
I LINEAR ALGEBRA

A. Fields.

A field is a set of elements in which a pair of operations called

multiplication and addition is defined analogous to the operations of

multiplication and addition in the real number system (which is itself

an example of a field). In each field F there exist unique elements

called o and 1 which, under the operations of addition and multiplica-

tion, behave with respect to all the other elements of F exactly as

their correspondents in the real number system. In two respects, the

analogy is not complete: 1) multiplication is not assumed to be commu-

tative in every field, and 2) a field may have only a finite number

of elements.

More exactly, a field is a set of elements which, under the above

mentioned operation of addition, forms an additive abelian group and

for which the elements, exclusive of zero, form a multiplicative group

and, finally, in which the two group operations are connected by the

distributive law. Furthermore, the product of o and any element is de-

fined to be o.

If multiplication in the field is commutative, then the field is

called a commutative field.

B. Vector Spaces.

If V is an additive abelian group with elements A, B, . . . ,

F a field with elements a, b , . . . , and if for each a e F and A e V
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the product aA denotes an element of V, then V is called a (left)

vector space over F if the following assumptions hold:

1) a(A + B) = aA + aB

2) (a + b)A = aA + bA

3) a(bA) = (ab)A

4) 1A = A

The reader may readily verify that if V is a vector space over F, then

oA = O and aO = O where o is the zero element of F and O that of V.

For example, the first relation follows from the equations:

aA = (a + o)A = aA +oA

Sometimes products between elements of F and V are written in

the form Aa in which case V is called a right vector space over F to

distinguish it from the previous case where multiplication by field ele-

ments is from the left. If, in the discussion, left and right vector

spaces do not occur simultaneously, we shall simply use the term

"vector space."

C. Homogeneous Linear Equations.

If in a field F, ay, i = 1, 2, . . . , m, j = 1,2,. . ., n are m • n ele-

ments, it is frequently necessary to know conditions guaranteeing the

existence of elements in F such that the following equations are satisfied:

a i l X l + a!2X2

(1)

The reader will recall that such equations are called linear

homogeneous equations, and a set of elements, xx, x 2 , . . . , xn

of F, for which all the above equations are true, is called



a solution of the system. If not all of the elements xl, x2 , . . . , xn

are o the solution is called non-trivial; otherwise, it is called trivial.

THEOREM 1. A system of linear homogeneous equations always

has a non-trivial solution if the number of unknowns exceeds the num-

ber of equations.

The proof of this follows the method familiar to most high school

students, namely, successive elimination of unknowns. If no equations

in n > O variables are prescribed, then our unknowns are unrestricted

and we may set them all = 1.

We shall proceed by complete induction. Let us suppose that

each system of k equations in more than k unknowns has a non-trivial

solution when k < m. In the system of equations (1) we assume that

n > m, and denote the expression a i lx1 + ... + a.nxn by Li} i = 1,2,. .., m.

We seek elements x1,. .., xn not all o such that Lx = L2 = . .. = Lm = o.

If ar = o for each i and j, then any choice of Xj , . . . , xn will serve as

a solution. If not all a^ are o, then we may assume that an ^ o, for

the order in which the equations are written or in which the unknowns

are numbered has no influence on the existence or non-existence of a

simultaneous solution. We can find a non-trivial solution to our given

system of equations, if and only if we can find a non-trivial solution

to the following system:

L , =°
L2 - a2ian1Li =



For, if X j , . .., xn is a solution of these latter equations then, since

Lj = o, the second term in each of the remaining equations is o and,

hence, L2 = L3 = .. . = Lm = o. Conversely, if (1) is satisfied, then

the new system is clearly satisfied. The reader will notice that the

new system was set up in such a way as to " eliminate'' x1 from the

last m-1 equations. Furthermore, if a non-trivial solution of the last

m-1 equations, when viewed as equations in x 2 , . . . , xn, exists then

taking xl = - a1j1(a12x2 4- a13*3 + • • - + ^n^) would give us a

solution to the whole system. However, the last m-1 equations have

a solution by our inductive assumption, from which the theorem follows.

Remark: If the linear homogeneous equations had been written

in the form Sx^^ = o, j = 1, 2, . . ., n, the above theorem would still

hold and with the same proof although with the order in which terms

are written changed in a few instances.

D. Dependence and Independence of Vectors.

In a vector space V over a field F, the vectors Al,..., An are

called dependent if there exist elements X j , . . . , xn, not all o, of F such

that X j A j + x2A2 + .. . + xnAn = O. If the vectors A x , . . ., An are

not dependent, they are called independent.

The dimension of a vector space V over a field F is the maximum

number of independent elements in V. Thus, the dimension of V is n if

there are n independent elements in V, but no set of more than n

independent elements.

A system Ax, . .., Am of elements in V is called a

generating system of V if each element A of V can be expressed



linearly in terms of A , , . .., A , i.e., A = 2a.A. for a suitable choice1 m 1=1i i

of a., i = 1, .. . ,m, in F.

THEOREM 2. In any generating system the maximum number of

independent vectors is equal to the dimension of the vector space.

Let A j , . .., Am be a generating system of a vector space V of

dimension n. Let r be the maximum number of independent elements in

the generating system. By a suitable reordering of the generators we may as-

sume A j , . .., Ar independent. By the definition of dimension it follows that

r < n. For each j, AX ,.. ., Ar, A f + j are dependent, and in the relation

a i A j + a2A2 + ... + arAr + ar+j Af+j = O

expressing this, a r+ j 4 o, for the contrary would assert the dependence

of A j , . .., Ar. Thus,

Ar+j = - a^Ia^j + a2A2 + ... + arAr].

It follows that AX , . . . , Ar is also a generating system since in the

linear relation for any element of V the terms involving Ar+j, j 4 o, can

all be replaced by linear expressions in A x , . . ., Ar.

Now, let &l,. . ., Bt be any system of vectors in V where t > r,
r

then there exist a., such that B. = 2 a.. A., j = 1 ,2, . . . , t, since theij j j __ * ij *
A.' s form a generating system. If we can show that Bj, . . ., Bt are

dependent, this will give us r > n, and the theorem will follow from

this together with the previous inequality r < n, Thus, we must ex-

hibit the existence of a non-trivial solution out of F of

the equation

x1E1 + x2B2 + . . . + x tB t = O.



To this end, it will be sufficient to choose the x.'s so as to satisfy

the linear equations 2 x. a^ = o, i = 1,2,.. . , r, since these ex-

pressions will be the coefficients of A. when in 2 x.B. the B. 's are
r i j=l j J J

replaced by 2 aL- AL and terms are collected. A solution to the equa-

tions 2 x^y = o, i = 1,2,.. ., r, always exists by Theorem 1.

Remark: Any n independent vectors A x , . .., An in an n dimen-

sional vector space form a generating system. For any vector A, the

vectors A, AX, . . . , An are dependent and the coefficient of A, in the

dependence relation, cannot be zero. Solving for A in terms of

Aj, . . . , An, exhibits Ax, . . . , An as a generating system.

A subset of a vector space is called a subspace if it is a sub-

group of the vector space and if, in addition, the multiplication of any

element in the subset by any element of the field is also in the subset.

If AX , . . . , As are elements of a vector space V, then the set of all ele-

ments of the form al A.l + ... + agAg clearly forms a subspace of V.

It is also evident, from the definition of dimension, that the dimension

of any subspace never exceeds the dimension of the whole

vector space.

An s-tuple of elements ( a 1 , . . . , a s ) i n a field F will be called

a row vector. The totality of such s-tuples form a vector space if

we define

a) (al9a2,...,aB) = (b x , b 2 , . . . , bs ) if and only if

al = bj, i = l , . . . ,s,

|8) ( a 1 , a 2 , . . . , a s ) + (b l f b 2 , . . . , bs ) = (al + b l f a 2 + b2,



y) b(alta2,. . . , a s ) = (ba1 ,ba2 , . . . , b a s ) , for b an

element of F.

When the s-tuples are written vertically, / .1"

they will be called column vectors.

THEOREM 3. The row (column) vector space Fn of all n-tuples

from a field F is a vector space of dimension n over F.

The n elements

€l = ( l f o , o , . . . , o )

£n = (O, O, . . . , O, 1)

are independent and generate Fn. Both remarks follow from the relation

( a 1 , a 2 , . . . , a n ) = Sa^.

We call a rectangular array

' a i i a i 2 ' - - a i n

a21322- ' ' 32n

a a a
^ ml m2' * * mn -

of elements of a field F a matrix. By the right row rank of a matrix, we

mean the maximum number of independent row vectors among the rows

(an, . . ., a.n) of the matrix when multiplication by field elements is

from the right. Similarly, we define left row rank, right column rank and

left column rank.

THEOREM 4. In any matrix the right column rank equals the left

row rank and the left column rank equals the right row rank. If the field
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is commutative, these four numbers are equal to each other and are

called the rank of the matrix.

Call the column vectors of the matrix C j , . . . , Cn and the row

vectors Rlt..., Rm. The column vector O is / ° \ anc^ anY

o

dependence CjXj + C2x2 + . . . + Cnxn = O is equivalent to a

solution of the equations

(1)

amlXl + am2X2

Any change in the order in which the rows of the matrix are written

gives rise to the same system of equations and, hence, does not change

the column rank of the matrix, but also does not change the row rank

since the changed matrix would have the same set of row vectors. Call

c the right column rank and r the left row rank of the matrix. By the

above remarks we may assume that the first r rows are independent row

vectors. The row vector space generated by all the rows of the matrix

has, by Theorem 1, the dimension r and is even generated by the first

r rows. Thus, each row after the rth is linearly expressible in terms of

the first r rows. Consequently, any solution of the first r equations in

(1) will be a solution of the entire system since any of the last n-r

equations is obtainable as a linear combination of the first r. Con-

versely, any solution of (1) will also be a solution of the first r

equations. This means that the matrix



a , a .... a
^ rl r2 r

consisting of the first r rows of the original matrix has the same right

column rank as the original. It has also the same left row rank since

the r rows were chosen independent. But the column rank of the ampu-

tated matrix cannot exceed r by Theorem 3. Hence, c < r. Similarly,

calling c1 the left column rank and r1 the right row rank, c1 < r1 .

If we form the transpose of the original matrix, that is, replace rows by

columns and columns by rows, then the left row rank of the transposed

matrix equals the left column rank of the original. If then to the

transposed matrix we apply the above considerations we arrive at

r < c and r1 < c1 .

E. Non-homogeneous Linear Equations.

The system of non-homogeneous linear equations

a X + a X + • ' • + a x = b l

321X1

(2)

a X + . . . . . . . • ' • • • + amnXm=m l l

has a solution if and only if the column vector / bl \ lies

in the space generated by the vectors / a11
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This means that there is a solution if and only if the right column rank of

the matrix /an. . . a ln\ is the same as the

a ,. . . a
v ml mn >

right column rank of the augmented matrix / all.. . a^bj

a .... a b^ ml mn m >

since the vector space generated by the original must be the same as

the vector space generated by the augmented matrix and in either case

the dimension is the same as the rank of the matrix by Theorem 2.

By Theorem 4, this means that the row ranks are equal. Con-

versely, if the row rank of the augmented matrix is the same as the row

rank of the original matrix, the column ranks will be the same and the

equations will have a solution.

If the equations (2) have a solution, then any relation among the

rows of the original matrix subsists among the rows of the augmented

matrix. For equations (2) this merely means that like combinations

of equals are equal. Conversely, if each relation which subsists be-

tween the rows of the original matrix also subsists between the rows

of the augmented matrix, then the row rank of the augmented matrix

is the same as the row rank of the original matrix. In terms of the

equations this means that there will exist a solution if and only if

the equations are consistent, i.e., if and only if any dependence

between the left hand sides of the equations also holds between the

right sides.
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THEOREM 5. If in equations (2) m = n, there exists a unique

solution if and only if the corresponding homogeneous equations

SnlXl + an2X2 + ••• + annXn = °

have only the trivial solution.

If they have only the trivial solution, then the column vectors

are independent It follows that the original n equations in n unknowns

will have a unique solution if they have any solution, since the differ-

ence, term by term, of two distinct solutions would be a non-trivial

solution of the homogeneous equations, A solution would exist since

the n independent column vectors form a generating system for the

n-dimensional space of column vectors.

Conversely, let us suppose our equations have one and only one

solution. In this case, the homogeneous equations added term by

term to a solution of the original equations would yield a new solu-

tion to the original equations. Hence, the homogeneous equations have

only the trivial solution.

F. Determinants.1)

The theory of determinants that we shall develop in this chapter

is not needed in Galois theory. The reader may, therefore, omit this

section if he so desires.

We assume our field to be c o m m u t a t i v e and consider the

square matrix
1) Of the preceding theory only Theorem 1, for

homogeneous equations and the notion of
linear dependence are assumed known.
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(1)

of n rows and n columns. We shall define a certain function of this

matrix whose value is an element of our field. The function will be

called the determinant and will be denoted by

32ia22

(2)

or by D( Aj, A 2 , . . . An) if we wish to consider it as a function of the

column vectors At, A 2 , . .. An of (1). If we keep all the columns but Ak

constant and consider the determinant as a function of Ak, then we

write Dk(Ak) and sometimes even only D.

Definition. A function of the column vectors is a determinant if

it satisfies the following three axioms:

1. Viewed as a function of any column Ak it is linear and homogeneous, i.e.

(3) D k (A k + Ai) = q t (A k ) + D k(Ai)

(4) Dk(cAk) = c .D k (A k )

2. Its value is = O1* if the adjacent columns Ak and Ak+1 are equal.

3. Its value is = 1 if all Ak are the unit vectors Uk where

1) Henceforth, 0 will denote the zero element
of a field.
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(5) Uj = 0 1; U2 =

0/ \1

The question as to whether determinants exist will be left open

for the present. But we derive consequences from the axioms:

a) If we put c = 0 in (4) we get: a determinant is 0 if one of

the columns is 0.

b) Dk( Ak ) = Dk( Ak + cAk + 1) or a determinant remains unchanged

if we add a multiple of one column to an adjacent column. Indeed

Dk(Ak + cAk±1) = D k (A k ) + cDk(Ak±1) = D k (A k )

because of axiom 2.

c) Consider the two columns Ak and Ak + r We may replace them by

Ak and Ak+1 + Ak; subtracting the second from the first we may replace

them by - Ak+1 and Ak+1 + Ak; adding the first to the second we now

have - Ak+1 and Ak; finally, we factor out -1. We conclude: a determi-

nant changes sign if we interchange two adjacent columns.

d) A determinant vanishes if any two of its columns are equal.

Indeed, we may bring the two columns side by side after an interchange

of adjacent columns and then use axiom 2. In the same way as in b)

and c) we may now prove the more general rules:

e) Adding a multiple of one column to another does not change

the value of the determinant.

0 Interchanging any two columns changes the sign of D.
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g) Let (i/j , i / 2 , . . . i/n ) be a permutation of the subscripts

(1,2, . . . n). If we rearrange the columns in D( A^ , A^ , . . . , A^ )
1 2 n

until they are back in the natural order, we see that

DCA^A^,.. .^) = ± D ( A 1 , A 2 , . . . , A n ) .

Here + is a definite sign that does not depend on the special values

of the Ak. If we substitute Uk for Ak we see that

, Uj, , . . . , Uj, ) = — I and that the sign depends only on the

permutation of the unit vectors.

Now we replace each vector Ak by the following linear combina-

tion Ak of Aj , A2, . . . , An:

(6) Ak' =b l k A l +b2 k A 2 + ... + bnkAn.

In computing D ( A j , A2 , . . . , A^) we first apply axiom 1 on AJ

breaking up the determinant into a sum; then in each term we do the

same with A2 and so on. We get

(7)

where each IA runs independently from 1 to n. Should two of the indices

i/. be equal, then D( A^ , A^ , . . . , A^ ) = 0; we need therefore keep
1 2 n

only those terms in which (i/x, i/2, . . . , i/n) is a permutation of

(1,2, .. . ,n) . This gives

(8)

where (vlfv2, . . . ,vn) runs through all the permutations of

( 1, 2, . . . , n ) and where i stands for the sign associated with that

permutation. It is important to remark that we would have arrived at

the same formula (8) if our function D satisfied only the first two
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of our axioms.

Many conclusions may be derived from (8).

We first assume axiom 3 and specialize the Ak to the unit vec-

tors Uk of (5). This makes A^ = Bk where Bk is the column vector of

the matrix of the bik. (8) yields now:

(9) DCB^,...^)^^ ..,1/B,±V1V--V

giving us an explicit formula for determinants and showing that they are

uniquely determined by our axioms provided they exist at all.

With expression (9) we return to formula (8) and get

(10) DCA^A^. . .^ ) = D ( A 1 , A 2 , . . . , A n ) D ( B 1 , B 2 , . . . , B n ) .

This is the so-called multiplication theorem for determinants. At

the left of (10) we have the determinant of an n- rowed matrix whose ele-

ments cik are given by

cik is obtained by multiplying the elements of the i - th row of

D( Aj, A2, . . . , An) by those of the k-th column of D(B X , B2, . . . , Bn)

and adding.

Let us now replace D in (8) by a function F ( A 1 , . . . , A n ) that

satisfies only the first two axioms. Comparing with (9) we find

Specializing Ak to the unit vectors Uk leads to

(12) F (B 1 ,B 2 , . . . ,B n ) = c - D ( B l f B 2 ..... BJ

with c = F ( U 1 , U 2 , . . . , U n ) .
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Next we specialize (10) in the following way: If i is a certain

subscript from 1 to n-1 we put Ak = Uk for k 4 i, i + 1

A. = U. + Ui+1, A.+1 = 0. Then D( At, A2 ,.. ., An ) = 0 since one col-

umn is 0. Thus, D ( A ] , A ^ , . . . , A ^ ) = 0;but this determinant differs

from that of the elements b.fc only in the respect that the i + l-st row

has been made equal to the i-th. We therefore see:

A determinant vanishes if two adjacent rows are equal.

Each term in (9) is a product where precisely one factor comes

from a given row, say, the i-th. This shows that the determinant is

linear and homogeneous if considered as function of this row. If,

finally, we select for each row the corresponding unit vector, the de-

terminant is = 1 since the matrix is the same as that in which the col-

umns are unit vectors. This shows that a determinant satisfies our

three axioms if we consider it as function of the row vectors. In view

of the uniqueness it follows:

A determinant remains unchanged if we transpose the row vec-

tors into column vectors, that is, if we rotate the matrix about its

main diagonal.

A determinant vanishes if any two rows are equal. It changes

sign if we interchange any two rows. It remains unchanged if we add

a multiple of one row to another.

We shall now prove the existence of determinants. For a 1-rowed

matrix a the element an itself is the determinant. Let us assume the

existence of (n-1)-rowed determinants. If we consider the n-rowed

matrix (1) we may associate with it certain (n-1)-rowed determinants

in the following way: Let aik be a particular element in (1). We
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cancel the i-th row and k-th column in (1) and take the determinant

of the remaining (n-1)-rowed matrix. This determinant multiplied by

(-I)i4"k will be called the cofactor of aik and be denoted by Aik.

The distribution of the sign (- l)i+k follows the chessboard pattern,

namely,

Let i be any number from 1 to n. We consider the following

function D of the matrix (1):

(13) D = a11Ail + a12A12 + . . . + a.nA.n.

It is the sum of the products of the i-th row and their cof actors.

Consider this D in its dependence on a given column, say, Ak.

For v 4 k, Ait/ depends linearly on Ak and a.y does not depend on it;

for v = k, Aik does not depend on Afc but a.k is one element of this

column. Thus, axiom 1 is satisfied. Assume next that two adjacent

columns Ak and Ak+1 are equal. For i/ 4 k, k + 1 we have then two

equal columns in A£J/ so that Aiz/ = 0. The determinants used in the

computation of A. k and A. k+1 are the same but the signs are opposite;

hence, Ai k = -Ai k+1 whereas aA k = a. k+r Thus D = 0 and axiom 2

holds. For the special case A^ = U^v = 1, 2,. . . , n) we have

ailx = 0 for v 4 i while a.. = 1, A.. = 1. Hence, D = 1 and

this is axiom 3. This proves both the existence of an n-rowed
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determinant as well as the truth of formula (13), the so-called develop-

ment of a determinant according to its i-th row. (13) may be generalized

as follows: In our determinant replace the i-th row by the j-th row and

develop according to this new row. For i 4 j that determinant is 0 and

for i = j it is D:

D for j = i
(14) a j lA i l + a.2A.2 + ... + a jnA.n =

( D for j = i

I 0 for j 4 i

If we interchange the rows and the columns we get the

following formula:

D for h = k- rI 0
(15) a , h A l k + a 2 h A 2 k + . . . + a n h A n k ( Q ̂  h ^

Now let A represent an n-rowed and B an m-rowed square matrix.

By | A |, | B | we mean their determinants. Let C be a matrix of n rows

and m columns and form the square matrix of n 4- m rows

(16) /A C'

\0 B

where 0 stands for a zero matrix with m rows and n columns. If we con-

sider the determinant of the matrix (16) as a function of the columns of A

only, it satisfies obviously the first two of our axioms. Because of (12)

its value is c • | A | where c is the determinant of (16) after substituting

unit vectors for the columns of A. This c still depends on B and con-

sidered as function of the rows of B satisfies the first two axioms.

Therefore the determinant of (16) is d • A | • B where d is the special

case of the determinant of (16) with unit vectors for the columns of A

as well as of B. Subtracting multiples of the columns of A from

C we can replace C by 0. This shows d = 1 and hence the formula
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(17)
= I A I - | B |

A C

0 B

In a similar fashion we could have shown

= I Al • I B I .
(18) A 0

C B

The formulas (17), (18) are special cases of a general theorem

by Lagrange that can be derived from them. We refer the reader to any

textbook on determinants since in most applications (17) and (18)

are sufficient.

We now investigate what it means for a matrix if its determinant

is zero. We can easily establish the following facts:

a) If Aj, A 2 , . . ., An are linearly dependent, then

D ( A j , A 2 , . . ., An) = 0. Indeed one of the vectors, say Ak, is then a

linear combination of the other columns; subtracting this linear com-

bination from the column Ak reduces it to 0 and so D = 0.

b) If any vector B can be expressed as linear combination of

Aj, A 2 , . .. , An then D ( A p A 2 , . .. , An) ^ 0. Returning to (6) and

(10) we may select the values for b.k in such a fashion that every

Aj = Uj. For this choice the left side in (10) is 1 and hence

D( Ap A2 , . . . , An) on the right side 4 0.

c) Let A 1 , A 2 , . . . , A n b e linearly independent and B any other

vector. If we go back to the components in the equation

A j X j 4- A2x2 + ... -i- Anxn+ By = 0 we obtain n linear homogeneous

equations in the n 4- 1 unknowns x p x 2 , . . ., xn, y. Consequently,

there is a non-trivial solution, y must be 4 0 or else the

Aj, A 2,. . ., AJJ would be linearly dependent. But then we can compute

B out of this equation as a linear combination of Av A 2 , . . ., An.
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Combining these results we obtain:

A determinant vanishes if and only if the column vectors (or the

row vectors) are linearly dependent.

Another way of expressing this result is:

The set of n linear homogeneous equations

ailXl + 3i2X2 + ••• + ainx
n = ° (i = 1, 2, . . . , n)

in n unknowns has a non-trivial solution if and only if the determinant

of the coefficients is zero.

Another result that can be deduced is:

If Aj, A 2 , . . ., An are given, then their linear combinations can

represent any other vector B if and only if D( Alf A 2 , . . ., An) ^ 0.

Or:

The set of linear equations

(19) a. jXj + a.2x2 + ... + a.nxn = b. (i = 1, 2, . .. , n)

has a solution for arbitrary values of the b. if and only if the determi-

nant of a.k is 4 0. In that case the solution is unique.

We finally express the solution of (19) by means of determinants

if the determinant D of the aik is 4 0.

We multiply for a given k the i-th equation with Aik and add the

equations. (15) gives

(20) D - x k = A,kb, + A2kb2 + ... + Ankbn (k = 1 , 2 , . . . . n )

and this gives xk. The right side in (12) may also be written as the

determinant obtained from D by replacing the k-th column by

bj, b2, . . . , bn. The rule thus obtained is known as Cramer's rule.


