad 1+\left(\frac{\omega_{\mathrm{n}}}{\sqrt{\log \log \nu_{\mathrm{n}}}}\right) \quad(\mathrm{n}=1,2,3, \ldots)
$$

and $\left\{a_{n}\right\}$ an infinite sequence of positive integers prime to \mathbf{g} such that

$$
a_{n+1} \leqslant g^{\theta\left(\nu_{n+1}-\nu_{n}\right)} \quad(n=1,2,3, \ldots)
$$

Then the real number

$$
\xi=\sum_{n=1}^{\infty} a_{n} g^{-\nu_{n}}
$$

is transcendental.

Proof: Put

$$
P_{N}=g^{\nu_{N}} \sum_{n=1}^{N} a_{n} g^{-\nu_{n}}, \quad Q_{N}=g^{\nu_{N}}, \quad R_{N}=\sum_{n=N+1}^{\infty} a_{n} g^{-\nu_{n}}
$$

so that

$$
\xi-\frac{P_{N}}{Q_{N}}=R_{N}>0
$$

The integers P_{N} and Q_{N} are relatively prime because

$$
P_{N}=a_{N}+\sum_{n=1}^{N-1} a_{n} g^{\nu_{N}-\nu_{n}} \equiv a_{N}(\bmod g)
$$

is prime to g .
From the hypothesis,

$$
a_{n+1} g^{-\nu_{n+1}} \leqslant g^{\theta\left(\nu_{n+1}-\nu_{n}\right)-\nu_{n+1}}=g^{-\left\{(1-\theta) \nu_{n+1}+\theta \nu_{n}\right\}}
$$

and

$$
(1-\theta) \nu_{\mathrm{n}+1}+\theta \nu_{\mathrm{n}} \geqslant(1-\theta) \nu_{\mathrm{n}}\left(1+\frac{\omega_{\mathrm{n}}}{\sqrt{\log \log \nu_{\mathrm{n}}}}\right)+\theta \nu_{\mathrm{n}}=\nu_{\mathrm{n}}\left(1+\frac{(1-\theta) \omega_{\mathrm{n}}}{\sqrt{\log \log \nu_{n}}}\right)
$$

Let now N be sufficiently large. Since ω_{n} increases to infinity with n , it is obvious that

$$
\nu_{\mathrm{n}} \frac{(1-\theta) \omega_{\mathrm{n}}}{\sqrt{\log \log \nu_{\mathrm{n}}}}
$$

is an increasing function of n for $n \geqslant N$. Therefore

$$
\begin{aligned}
0<R_{N} & =\sum_{n=N}^{\infty} a_{n+1} g^{-\nu_{n+1}} \leqslant \sum_{n=N}^{\infty} g^{-\nu_{n}\left(1+\frac{(1-\theta) \omega_{n}}{\sqrt{\log \log \nu_{n}}}\right) \leqslant} \\
& \leqslant \sum_{n=N}^{\infty} g^{-\nu_{n}-\nu_{N}} \sqrt{\log \log \nu_{n}} \leqslant \\
& \leqslant g^{-\nu_{N}}\left(1+\frac{(1-\theta) \omega_{N}}{\sqrt{\log \log \nu_{N}}}\right) \sum_{n=N}^{\infty} g^{-\left(\nu_{n}-\nu_{N}\right)} .
\end{aligned}
$$

Further

$$
\sum_{n=N}^{\infty} g^{-\left(\nu_{n}-\nu_{N}\right)} \leqslant \sum_{n=N}^{\infty} g^{-(n-N)}=\frac{1}{1-g^{-1}} \leqslant 2
$$

because the integers ν_{n} are strictly increasing with n . Hence

$$
\begin{aligned}
0<R_{N} & \leqslant 2 \mathrm{~g}^{-\nu_{\mathrm{N}}}\left(1+\frac{(1-\theta) \omega_{N}}{\sqrt{\log \log \nu_{N}}}\right) \leqslant 2 Q_{\mathrm{N}}^{-1-\frac{(1-\theta) \omega_{\mathrm{N}}}{\sqrt{\log \log \frac{\log Q_{N}}{\log g}}}} \\
& \leqslant Q_{\mathrm{N}}^{-1-\frac{\frac{1}{2}(1-\theta) \omega_{\mathrm{N}}}{\sqrt{\log \log \log Q_{N}}}}
\end{aligned}
$$

for all sufficiently large N.
Assume now that the assertion is false and that ξ is algebraic, say of degree f. Then Theorem 1 may be applied with

$$
\lambda=1, \mu=0, g^{\prime \prime}=g, c_{1}=1, c_{2}=1
$$

while \mathbf{g}^{\prime} is an arbitrary integer prime to \mathbf{g}. But for large N ,

$$
5 \sqrt{\log (4 f)}<\frac{1}{2}(1-\theta) \omega_{N}
$$

because ω_{N} tends to infinity. Hence it follows from the theorem that

$$
\limsup _{N \rightarrow \infty} \frac{\log Q_{N+1}}{\log Q_{N}}=\infty
$$

or, what is the same,

$$
\limsup _{N \rightarrow \infty} \frac{\nu_{N+1}}{\nu_{N}}=\infty
$$

There exist then arbitrarily large N for which

$$
\nu_{\mathrm{N}+1} \geqslant \frac{3 \nu_{\mathrm{N}}}{1-\theta}
$$

For these N ,

$$
0<R_{N} \leqslant \sum_{n=N}^{\infty} g^{-\left\{(1-\theta) \nu_{n+1}+\theta \nu_{n}\right\}}<\sum_{n=N}^{\infty} g^{-(1-\theta) \nu_{N+1}}
$$

and hence

$$
0<R_{N}<g^{-(1-\theta) \nu_{N+1}} \sum_{n=N}^{\infty} g^{-(1-\theta)\left(\nu_{n+1}-\nu_{N+1}\right)}
$$

But

$$
\sum_{n=N}^{\infty} g^{-(1-\theta)\left(\nu_{n+1}-\nu_{N+1}\right)} \leqslant \sum_{n=N}^{\infty} g^{-(1-\theta)(n-N)}=\frac{1}{1-g^{-(1-\theta)}}
$$

whence

$$
0<R_{N}<\frac{\mathrm{g}^{-3 \nu_{N}}}{1-\mathrm{g}^{-(1-\theta)}}=\text { const. } Q_{N}^{-3}
$$

However, this inequality contradicts Roth's Theorem, and we obtain the assertion.

