
Chapter 2

THE p-ADIC, g-ADIC, AND g*-ADIC SERIES

Historically, K. Hensel was led to his p-adic and g-adic numbers by con-
siderations of analogy to function fields.

Let S be the complex number field, x an indeterminate, and K = S (x)
a simple transcendental extension of S; let further w(a) be any valuation or
pseudo-valuation of K with the property C, i.e., such that

w(c) = w0(c) if ceS,

where Wo(a) denotes the trivial valuation defined in §1 of Chapter 1. It can
be proved that every valuation with the property C must be equivalent to one
of the valuations

wo(a), l l a l l , ||a||pr

introduced in § 3 of Chapter 1; however, now every "prime" p has the spe-
cial form p=x-c where ceS because S is algebraically closed. One can
further show that every pseudo-valuation with the property C either is equi-
valent to one of these valuations, or it is equivalent to a pseudo-valuation of
one of the two forms

wi(a) = max(||a||pl,..., ||a||pr) and wa(a) = max(||a||, l|a||pjl,...,||a||pr).

Here

Pi = x - ci,..., pr = x - cr, where ch =(= % if h 4 k,

are finitely many distinct "primes", and we have r ^2 in the case of Wi(a)
and r ^ 1 in that of wa(a). The position is thus analogous to that mentioned
in § 14 of Chapter 1 for the rational field T , with Hall , ||a|L, w^a), W2(a)
corresponding to I a I, I a I p, I a I g, I a I g*, respectively, There is, however,
the difference that all these valuations and pseudo-valuations of K are
Non-Archimedean.

It is not difficult to prove that the completion of K with respect to l l a l l
is the field of all formal series

while that of K with respect to I la Up, where p=x-c, is the field of aM formal
series

cf(x-c)f + cf+i(x-c)f+1 + Cf+2(x-c)f+2 + ... .

In both cases f may be any rational integer, and the coefficients cm may be
arbitrary elements of S. The convergence of the series follows from the
results in § 17 of Chapter 1 because

Hil l - e< 1, | |cmll< 1, and | |x-c|L=0 < 1, ||cm|L«lf
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respectively, and hence

lim ||cm(M || = 0, lim l|cm(x-c)m||p = 0.
m_,00 \x/ m—»°° *

In both cases the constant field S has the algebraic property of being the
residue class field K/x and K/x-c, respectively.

Similar, but slightly more complicated developments hold also for the
completions of K with respect to Wi(a) and W2(a), but there is no need to go
into details.

Consider now the valuation I alp of F and the corresponding p-adic com-
pletion Pp of F. We have

I P I p = - < !> and |c L ^ 1 for all rational integers c.

It follows that every formal series

Cf p* + cf+lp*"1"* + cf+2P*+2 + •••

where f and all the coefficients Cm are rational integers, converges with
respect to |a|p; for the valuation Ta|p is Non-Archimedean, and

It will be proved in this chapter that every element of Pp can be written in
many ways as a series of this kind, but that there is one and only one series
in which the coefficients assume only values in the finite set {0,1,..., p-l}.

When Hensel discovered the p-adic numbers towards the end of last cen-
tury, there was not yet any general field theory or theory of valuations. He
defined his numbers by the series and by the rules for computing with them.
In this work he followed the analogy to the Laurent series

/l\f fiY+1 f!V+2

or

cf (x-c)f + cf+i(x-c)f+1 + cf+2(x-2)f+2 + ...

for an analytic function in the neighbourhood of a pole, either at x=°° or at a
finite point x=c. Such series are convergent in the sense of complex analysis
rather than with respect to the valuations ||a|| or I la Up; but even in function
theory the latter kind of convergence plays a big role in connection with the
orders of poles and zeros.

The investigations of this chapter are concerned only with the p-adic,
g-adic, and g*-adic numbers. However, the method is much more general,
and it can in particular be used to prove the earlier assertions about the
completions of K with respect to ||a|| and I la Up.

1. Notation.

In this and the later chapters the notation will be essentially the same as
before. Always PI,..., pr denote finitely many distinct primes, and g ^2 de-
notes an integer with the factorisation
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g = piei... pr
er

where ei,..., er are positive integers. The valuations la I and I a |p, and the
pseudo- valuations |a|g and |a|g*, are defined as in Chapter 1, and P, Pp,
Pg, and Pg* denote the corresponding completions of the rational field F,
thus are the fields of the real and the p-adic numbers, and the rings of the
g-adic and the g*-adic numbers, respectively. We shall in general use Latin
letters for rational numbers, small Greek letters for real and p-adic num-
bers, and capital Greek letters for g-adic and g*-adic numbers.

If A^*-*~(cti ,..., otr) is a g-adic number with the pj-adic components a]
for j=l, 2,..., r, the g-adic value of A is equal to

logg logg

Similarly, if A*~~-(a, alf..., ar) is a g*-adic number with the real compo-
nent a and the opadic components «j for j=l, 2,..., r, the g*-adic value of
A* is given by

( logg
R laiig10™1 ,..., i<

logg

It will suffice to prove the first formula as the second formula may be ob-
tained in the same way.

There exists a fundamental sequence {am} in F satisfying

lim am = A (|aL)o

and hence also satisfying

lim am = cKi(lalpj) (j = 1,2,...,r).m—»«> J -^J ' ' '

These two limit formulae imply that

lim la m | g= |A|g and lim |am|pj = l«j |pj (j = l,2,...,r).

Now, by definition,

( log g logg \

lamlpi10gPl ,-, lamlp?10gPr/ ,

and so the assertion follows immediately.
We note that

(I): Un|g = (U|g)
n, U*n|g* = (U*|g*)n

for all AePg and A*ePg* and aU positive integers n; and that further

(II): Ugnlg=

for all AePg and all rational integers n. These properties follow easily from
the explicit expressions for Ulg and U*|g*, and from

lglg = g"1, lglpl =Pi"ei,..., lglp r=Pr e r .
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They are special cases of the properties (I) and (II) in § 4 of Chapter 1.
Here and later, we have continuously to deal with limits

Urn ... (w)
m—»°°

where w(a) stands for one of

|a|, |a|p, |a|g, or |a|g*.

In order to shorten the formulae, we shall always omit the sign |a| of the
absolute value and write

lim ...m—»°°

when dealing with real limits. We further shall replace

lim ... (|a|p) by lim ... (p),
m— x» m— >«>

lim ... (|a|g) by lim ... (g),
—m— >o

and lim ... (|aL*) by lim ... (g*),
m— »°° m— ><»

respectively. This agrees with Hensel's own notation.

2. The ring I g and the ideal 9 .

Denote by Ig and g the two sets of all rational numbers satisfying

l a lg* 1

and

respectively; thus g is a subset of Ig, and Ig is a subset of F.
The set Ig is a ring. For |a|g is a Non- Archimedean pseudo-valuation.

It follows that if a and b are in Ig and hence

la|g« 1, I b l g * 1,

then

|a=Fb|g ^ max(|a|g, |b|g) ^ 1, l ab lg^ |a|g|b|g<l,

and so a+b, a-b, and ab likewise belong to Ig.
The set g is an ideal of Ig. For let a and b be in 0, and let c be any

element of Ig, so that

Then

alg, big) ^,
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and hence a+b, a-b, and ac are likewise in 9 .
By the identity (II),

|f|g = gla|g.

Hence it follows that

a belongs to 9 if and only if | belongs to Ig.• &
Thus 9 consists of all multiples a=a'g where a'elg. In the language of ideal
theory, 9 is the principal ideal g=(g) of Ig.

The elements of Ig and 9 may also be characterised as follows. Write

the rational number a as a quotient a = — of two rational integers P and

that are relatively prime. Then

a belongs to Ig if and only if (g, Q) = 1, and

a belongs to 9 if and only if g|P, (g, Q) = 1.

The proof follows easily from the definition of lalg.

3. The residue class ring Ig/ 9.

If a and b are two elements of Ig such that a-b lies in 9, we write

as b(9).

From the ideal property of 9 one deduces easily that this is an equivalence
relation:

asa(9);

if a = b(0), then

if a = b(0) and b = c(0),

One can then subdivide Ig into classes 9+a where 0+a consists of all
elements a1 of Ig such that a' = a(0). Two such classes are either disjoint,
or they are identical.

Denote by Ig/0 the set of all these classes. It is again easily proved
that Ig/0 becomes a ring if the sum and the product of any two classes 9+a
and 9+b are defined by

(9+a) + (9+b) = 9+ (a+b), (9+a) • (9+b) = 9+ ab.

The proof may be omitted, as this is a particular case of a well-known theorem
and since similar examples have already occurred.

Consider now an arbitrary element 0+c of Ig/0 . If c is written as the

quotient c = 5- of two integers R and S 4 0 that are relatively prime, then
o

(g, S) = 1

since celg. It follows that the elementary congruence

R s aS (mod g)
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has integral solutions a. If a=ao is one of these, the general solution has the
form

a = ao + gk

where k is an arbitrary integer. There is then, in particular, a unique inte-
gral solution a satisfying

0 < a < g-1.

To this solution a there exists a further integer 1 such that

R - aS = gl

and hence that

R 1

Evidently

and therefore

|elg and g| e0

This relation implies further that the class 0+a is identical with the class
0+c.

We have then the result that every class in Ig/0 is of the form

0+a, where a is one of the integers 0, 1,..., g-1.

These g classes are all distinct. For if a and a1 are integers such that
Q *£ &<tf < g-1, then a* -a is not devisible by g, hence

a* a'(0).

This means that the two classes 0+a and 0+a' are distinct.
We have thus proved that the ring Ig/0 has exactly g elements

0, 0+1,-., 0+(g-l).

4. Systems of representatives.

A set

M= {Ao, Ai,..., Ag_i}

of g rational numbers is said to be a system of representatives (viz., of the
classes 0+a in Ig/0 ) if Ao, Ai,..., Ag-1 lie in Ig and if

Ao= 0(0), A! H 1(0),..., Ag_i= g-l(0).

It follows that

0+Ao, 0+Ai,..., 0+Ag-i

form again a full set of elements of Ig/0 .
Such systems of representatives have the following property.
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If A is any g-adic number satisfying

and if M = {Ao, Ai ,..., Ag-a} is an arbitrary system of representatives,
then there is a unique element A of M such that

.

Proof: By the first chapter, F lies dense in the g-adic ring Pg and so
contains a rational number c for which

and hence also

|c|g = U-(A-c)|g< max(Ulg, U-c|g)<l.

Therefore c lies in Ig and so belongs to a certain class g+A where AeM.
Further A-cej, so that

It follows that

U-A|g = IU-c) - (A-c)lg < max (U-c|g, |A-c|g) « - .
o

If A'eM also satisfies

then

|A-Af| g = U-A') - (A-A)|g < max(U-A' |g, U-A|g) < | ,

so that As A1 (5), whence A=AT .

5. Series for g-adic numbers.

Denote by h4o any fixed integer such that (g, h) = 1. It is easily verified
that, for all g-adic numbers A and all integers m,

= g - m
g and in particular

because

lh | g = |h|pl =... = |h|pr = l.

Let, for every integer m, a system of representatives

be given; systems belonging to different m may be equal or distinct.
If A is an arbitrary g-adic number, denote by f any integer satisfying
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the inequality

g- f *Ulg
and put

so that

By 14, there exists a unique AM such that

Put

then

A® = A(f) + { A^\

There again exists a unique A(f+1) of M<£+1) such that

Put

then

^ f fU(f+l).A(f+D| ^!
g &|A A 'g A'

In this manner, we may continue indefinitely, and we so obtain for every
suffix m ^f

(i): a g-adic number A^m' satisfying

U(m)|g «1, and

(ii): a unique element A^m^ of M(m) such that

^(m) = A(m) + I A(m+1>, U(m> - AM L « ± .
h & g

It follows that, for all m 5* f,

= A« H-f
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Here

~ g
I •» *

' whence

lim

Therefore A' ' can be written as the convergent infinite series

X® = A» + f A<*+1) + (f)2A<f+2> + ... (g).

Assume there is a second series

A (f) _ a(f) . S a(f+l) , (S\ a(*
+2)+ M

h W
for A(f) where likewise a(m)eM(m) for all m ^ f and, say,

a(f) _ A(f) a(f+l) - Att+1) a(m-l) _ A(m-l) a(m) ± i(m)
CL — XX ', d ~~ XX* ', ••• , «, ~~ XX , Ct* ' T XX '.

On subtracting the two series for A(£),

<.«..(„„(!)»,. ̂ (AW-aW, (!)"(„;

here, on the left-hand side,

A(m) ^(m) hence A(m) ^ a(m)(8) and therefore lA(m)-a(m)L> 1& g
whence

w-(m+l)
g

On the right-hand side, A(n) and a(n) belong for all n ^ m to M^n), so that

lA^L^ 1, |a(n)|ff^l, hence |A(n)-aWL<l t5 ' & ' "& '

and therefore

max
n=m+l

This contradiction proves that the series for A® is unique.

Since A = (f) A®, the following result has been obtained.

Let h + 0 6e an integer prime to g; let M(m) /or ewery integer m be a
system of representatives; and let A be any g-adic number. Denote by
f any integer satisfying g-f ^ I A|g. 7%en A can be written in a unique
way as a convergent infinite series
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A = A« (f)f
 + A»*> (f)f+1

 + Att*> (f)f+2
+ ... (g)

where A(m)eM(m) for all m $* f.

The series for A still depends on the choice of f, and entirely different
series may be obtained for different values of f.

Assume, however, that all systems M(m) contain the number

Af,m) = 0.

If A * 0, denote by f the integer satisfying

so that, necessarily, f < ff. The series for A corresponding to f now be-
comes

Mf Mf+l
+ ... (g)

w w w vv
where

A<f') =1= 0 and therefore \A L = g"f' |A(f) L.
fy o

In the excluded case A = Q there are only the trivial series

Finally let all systems M(m) be identical with

M<m) = {0, 1, 2, ..., g-1}.

The result just proved now takes the following form.

Let h* 0 be an integer prime to g. Every g-adic number can be written
in a unique way as a convergent series

where the coefficients A(m) are numbers 0, 1, 2,..., g-1 as follows. If
A = 0, all these coefficients vanish; if A =*= 0, then it may be assumed that
Ate)* 0, and then

In the special case when h = 1, the corresponding series

A

with coefficients that assume only the values 0, 1, 2,..., g-1, is called the
g-adic series for A. In particular, when g is a prime p, it follows that
every p-adic number a can in a unique way be written as the p-adic series

where the coefficients are integers 0, 1, 2,..., p-1; for of = 0 all these coeffi-
cients are zero, while for a £ 0 it may be assumed that A(f) * 0 and then

la In = P"f because |A(*)|D = 1.
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All the developments for the g-adic number A studied in this section
have one important property in common. If

is the decomposition of A into its pi-adic,..., pr-adic components, then the
same series converge also simultaneously to the limits «i,..., ar with re-
spect to the valuations la|pl,..., |a|pr, respectively.

Of particular importance are those g-adic numbers A which satisfy the
inequality

and are called g-adic integers. Their g-adic series do not contain non-zero
terms A(m)gm with negative exponents m. A proof just like that for the set
Ig in § 2 shows that the set Jg, say, of all g-adic integers forms a ring. In
the same way, the p-adic integers a are defined by the inequality

Their ring Jp is a domain of integrity, and it has Pp as its quotient field.
The g-adic series for A and its special case, the p-adic series for a,

are extremely useful for actual computations with such numbers. The techni-
que of such computations is explained, with many examples, in HensePs book
"Zahlentheorie". -

We conclude this section with a nearly trivial remark. There are in-
finitely many distinct g-adic numbers

i,..., ar)

with one and the same first component on , but with varying other components,
at least if r ^ 2. Each of these numbers can be written as a g-adic series

A = A<«gf + A(f+Dgf+l + A(f+2)gf+2 + ... (g),

and then the same series converges to its first component ai with respect to
the valuation la!Pl . Furthermore, different g-adic numbers naturally are
represented by different g-adic series.

Hence there are infinitely many distinct g-adic series
+ A(f+2)gf+2 + .

for any given pi-adic number, provided only that g is divisible by at least
one further prime distinct from pi .

*
6. Series for g*-adic numbers.

The results obtained in§ 5 lead also to convergent series for g*-adic
numbers

It is convenient to decompose such numbers into their real and g-adic com-
ponents and to write

A*— (a, A)
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where

A++(ai, ..., ar).

As before, the integer h * 0 is assumed to be relatively prime to g; in
addition, let

Kl < '•
Further, if p is any real number, denote by M(p) that system of representa-
tives which consists of the integers k satisfying

p - g<k < p.

The construction of the series for A* proceedes now as follows. Choose
any integer f for which

and put
^*(f) = (I) 4*^a(f),A(*)), where A(f)-^(a(f),..., a$>).\h/

Then

and hence

By §4, there exists a unique A(f)eM(o?(f)) satisfying

U W - A W | g * J ;

from this definition, also

att) - g<A(f) < a(f) and hence 0 < a® - A<f) < g

Put

A*<M> = ({j)"1^*® - A(«)-(«M),A(fH-l)), where AM)^(«

so that

A® + f A*(f^), o»+« = (f y^a ® - A(fy ^(f+D = (f

and therefore

By the same reasoning as a few lines back there further exists a unique
AW+l)eM(att+D) satisfying

A(f+D |g * i .
D



38 LECTURES ON DIOPHANHNE APPROXIMATIONS

On putting
A*(f+2) = ̂ S]" 1(^*(f+l) _ A(f+1))^(a(f+2), Aft+2)), ^(f+2)^^(ajf+2),..., <xr

f+2)),

it follows that

whence

This construction can be repeated indefinitely, and we so obtain for every
suffix m ^ f

(i): a g*-adic number
A*(m)^(a(m)yA(m))

satisfying

Ia ( m )l<lh|, U<m)|g^l, and

(ii): a unique element A(m) of M(a(m)) such that

0 ^ a < m ) - A(m)<g, U(m)

and

Then for all m ^ f,

A*(f) = Att) + ̂  Aft+l) + f- )2 A^+2) + ... + ff J " "

Here

- fa<m)|<lflm- f |h|, ir^m-f^)|g^g-(m-f),

so that both expressions tend to 0 as m-^«>. It follows that

"•»i(sr
Hence A*(f) can be written as the convergent series

= Ad) + Att+« +
2

 A(f+2)+ ... (g.)f

and since A* = | T A*^), it also follows that
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In these two series the coefficients A(m) are integers such that

0 < a(m) . AM < g, where \a^\< |h| .

Their absolute values are therefore smaller than g+|h| , and hence

|A(m)|< g+ |h|- 1 for m ^ f .

In the special case when h is positive and when a & 0, it is easily deduced
from the definition of the real numbers a(m) that all these numbers are non-
negative. We therefore find now that

-g ^ a(m) „ g < A(m) «* oM < h

and hence

-(g-1) < AM < h-1.

Thus the following result has been obtained.

Let h * 0 be an integer prime to g such that |j \< 1, and let A*-*+-(ci,A}

be any g*-adic number. Denote by f any integer satisfying

Then A* can be written as a convergent infinite series

A* = A(f)(f)£ + A(M)(f)f+1 + A«+2)(f)£+2 + ... (g*)

where all coefficients A are integers at most of absolute values
g+|h|-l. If h >0 and as*0, it may be assumed that these coefficients
satisfy the stronger condition - (g-1) < A(m) ^ h-1.

A look through the proof shows that this result remains valid even when
A* reduces to its real component a, i.e., when g = 1, r = 0, and there is no
g-adic component. We then obtain the classical representation

of the real number a to the basis h, with "digits" A(m) that assume only
the integral values 0, 1, 2, ..., h-1.

In the g-adic case the set Jg of all g-adic integers, i.e., of all g-adic
numbers A satisfying Ulg ^ 1, was found to be a ring, due to |a|g being
Non- Archimedean. In addition, the g-adic aeries for the elements of Jg con-
sisted of terms A(m)gm that were rational integers; hence g-adic integers
have the characteristic property of being limits of sequences of rational in-
tegers. It might seem appropriate to introduce also the set Jg* of all g*-adic
numbers -4* satisfying |A*fg* « 1 and to call its elements g*-adic integers.
However, since |a|g* is now Archimedean, Jg* is no longer a ring, but is
closed only under multiplication. Moreover, the elements of Jg* distinct
from 0, +1, and -1 cannot be approximated arbitrarily closely by sequences
of rational integers. There is thus no justification for singling out the ele-
ments of Jg* among other g*-adic numbers.

The series studied in this chapter give explicit expressions for the ele-
ments of P, Pp, Pg, and Pg*, and their finite sections give rational
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approximations. The same series will be applied in Chapter 4 to the con-
struction of continued fractions for g-adic and g*-adic numbers.

7. Sequences that converge with respect to all valuations of F.

Let {pm} be the sequence of all prime numbers 2, 3, 5,... written in
ascending order, and let a be a real number, while <XM> for M = l , 2, 3,...,
is a pM-adic number. We conclude the chapter with the following simple
remark.

There exists an infinite sequence {am} of rational numbers such that,
simultaneously,

lim am = «; lim am = aM(PM) for all M.
m— »°o m— >°°

For, as we saw, the different valuations are independent and hence it is
possible to find, for each suffix m, a rational number am such that

lam -« !<—; lam - «i lp!<~ , lam - «2 Ip2<— ,—, lam-^mlpm^'

Then the sequence {am} has the required properties.
A similar proof shows that if each <XM is a pM-adic integer, a sequence

{am} of rational integers can be found such that

lim am = <XM(PM) for a11 M-

This result is easily seen to be equivalent to the following one.
There exists an infinite sequence {Am} of rational integers satisfying
0 < Am < m such that, simultaneously*

Ai'l! + A a - 2 ! + A3-3I + ... = «M<PM) for all M.
Infinite series of this kind were fjlrst studied by D. van Dantzig.


