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Algebraization, Transcendence, and D-Group Schemes

Jean-Benoît Bost

Abstract We present a conjecture in Diophantine geometry concerning the
construction of line bundles over smooth projective varieties over Q. This con-
jecture, closely related to the Grothendieck period conjecture for cycles of codi-
mension 1, is also motivated by classical algebraization results in analytic and
formal geometry and in transcendence theory. Its formulation involves the con-
sideration ofD-group schemes attached to abelian schemes over algebraic curves
over Q. We also derive the Grothendieck period conjecture for cycles of codi-
mension 1 in abelian varieties over Q from a classical transcendence theorem à
la Schneider–Lang.

0 Foreword

My aim, in this largely expository article, is to present a conjecture in Diophantine
geometry, concerning the construction of line bundles over smooth projective vari-
eties over Q. This conjecture is motivated by the classical Grothendieck period con-
jecture (cf. Section 5.1) and by the philosophy, already advocated in diverse places
(see, e.g., Bost [13], Chambert-Loir [28], Bost and Chambert-Loir [16], Gasbarri
[42]), that various results in Diophantine approximation and transcendence theory
are arithmetic counterparts, valid in varieties over number fields, or rather in their
model of finite type over Z, of geometric algebraicity criteria concerning formal ob-
jects inside algebraic varieties over some (algebraically closed) field k.

Most of the presently known results in transcendence appear actually to be ana-
logues of geometric algebraicity criteria concerning germs bV of formal subvarieties
along a projective subvariety Y of some ambient variety X over k—by such a bV
we mean a smooth formal subscheme bV of the completion bXY admitting Y as the
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scheme of definition. (Any such bV may be written as the limitbV D lim
�!

i

Vi

of the successive infinitesimal neighborhoods Vi , i 2 N, of Y in bV , which are closed
subschemes of X , of support jVi j D Y .) These criteria assert that, if Y is smooth,
of dimension at least one, and if the normal bundle NYbV of Y in bV satisfies some
suitable positivity condition, then bV is algebraic—roughly speaking, this means thatbV is a “branch” along Y of some subvariety W of X containing Y .

When the base field k is the field C of complex numbers, that kind of result may
be stated in the following terms, which avoid an explicit appeal to formal geometry
and so may look more familiar. In the situation when k D C, any germ of a C-
analytic submanifold V of X along Y defines a smooth formal germ bV WD bVY

along Y (namely, the limit limi Vi of the successive infinitesimal neighborhood of
Y inside V ; these are projective analytic subspaces in X , which may be identified to
projective subschemes overC). Then the above-mentioned algebraicity criteria assert
that, when the normal bundle of Y in V satisfies a suitable positivity condition, for
instance, when it is ample, then V is contained in some algebraic subvarietyW of X
of the same (complex) dimension as V . That type of geometric result goes back to
Andreotti [4].

In transcendence theory, one deals with algebraicity criteria concerning smooth
formal germs of subvarieties bV through someK-rational point P in a variety X over
a number fieldK. According to a viewpoint that goes back to Kronecker, it is appro-
priate to consider a model X of X of finite type over the ring of integers OK of K
(hence over Z), in which P extends to a point P in X.OK/. The algebraicity criteria
established in transcendence turn out to deal with a formal germ in the completionbXP along the “arithmetic curve” P ' SpecOK . In this Kroneckerian perspective,
transcendence results are indeed algebraicity criteria concerning formal germs along
curves, analogue to the geometric algebraicity criteria à la Andreotti.

It turns out that, in the context of analytic and formal geometry, algebraicity crite-
ria have been established that concern not only subvarieties but also coherent sheaves
(e.g., line bundles or vector bundles), notably by Grothendieck [45], [47] in the con-
text of formal geometry. In their most basic geometric version, for instance, the
algebraization results in [47] (also presented in Hartshorne [50]) deal with germs of
formal (or analytic) vector bundles along suitable ample projective subvarieties Y of
some algebraic variety X over some base field k. Their validity requires Y to be
of dimension at least two. The Kroneckerian viewpoint mentioned above—in which
the arithmetic counterpart of a surface over some base field is an “arithmetic surface”
that is an integral model of a curve over a number field—leads one to expect that one
could formulate, and possibly establish, some significant arithmetic algebraization
criterion, concerning formal line or vector bundles over the completion bXY of some
algebraic variety X over a number field along some projective curve Y .

In this article, I present a conjectural transcendence statement of this kind (Con-
jecture 7.3 infra), the validity of which would actually imply some new cases of the
classical Grothendieck period conjecture.

An interesting feature of this conjectural statement is that it introduces differential
algebraic groups in a classical Diophantine context, concerning algebraic varieties
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over number fields. Recall that the role of differential algebra in Diophantine ge-
ometry over function fields is well established since the work of Manin [71]–[73]
on algebraic curves over function fields, culminating with his proof of the geomet-
ric Mordell conjecture, and has more recently considerably expanded, in a series of
works initiated by the contributions of Buium [22]–[24], Buium and Voloch [26], and
Hrushovski [55], which make conspicuous the role of differential algebraic groups
in the Diophantine geometry of abelian varieties over function fields.1 The occur-
rence of nonlinear differential algebraic groups over curves over number fields in
Conjecture 7.3, which reflects the 2-dimensional nature of the problem at hand, has
appeared to me worthy of attention, and I took the opportunity of the Oléron confer-
ence to present it to experts in model theory and differential algebra gathered on the
occasion of Anand Pillay’s 60th birthday.

Actually, although the content of this work has presently no explicit link with
model theory, it turns out to involve several of the mathematical themes so success-
fully explored by Anand Pillay during recent years, notably the interplay between the
analytic geometry of compact complex manifolds and algebraic geometry, and the
study of algebraicD-groups, especially in relation to abelian varieties and their uni-
versal vector extensions. This article is dedicated to him, as a token of appreciation
and confidence in his mathematical vision.

This paper, like my oral presentation in Oléron, is to a large extent expository:
I seriously attempted to discuss the classical facts relevant to the formulation of Con-
jecture 7.3 in a form accessible to mathematicians of diverse backgrounds (with pos-
sibly a limited success, notably in the last sections of this article). Especially I tried to
avoid any real knowledge of formal geometry, by putting forward the analytic variants
of diverse results usually formulated in terms of formal geometry or by translating
statements in formal geometry into equivalent statements involving systems of suc-
cessive thickenings, to stay in the realm of algebraic geometry. I also tried to present
various themes from some unconventional point of view, for instance in emphasizing
the role of moduli spaces of vector bundles with integrable connections.

However, besides Conjecture 7.3 itself, I also included some original content,
notably in Section 5 a proof of the Grothendieck period conjecture in codimension
1 for abelian varieties. Readers interested in this result may read Sections 4 and 5
independently of the rest of the article.

1 Algebraization of Analytic Objects, I

1.1 Algebraization of compact Riemann surfaces and of projective analytic sets Al-
gebraization of analytic objects (such as varieties and their morphisms, vector bun-
dles, coherent sheaves, etc.) is a central theme in the development of algebraic and
analytic geometry at least since the 1830s. Already recognizable in the pioneering
work of Abel and Jacobi on elliptic functions and elliptic curves, it appears in a form
familiar to modern mathematicians in the work of Puiseux and Riemann.

For instance, in the first part of his memoir on abelian functions [87]—devoted to a
systematic study of what today would be called “compact Riemann surfaces realized
as a finite covering of the projective complex line P1.C/”—Riemann establishes the
algebraicity of any pair .C; �/ where C is a compact connected Riemann surface
and � W C �! P1.C/ is a ramified analytic covering (or equivalently, a nonconstant
C-analytic map).
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Namely, he proves that, for any such pair .C; �/, there exists an irreducible poly-
nomial P in CŒX; Y � (of positive degree in Y ) and an isomorphism from C to
the compact Riemann surface associated to the plane algebraic curve of equation
P.X; Y / D 0 such that, through this isomorphism, the map � (seen as a meromor-
phic function onC ) gets identified with the meromorphic function defined by the first
coordinate X . To achieve this, Riemann constructs a suitable meromorphic function
on C (which ultimately will become the second coordinate Y ) by appealing to the
Dirichlet principle.

An important step in the development of algebraization theorems has been the
theorem of Chow [29], which asserts that any closed C-analytic subset X of the
projective space PN .C/ is algebraic. In other words, there exists a finite family
.P˛/1�˛�A of homogeneous polynomials in CŒX0; : : : ; XN � such that, for any point
.x0 W � � � W xN / in PN .C/,

.x0 W � � � W xN / 2 X” for ˛ D 1; : : : ; A; P˛.x0; : : : ; xN / D 0:

The statement of Chow’s theorem clearly did not come as a surprise at the time of
the publication of [29] (see, e.g., H. Cartan’s summary of [29] in Mathematical Re-
views [MR 0033093]). A significant point in [29] is the formal rigor of its proofs—
based on some algebraicity criterion formulated in terms of intersections numbers
with algebraic subvarieties of PN .C/—which links the theme of algebraization of an-
alytic objects to the development of rigorous foundations for algebraic topology and
geometry, in the line of earlier works by Lefschetz, van der Waerden, and Chevalley.

1.2 Algebraization of line bundles over complex projective varieties Actually, more
than forty years before Chow’s work, a remarkable variation on this theme of al-
gebraization was initiated by Poincaré and Lefschetz during their investigation of
algebraic cycles on complex surfaces by means of the so-called normal functions.
Motivated by techniques and problems of the Italian school of algebraic geometry
and by Picard’s contributions to the theory of algebraic surfaces, they basically es-
tablished the following theorem, when dimX D 2.

Let X be a smooth closed C-analytic subvariety of PN .C/ (necessarily algebraic,
according to Chow’s theorem). Then any analytic line bundle L over X is algebraic.

This result was extended by Hodge ([54, pp. 214–216]) to higher-dimensional
smooth projective varieties. Kodaira and Spencer [61] gave a new “modern” proof
of this theorem in 1953, in what probably constitutes the first application of sheaf
theory and cohomological techniques to projective complex varieties.

Let us formulate a few comments on the content of the Poincaré–Lefschetz–Hodge
theorem.

We shall denote Oan
X and CX (resp., OX ) the sheaf of analytic and complex-valued

continuous functions (resp., of regular functions) on X equipped with the usual “an-
alytic” topology (resp., with the Zariski topology).

Recall that, for any analytic line bundle L over X , there exist an open covering
U WD .U˛/˛2A of X (in the analytic topology) and, for every ˛ 2 A, an analytic
trivialization of L over U˛:

s˛ W O
an
U˛

�
�! LU˛ :
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By comparing the trivializations, namely, by introducing the functions '˛ˇ in
Oan
X .U˛ \ Uˇ /

� defined by

s˛ D '˛ˇ sˇ over U˛ \ Uˇ ;

one defines a 1-cocycle .'˛ˇ / in Z1.U;Oan�
X /. The class of this cocycle in

H 1.X;Oan�
X / determines the isomorphism class of L, and any cohomology class in

H 1.X;Oan�
X / arises through this construction from a suitable analytic line bundle L.

The line bundle L is algebraic precisely when the above covering U DWD

.U˛/˛2A, and trivializations .s˛/˛2A, may be chosen in such a way that every U˛ is
Zariski-open in X and every function '˛ˇ sˇ is regular2 over U˛ \ Uˇ ; then .'˛ˇ /
defines a 1-cocycle in Z1.U;O�/.

The above formulation of the theorem of Poincaré, Lefschetz, and Hodge, in terms
of algebraicity of analytic line bundles, is basically its “modern” formulation by Ko-
daira and Spencer. Let us recall how it translates into its “classical” formulation à
la Lefschetz and Hodge, involving (co)homology classes of divisors. The following
arguments, now classical, appear in Kodaira and Spencer [62].

Consider the short exact sequences of sheaves of abelian groups over X defined
by the “exponential” map e WD exp.2�i/:

0 �! ZX �! CX
e
�! C�X �! 0

and
0 �! ZX �! Oan

X

e
�! Oan�

X �! 0:

The abelian group of isomorphism classes of topological (resp., analytic line) bun-
dles over X is naturally identified with H 1.X;C�X / (resp., H

1.X;Oan�
X /). The long

exact sequences of cohomology groups associated to the above short exact sequences
of sheaves fit into a commutative diagram:

H 1.X;CX /
e

�����! H 1.X;C�X /
ı

�����! H 2.X;Z/ �����! H 2.X;CX /x?? x?? x??
H 1.X;Oan�

X /
ıan

�����! H 2.X;Z/ �����! H 2.X;OX /

(1.1)

The exactness of the first line and the vanishing of H 1.X;CX / and H 2.X;CX /

define an isomorphism

c1;top WD ı W H
1.X;C�X /

�
�! H 2.X;Z/; (1.2)

which maps the isomorphism class of some topological line bundle L to its so-called
first Chern class. The exactness of the second line in (1.1) precisely asserts that a
class ˛ in H 2.X;Z/ belongs to the image of ıan—or equivalently, is the first Chern
class c1.L/ of some analytic line bundle—if and only if ˛ belongs to the kernel

ker
�
H 2.X;Z/ �! H 2.X;Oan

X /
�

of the map induced by the inclusion of sheaves ZX ,�! Oan
X or, equivalently, if the

real cohomology class ˛R inH 2.X;R/ belongs to

ker
�
H 2.X;R/ �! H 2.X;Oan

X /
�
:

In the classical notation of Hodge theory, this is precisely the space H 2.X;R/ \
H 1;1.X/ of real 2-cohomology classes on X of type .1; 1/. In the case of surfaces,
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considered by Lefschetz, this space may be defined by the classical vanishing condi-
tion Z

X

˛ ^ ! D 0

of the integrals along ˛ of the global regular algebraic 2-forms ! on X .
Besides, an algebraic line bundle L may be described in terms of the divisor D

of some nonzero rational section s: the section s establishes an isomorphism from L

to the line bundle O.D/, and the class c1.L/ D c1.O.D// coincides with the class
ŒD� in H 2.X;Z/ Poincaré dual to the divisor D, seen as a codimension 1 algebraic
cycle on X .

Taking the above facts into account, Kodaira and Spencer’s version of the theo-
rem of Poincaré, Lefschetz, and Hodge admits the following consequence, which is
actually its original version due to Lefschetz and Hodge3: a class ˛ in H 2.X;Z/
is algebraic—namely, the class ŒD� of some algebraic cycle D of codimension 1 on
X—if and only if ˛R is of type .1; 1/.

1.3 GAGA The diverse algebraicity statements in the previous sections appear today
as special instances of Serre’s GAGA theorem (1956; see [92]).

To formulate Serre’s results, consider a complex algebraic variety X . From
any algebraic coherent sheaf F over X equipped with the Zariski topology—
for example, an algebraic vector bundle E over X , defined by some 1-cocycle
.'˛ˇ / 2 Z1..U˛/;GLN .OX //, attached to some Zariski-open covering .U˛/ of
X , with values in invertible matrices of regular functions—we deduce an analytic
coherent sheaf F an on X equipped with the analytic topology; for instance, Ean is
the analytic vector bundle defined by the cocycle .'˛ˇ / seen as an analytic cocycle
(i.e., as an element of Z1..U˛/;GLN .Oan

X //). This is a straightforward consequence
of the fact that the analytic topology of X is finer than its Zariski topology, and the
fact that, for every Zariski-open subset U of X , OX .U / is a subring of Oan

X .U /.
These facts also imply the existence of canonical “analytification maps” between

cohomology groups:
H i .X; F / �! H i .X an; F an/: (1.3)

HereX (resp., X an) denotes the varietyX equipped with the Zariski topology (resp.,
the underlying analytic space, which topologically is the set of complex points of X
equipped with the usual “analytic” topology).

Serre’s GAGA theorem is the conjunction of the following two statements.

GAGA comparison theorem For any projective complex variety X and any co-
herent algebraic sheaf F on X , the “analytification maps” (1.3) are isomorphisms:

H i .X; F /
�
�! H i .X an; F an/: (1.4)

GAGA existence theorem For any projective complex varietyX and for any ana-
lytic coherent sheaf F on X an, there exists some algebraic coherent sheaf F over X
(unique up to unique isomorphism) such that F is isomorphic to F an (as an analytic
coherent sheaf over X an).

Let us stress that the projectivity assumption in the GAGA theorem is essential (see
Section 2.3 for a discussion of counterexamples in the quasi-projective situation).

The Poincaré–Lefschetz–Hodge theorem is nothing but the special case of the
GAGA existence theorem concerning line bundles over smooth varieties.
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Chow’s theorem also follows from the GAGA existence theorem—with the nota-
tion of paragraph (1.1), it follows from this theorem applied toOan

X , seen as a coherent
analytic sheaf over PN .C/an. Observe also that conversely, by considering graphs,
Chow’s theorem implies the comparison isomorphism (1.4) when i D 0 and F is a
vector bundle.

Serre’s proof of GAGA theorems is the archetype of “modern cohomological
proofs” and, besides its considerable importance in itself, has also played an impor-
tant role as a model for the development of cohomological techniques in algebraic
and formal geometry.

To establish the GAGA comparison theorem, using that X may be embedded
into some projective space PNC , one reduces to the special case X D PNC . In that
case, Serre’s proof relies on some “algebraic dévissage of F ” by means of a left
resolution by algebraic coherent sheaves that are direct sums of line bundles of the
form OPN .k/, k 2 Z, combined with a direct computation of the algebraic and
analytic cohomology groups in (1.4) when F D OPN .k/.

The proof of the GAGA existence theorem may be seen as a deep amplification
and simplification of Kodaira and Spencer’s proof in [61]. Besides the comparison
theorem previously established, it relies on the finite dimensionality of the analytic
cohomology groups H i .X an;F / attached to an arbitrary analytic coherent sheaf F

on X . This result, of analytic nature, was established by Cartan and Serre [27] with
X an an arbitrary compact complex analytic space. Actually only the degree i D 1

case of the finiteness theorem of Cartan and Serre is used in the proof of the existence
theorem. When X is smooth and F is a line bundle, it was established by Kodaira
and Spencer as a consequence of the description of H i .X an;F / by means of har-
monic forms and of the fact that elliptic differential operators on compact manifolds
are Fredholm.

2 Algebraization of Analytic Objects, II: Comments and Applications

2.1 Un peu d’histoire I would like to stress that the content of the previous sections
provides a very fragmentary image of the history of algebraization theorems, a topic
especially rich in results and techniques, where the evolution of ideas over the long
term seems rather difficult to untangle.

To illustrate this last point, let me indicate that algebraicity theorems à la Chow
may be derived from Bézout-type bounds on intersection multiplicities. That line
of argument appears, for instance, in Poincaré’s survey article on abelian functions
[82], when he proves that a compact complex torus embedded in a complex projective
space is actually algebraic (see [82, Section 2, pp. 53–56]). It constitutes the central
point in Chow’s proof in [29] and, more recently, plays a key role in the work of
Hrushovski and Zilber [56] on Zariski geometries (see [56, Section 7]). The influence
of Poincaré’s work on [29] and [56] seems unclear, and [82] could be a striking
example of double plagiat par anticipation by Poincaré.

Another approach, due to Serre, to Chow’s theorem—which appears as an anony-
mous contribution in [5]—consists in deriving it from the fact that the transcendence
degree over C of the field M.X/ of meromorphic functions on some compact con-
nected complex manifold X is at most its (complex) dimension:

degtrC M.X/ � dimX: (2.1)
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Indeed, if X is analytically embedded in PN .C/, its Zariski closure XZar is irre-
ducible, the field C.XZar

/ of rational function onXZar may be identified to a subfield
of the field of meromorphic function M.X/, and the upper bound (2.1) implies that
the Zariski closure XZar of X in PN .C/ has dimension at most dimX and hence
is equal to dimX . Besides, the irreducibility of XZar implies its connectedness and
the connectedness of its subset XZar

reg of smooth points in the analytic topology. This
connectedness is a GAGA-type statement which goes back to Puiseux [84, Section
I] in the case of plane curves; Puiseux’s original proof actually extends to higher-
dimensional varieties (see, e.g., Shafarevich [95, Section VII.2]) and probably con-
stitutes, with other arguments in Puiseux [83] and [84], the first proof of such results
satisfactory according to modern standards. The connectedness of XZar

reg and its den-
sity in XZar for the analytic topology, together with the inclusion X � XZar and the
equality of dimension dimX D dimXZar, imply the equality X D XZar, that is, the
algebraicity of X .

In turn, proofs of the upper bound (2.1) appear to have a complicated history—this
bound seems to have been established for the first time in a completely satisfactory
way by Serre [91, Section 3] and Thimm [99]. In [96], Siegel discusses the history
of the question and gives an ingenious “elementary” proof, directly influenced by
Poincaré’s article [82]4 and actually very close to the proof in [91]. Conversely, as
observed in Remmert [86], (2.1) is an easy consequence of Chow’s theorem and
Remmert’s proper image theorem. In turn, both of these theorems may be derived
from the fundamental extension theorems concerning complex analytic sets, due to
Thullen, Remmert, and Stein (see, e.g., Mumford [77, Section 4A] or Gunning [48,
Chapters K and M]).

Concerning the history of the Poincaré–Lefschetz–Hodge theorem, I refer to the
classical analysis by Zariski and to the additional comments by Mumford in Zariski
[103, Chapter VII].5

2.2 Algebraic de Rham cohomology In this section, we apply the GAGA comparison
theorem to the study of the algebraic de Rham cohomology, in the “easy” case of
projective smooth varieties. The formalism below seems to appear in printed form
in the famous letter of Grothendieck [46] to Atiyah, although algebraic de Rham
cohomology already occurs implicitly in diverse classical works on algebraic curves,
surfaces, and abelian varieties. See Hartshorne [51] for a systematic presentation of
the de Rham cohomology of algebraic varieties and for references.
2.2.1 Let X be a smooth projective complex algebraic variety. It is equipped with
the algebraic de Rham complex

��X=C W 0 �! �0X=C D OX
d
�! �1X=C

d
�! �2X=C

d
�! � � � ; (2.2)

and the hypercohomology groups of this complex of sheaves over X equipped with
the Zariski topology define the algebraic de Rham cohomology groups of X :

H i
dR.X=C/ WD Hi .X;��X=C/:

By “analytification,” the algebraic de Rham complex (2.2) becomes the analytic
de Rham complex of the C-analytic manifold X an:

��Xan W 0 �! �0Xan D Oan
Xan

d
�! �1Xan

d
�! �2Xan

d
�! � � � : (2.3)
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The hypercohomology groups of ��Xan define the analytic de Rham cohomology
groups ofX an Hi .X anI��Xan/, and “analytification” defines canonicalC-linear maps:

Hi .X;��X=C/ �! Hi .X an; ��Xan/: (2.4)

The algebraic (resp., analytic) de Rham cohomology groups are related to the
algebraic (resp., analytic) “Hodge cohomology groups” H q.X;�

p

X=C/ (resp.,
H q.X an; �

p
Xan/) by the usual spectral sequences

E
p;q
1 D H q.X;�

p

X=C/) HpCq.X;��Xan/�
resp., Ep;q1 D H q.X an; �

p
Xan/) HpCq.X an; ��Xan/

�
:

The formation of these spectral sequences is compatible with analytification. Conse-
quently, from the GAGA comparison isomorphisms

H q.X;�
p

X=C/
�
�! H q.X an; �

p
Xan/;

we deduce that the analytification maps (2.4) from algebraic to analytic de Rham
cohomology groups are isomorphisms.

Besides, according to the analytic Poincaré lemma, the inclusion of the locally
constant sheaf CXan into Oan

Xan defines a quasi-isomorphism of a complex of sheaves
on X an,

CXan
q:i:
�! ��Xan ;

and consequently an isomorphism of (hyper)cohomology groups:

H i .X an;C/
�
�! Hi .X an; ��Xan/: (2.5)

The isomorphisms (2.4) and (2.5) define by composition an isomorphism of finite-
dimensional C-vector spaces:

H i
dR.X=C/ �! H i .X an;C/;

(2.6)
ˇ 7�! ˇan:

2.2.2 Observe that the definition of the algebraic de Rham cohomology makes
sense for any smooth projective variety X0 defined over an arbitrary base field k.
Indeed, we may consider the algebraic de Rham complex

��X0=k W 0 �! �0X0=k D OX0
d
�! �1X0=k

d
�! �2X0=k

d
�! � � � (2.7)

and define
H i

dR.X0=k/ WD Hi .X0; ��X0=k/:

These are finite-dimensional k-vector spaces, and when k is a subfield of C, this
construction defines a natural “form over k” of the cohomology with complex coef-
ficients H i .X anIC/ of the C-analytic manifold X an attached to a complex algebraic
varietyX WD X0˝kC deduced fromX0 by extending the base field from k to C. In-
deed, by composing a straightforward base change isomorphism and the comparison
isomorphism (2.6), we obtain a canonical isomorphism

H i
dR.X0=k/˝k C

�
�! H i

dR.X=C/
�
�! H i .X an;C/: (2.8)



386 Jean-Benoît Bost

2.2.3 Example I: Smooth projective curves Let X0 be a smooth, projective, geomet-
rically connected curve, of genus g, over k. Then H i

dR.X0=k/ vanishes if i > 2 and
is a canonically isomorphic to k when i D 0 or 2. The first de Rham cohomology
groupH 1

dR.X0=k/ is a 2g-dimensional k-vector space. It may be identified with the
quotient of the space of meromorphic 1-forms over X0=k of the second kind (that
is, with vanishing residues) by its subspace dk.X0/ formed by the differentials of
rational functions k.X0/ over X0.

For instance, when k is a field of characteristic not equal to 2; 3, ifX0 is an elliptic
curve E of plane equation

y2 D 4x3 � g2x � g3;

then H 1
dR.E=k0/ is a 2-dimensional k-vector space with basis .Œ˛�; Œˇ�/, where

˛ WD dx=y and ˇ WD x � dx=y.
2.2.4 Example II: The first Chern class in algebraic de Rham cohomology The mor-
phism of sheaves of abelian groups over X0,

d log W O�X0 �! �1X0=k ;

' 7�! d'=';

takes its values in the subsheaf �1closed
X0=k

of closed 1-forms. Therefore it defines a
morphism of complex of sheaves

d log W O�X0 �! ��X0=k Œ1�

and finally of (hyper)cohomology groups
H 1.X0;O

�
X0
/ �! H1

�
X0; �

�
X0=k

Œ1�
�
D H2.X0; ��X0=k/:

The map so defined will be denoted
c1;dR W Pic.X0/ WD H 1.X0;O

�
X0
/ �! H 2

dR.X0=k/:

It sends the class of the line bundle L over X0 defined by a cocycle .'˛ˇ / in
Z1.U;O�X0/ to the class of the (hyper)cocycle .d'˛ˇ='˛ˇ / in Z1.U; �1 closed

X0=k
/,

identified to a subspace of Z2.U; ��
X0=k

/.
This construction of the first Chern class in algebraic de Rham cohomology is

compatible with the topological first Chern class defined in (1.2).
Lemma 2.1 Assume that k is a subfield of C, and consider a smooth projective
variety X0 over k, the complex algebraic projective variety X WD X0 ˝k C, and the
associated C -analytic manifold X an, as in 2.2.2. Let L be a line bundle over X0, let
LC be the algebraic line bundle over X deduced from L by extension of scalars from
k to C, and let Lan

C be the associated analytic line bundle over X an.
The morphism

H i
dR.X0=k/ �! H i

dR.X=C/
�
�! H i .X an;C/;

˛ 7�! ˛C WD ˛ ˝k 1C 7�! ˛anC

maps c1;dR.L/ to 2�ic1;top.Lan
C /.

To prove this lemma, it is enough to consider the case k D C. Then it follows from
the fact that the composite morphism of sheaves over X an,

Oan e
�! Oan� d log

�! �1Xan ;

is6 2�id .
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2.2.5 Amplification: Modules with integrable connections and de Rham cohomology
In the last sections of this article, we shall use a generalization of the previous results,
concerning cohomology with coefficients not only in C but in local systems of finite-
dimensional C-vector spaces.

Let .E;r/ be a “module with integrable connection” over X , namely, a vector
bundle E over X equipped with a connection

r W E �! E ˝OX �
1
X=C

with vanishing curvature. Then r canonically extends to morphisms of sheaves
over X ,

r W E ˝OX �
l
X=C �! E ˝OX �

lC1
X=C;

which satisfy the Leibniz rule—namely, for any sections ! of �k
X=C and ˛ of

E ˝OX �
�
X=C,

r.! ^ ˛/ D d! ^ ˛ C .�1/k! ^ r˛

—and the relation
r ı r D 0:

Consequently, we may define

H i
dR
�
X=C; .E;r/

�
WD Hi

�
X; .��X=C ˝OX E;r/

�
: (2.9)

By analytification, we obtain a complex of sheaves .��Xan ˝Oan
X
Ean;r/ on X an

from .��
X=C ˝OX E;r/, and we may define

H i
dR
�
X an; .Ean;r/

�
WD Hi

�
X an; .��Xan ˝Oan

X
Ean;r/

�
: (2.10)

An application of GAGA similar to the one in paragraph 2.2.1 shows that (2.9) and
(2.10) are finite-dimensional vector spaces and that the analytification morphisms

H i
dR
�
X=C; .E;r/

�
�! H i

dR
�
X an; .Ean;r/

�
(2.11)

are isomorphisms.
Besides, the “analytic de Rham complex with coefficients” .��Xan ˝Oan

X
Ean;r/

is a resolution of the local constant sheaf Eh of finite-dimensional complex vector
spaces (of dimension the rank of E) defined by the C-analytic sections of Ean which
are “horizontal,” that is, in the kernel of r. In other words, we have an “analytic
Poincaré lemma with coefficients” over X an,

Eh
q:i
�! .��Xan ˝Oan

X
Ean;r/;

and consequently an isomorphism of (hyper)cohomology groups:

H i .X an; Eh/
�
�! H i

dR
�
X an; .Ean;r/

�
: (2.12)

The isomorphisms (2.11) and (2.12) define by composition an isomorphism

H i
dR
�
X=C; .E;r/

� �
�! H i .X an; Eh/:

When X D X0 �k C and .E;r/ are defined over some subfield k of C, we may
define

H i
dR
�
X0=k; .E;r/

�
WD Hi

�
X0; .�

�
X0=k

˝OX0
E;r/

�
:

It is a finite-dimensional k-vector space, which defines a natural “form over k” of the
cohomologyH i .X an; Eh/ with coefficients in the local system Eh.
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2.3 Algebraic and analytic structures, and moduli spaces of vector bundles with
integrable connections

2.3.1 Applied to graphs of morphisms, Chow’s theorem shows that, for any two
projective complex varieties X1 and X2 (say smooth for simplicity), the analytifica-
tion map defines a bijection:° morphisms ' W X1 ! X2

of complex algebraic varieties
±
�
�!

° morphisms  W X an
1 ! X an

2
of complex analytic manifolds

±
' 7�! 'an

(see, e.g., [77, Section 4B] for details).
In particular, X1 and X2 are isomorphic as complex algebraic varieties if and

only if X an
1 and X an

2 are isomorphic as complex analytic manifolds. Moreover, for
any smooth projective complex algebraic varietyX , the algebraic variety structure of
X is uniquely determined by the structure of the C-analytic manifold X an it induces.

This does not hold anymore for general quasi-projective varieties. In this sec-
tion, we want to discuss a remarkable family of counterexamples, namely, of pairs
.X1; X2/ of smooth quasi-projective complex algebraic varieties such that X an

1 and
X an
2 are “naturally” isomorphic complex manifolds, although X1 and X2 are not al-

gebraically isomorphic.
The GAGA existence theorem will actually play a crucial role in the construction

of these counterexamples, which are built from moduli spaces of vector bundles with
integrable connections of a given rank N on a smooth projective variety M , and
from spaces of representations of degreeN of the fundamental group ofM an. When
N D 1, these spaces have been classically considered by Severi and Conforto, and
then by Rosenlicht and Serre, during the decades around 1950. For arbitrary N � 1,
they have been investigated thoroughly by Simpson [97], [98] (see also Le Potier [69]
for a survey).
2.3.2 LetM be a smooth connected projective complex algebraic variety, and let o
be a (complex) point of X . Choose a positive integer N , and consider the following
kinds of data:

(i) 3-uples .E;r;  / consisting in a vector bundle E of rank N over M , an
integrable connection r on E, and a “rigidification”  of E at o, namely,
an isomorphism of C-vector spaces

 W Eo
�
�! CN I

(ii) representations of degree N ,

� W � �! GLN .C/

of the fundamental group � WD �1.M an; o/ of the complex analytic manifold
M an with base point o.

Observe that we may consider C-analytic versions of data of type (i), namely,
(i)an 3-uples .Ean;ran;  / consisting in an analytic vector bundle E of rank N

over M an, an integrable analytic connection ran on Ean, and a rigidification  of
Ean at o.

The notion of isomorphisms between two data of type (i), or between two data of
type (i)an, is defined in the obvious manner as an isomorphism of (algebraic or ana-
lytic) vector bundles, compatible with the connections and rigidifications. Observe
that, when such an isomorphism exists, it is actually unique.
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Through analytification, any data .E;r;  / of type (i) determines a data
.Ean;ran;  / of type (i)an. Conversely, GAGA theorems show that any data of
type (i)an may be obtained by analytification from some data of type (i), that is,
uniquely determined (up to unique algebraic isomorphism).7

In turn, to any data of type (i)an is associated its monodromy representation in the
fiber E0 of the flat vector bundle .Ean;ran/, which may be identified to a GLN .C/-
representation by means of the rigidification  :

� W � �! GL.Eo/
 : �1

����! GLN .C/:

Conversely, we may introduce the universal covering . QM; Qo/ of the pointed con-
nected complex manifold .M an; o/—it is a �-covering ofM an—and the trivial vector
bundle QE WD QM �CN of rank N over QM , equipped with the “trivial” integrable an-
alytic connection Qr WD d ˝ IdCN . If � W � �! GLN .C/ denotes an arbitrary
representation, the action of � on CN defined by � makes . QE; Qr/ a �-equivariant
analytic vector bundle with integrable connection, which moreover is naturally rigid-
ified at Qo. This equivariant rigidified vector bundle with integrable connection over
. QM; Qo/ descends to some rigidified vector bundle of rank N with integrable connec-
tion .Ean;ran;  / on the pointed complex manifold .M an; o/.

These last two constructions are clearly inverse of each other and establish a natu-
ral bijection between (isomorphism classes) of data of type (i)an and representations
of type (ii). Combined with the above GAGA correspondence between data of type
(i) and (i)an, this becomes a natural bijection between (isomorphism classes) of data
of type (i) and representations of type (ii).

2.3.3 The set of (isomorphism classes) of data of type (i) coincides with the set
of complex points MICN .M; o/.C/ of some quasi-projective scheme MICN .M; o/
over C, which represents the functor which maps a C-scheme (of finite type) S to
the isomorphism classes of “data of type (i) over S ,” defined as 3-uples .E;r;  /
where E denotes a locally free coherent sheaf of rank N overM � S , r denotes an
integrable connection on E, relative to the projectionM � S ! S , and  denotes a
rigidification Ejo�S

�
�! O˚NS .

At this level of generality, the existence of the quasi-projective scheme MICN .M;
o/ representing this functor is one of the main results of Simpson in [97] and
[98], where it is denoted RDR.M; o;N /. A central point in the construction of
MICN .M; o/ is the fact that the vector bundles E of rank N over M admitting
an integrable connection r constitute a bounded family (see [69, Lemme 9] for a
concise presentation of Simpson’s argument in this specific situation).

The set of representations of type (ii) coincides with the set of complex points
RepN .�/.C/ of the quasi-projective (actually affine) scheme RepN .�/ overCwhich
represents the functor which sends a C-scheme of finite type S to the set of repre-
sentations

� W � �! GLN
�
�.S;OS /

�
:

The existence of the scheme RepN .�/ is a straightforward consequence of the exis-
tence of a finite presentation for the fundamental group � (see, e.g., [98, Section 5],
where this scheme is denoted R.�;N / or RB.M; o;N /).
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The bijection constructed in Section 2.3.2, by associating the monodromy repre-
sentation of its analytification to some data of type (i), defines a bijection

MICN .M; o/.C/
�
�! RepN .�/.C/; (2.13)

which turns out to be defined by a canonical isomorphism of C-analytic spaces

mono WMICN .M; o/an
�
�! RepN .�/an (2.14)

(cf. [98, Section 7]; this formally expresses the fact that the construction in Sec-
tion 2.3.2 “analytically depends on parameters” in an arbitrary analytic space).
2.3.4 However, in general, the analytic isomorphism (2.14) is not induced by an
algebraic isomorphism from MICN .M; o/ to RepN .�/.

This is already the case when M is a smooth connected projective curve C of
positive genus g and N D 1. Then

Pic\.C / WDMIC1.C; o/
may be identified with the universal vector extension E.Pic0.C // of the connected
Picard variety Pic0.C / of C (see, e.g., Messing [76], Mazur [75], Bost and Künne-
mann [17]). Actually, Pic\.C / classifies pairs .L;r/ consisting in a line bundle L of
degree zero over C and a (necessarily integrable) connection r over L. The tensor
product of line bundles with connections induces a structure of algebraic groups on
Pic\.C /. It fits into the following exact sequence of connected commutative group
schemes over C, which displays it as a vector extension of Pic0.C /:

0 �! �1.C / �! Pic\.C / �! Pic0.C / �! 0;

˛ 7�! Œ.OC ; d C ˛/�;

Œ.L;r/� 7�! ŒL�:

(2.15)

Besides, the representation space Rep1.�1.C an; o// may be identified with the
torus

H 1.C an;Z/˝Z Gm ' G2gm ;
and the monodromy isomorphism (2.14) takes the form of an isomorphism of com-
plex Lie groups:

Pic\.C /an
�
�! C�2g :

However, the description of Pic\.C / as a vector extension of an abelian va-
riety easily implies that every morphism of algebraic variety from Pic\.C / to
Gm is constant. A fortiori, the algebraic varieties MIC1.C; o/ D Pic\.C / and
Rep1.�1.C an; o// ' G2gm are not isomorphic.8

2.3.5 For later reference, let us indicate diverse variants of the previous construc-
tions.

First of all, for any base field of characteristic zero and any pointed connected
smooth pointed variety .M; o/ over k, the construction of the quasi-projective
scheme MICN .M; o/ makes sense over k: it classifies data of type (i) over varying
k-schemes S . This follows from a straightforward generalization of the arguments
in [97], or (say, when k is a subfield of C) from a descent argument.

When N D 1, the tensor product of line bundles with (necessarily integrable)
connections makes the quasi-projective scheme MIC1.M; o/ a group scheme, nec-
essarily smooth over k. Moreover, its connected component MIC1.M; o/0 may be
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identified with the universal vector extension E.Pic0.M// of the connected Picard
variety Pic0.M/ of M . Indeed, the obvious analogue of the short exact sequence
(2.15) still holds in this setting (see, e.g., [17, Appendix B]).

When M is the abelian variety OA dual to some abelian variety A over k, this
construction identifies the universal vector extension E.A/ of A to the k-algebraic
group

Pic\. OA/ WDMIC1. OA; 0 OA/;
which classifies line bundles with (necessarily integrable) connections over A, and
the short exact sequence (2.15) becomes the extension defining E.A/:

0 �! E OA WD .Lie OA/
_
�! E.A/

pA
�! A �! 0:

Second, it is convenient to have at one’s disposal diverse generalizations of the
moduli spaces MICN .M; o/. For instance, if .M; o; o0/ denotes a connected smooth
projective variety over k, endowed with two (possibly equal) “base points” o and o0
inM.k/, we may construct a quasi-projective scheme MICN .M; o; o0/ that classifies
vector bundles E of rank N overM , equipped with an integrable connection r and
with rigidifications  W Eo

�
�! kN and  0 W Eo0

�
�! kN at o and o0 (cf. [97,

Remark, p. 109]). Thanks to the morphism
± WMICN .M; o; o0/ �!MICN .M; o/

defined by forgetting the rigidifications  0 at o0 and to the action by composition
of GLN;k on these rigidifications, MICN .M; o; o0/ becomes a GLN;k-torsor over
MICN .M; o/. When N D 1, the tensor product again makes MICN .M; o; o0/ a
commutative algebraic group over k, and the above structure of the GLN;k-torsor
becomes an extension of commutative algebraic groups:

0 �! Gm;k �!MIC1.M; o; o0/ �!MIC1.M; o/ �! 0: (2.16)

WhenM D OA as above, o D 0 OA, and o
0 is a point P in OA.k/ parameterizing some

line bundle L over A (equipped with a rigidification � W k ' L0A and algebraically
equivalent to zero), one gets an extension

0 �! Gm;k �!MIC1. OA; 0A; P / �! E.A/ �! 0; (2.17)
which may be described as follows. The Gm;k-torsor L� over A, deduced from the
total space of L by deleting its zero section may be endowed with a unique structure
of k-algebraic group which makes the diagram

0 �! Gm;k
�
�! L� �! A �! 0 (2.18)

a short exact sequence of commutative algebraic groups over k, and the extension
(2.17) coincides with the pullback of the extension (2.18) by pA W E.A/ �! A.

3 Algebraization of Formal Objects

3.1 A theorem of Grauert and Grothendieck Since the work of Zariski [102] on
“holomorphic functions” and its amplification in Grothendieck’s new foundations of
algebraic geometry (see [45]), formal schemes and coherent sheaves over them play
a central role in modern algebraic geometry. Grothendieck notably established some
comparison and existence theorems that relate algebraic and formal geometry over
a suitable complete “adic” base ring (cf. Grothendieck [45], [44], Illusie [58]). In
SGA2 (see [47]), motivated by some earlier work of Grauert, he also used formal
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geometry to investigate the classical Lefschetz theorems comparing the geometry of
projective varieties and of their hyperplane sections.

In the remainder of this article, we shall be concerned by the algebraization theo-
rems of “Lefschetz type” established in SGA2 rather than by the earlier “fundamen-
tal” comparison and existence theorems discussed in [45], [44], and [58].

For the sake of simplicity, we first state a (weaker) analytic version of these theo-
rems of Lefschetz type in a special simple case.

Theorem 3.1 (Grauert, Grothendieck [47]) Let X ,! PNC be a smooth projective
complex variety of dimension d , and let Y WD X \ PN�1C be a hyperplane section of
X of dimension d � 1.

Gr1: If d � 2, then for every algebraic vector bundle E over X , the restriction
map

�.X;E/ �! ¹germs of analytic sections of E along Y º
is an isomorphism.

Gr2: If d � 3, any germ of analytic vector bundle E on some analytic neigh-
borhood of Y in X “extends” to some coherent sheaf E over X .

Observe that, like GAGA, this theorem decomposes into two parts: a “comparison
theorem” Gr1, and an “existence theorem” Gr2.

Observe also that, according to Serre’s GAGA, the vector bundleE in Gr1 and its
space of global sections �.X;E/may be equivalently taken in the algebraic or in the
analytic category. The same remark applies to the coherent sheaf E the existence of
which is asserted in Gr2. Accordingly, when the conclusion of Gr2 holds, we shall
say that E is algebraizable.

Let us emphasize that the assumptions on the dimension d are crucial in Theo-
rem 3.1.

Indeed, Gr1 trivially fails for X D P1, Y D ¹pointº, and E D OX .
The existence theorem Gr2 already fails for line bundles whenX is the projective

plane P2C and Y D P1C a projective line in X . This follows from Proposition 3.2
below, which is a simple consequence of Gr1.

LetX1 denote a projective line inX distinct from Y , and let us consider the affine
plane A2C WD X n X1 and the affine line A1C WD A2C \ Y . Choose affine coordinates
.x; y/ on A2C such that A1C D .x D 0/. For any converging power series f in C¹T º,
the equation

y D f .x/

defines a germ Tf of smooth analytic curve in X D P2C transverse to Y D P1C.

Proposition 3.2 The germ of analytic line bundle Oan.Tf / along P1C in P2C is
algebraizable if and only if the series f belongs to CT C C.

Observe also that Theorem 3.1 admits striking elementary geometric applications.
For instance, it implies that any germ of analytic hypersurface along P2C in P3C ex-
tends to a global algebraic hypersurface, defined by the vanishing of some homoge-
neous polynomial in CŒX0; X1; X2; X3�.

3.2 Formal geometry In SGA2, Theorem 3.1 is stated and proved in a more general
formulation, which (i) concerns formal sections and vector bundles instead of ana-
lytic germs of sections and vector bundles, (ii) makes sense over an arbitrary base
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field k—indeed, over an arbitrary Noetherian base S—instead of C, and (iii) holds
under regularity assumptions weaker than the smoothness of X , formulated in terms
of depth. In this paragraph, we want to give some indication of the generalizations
(i) and (ii), while keeping minimal the prerequisites from formal geometry.

Recall (see, e.g., [58]) that, for any Noetherian scheme X and any closed sub-
scheme Y in X , a coherent formal sheaf E over the formal scheme bXY , by comple-
tion of X along Y , is nothing else than the data of a system .En/n2N of coherent
sheaves on the successive infinitesimal neighborhoods Yn of Y in X (Y0 WD Y I Yn
is defined by the .nC 1/th power InC1Y of the ideal sheaf IY of Y in OX ), equipped
with isomorphisms

EnC1jYn
�
�! En: (3.1)

The coherent formal sheaf E is locally free—and then called a vector bundle—if and
only if, for every n, En is a locally free coherent sheaf of OYn -modules.

By definition, the space of sections of E over bXY is precisely the projective limit

�.bXY ;E/ WD lim
 �
n

�.Yn;En/;

defined by means of the isomorphisms (3.1) and of the induced projective system of
spaces of sections:

�.YnC1;EnC1/
:jYn
�! �.Yn;EnC1jYn/

�
�! �.Yn;En/:

A coherent sheaf E over X defines a formal coherent sheaf E
jbXY WD .EjYn/

over bXY . A formal coherent sheaf on bXY will be called algebraizable if, up to
isomorphism, it is of the form E

jbXY for some coherent sheaf E over X .
Using these definitions, we may state a generalized version of Theorem 3.1 valid

for a smooth projective scheme over an arbitrary base field k.

Theorem 3.3 LetX ,! PN
k
be a smooth projective scheme over k, of pure dimen-

sion d , and let Y WD X \ PN�1
k

be some hyperplane section, of dimension d � 1.
Gr1: If d � 2, then for any vector bundle E over X , the restriction map

�.X;E/ �! �.bXY ; E
jbXY / WD lim

 �
n

�.Yn; EjYn/

is an isomorphism.
Gr2: If d � 3, then any vector bundle E over bXY is algebraizable.

Like the proof of Serre’s GAGA and of Grothendieck’s comparison and existence
theorems in [45], [44], and [58], the proofs in SGA2 are cohomological. For instance,
a key point in the proof of Gr2 is that, since d � 3, the Cartier divisor Y has depth at
least 2 and the ampleness of OX .Y /jY implies that, for every vector bundle E0 over
Y , the cohomology group H 1.Y;E0 ˝ OX .�Y /

˝n
jY
/ vanishes for n a sufficiently

large positive integer (lemma of Enriques–Severi–Zariski). This implies that, for any
vector bundle E D .En/ over bXY , the system .H 1.Yn; En// is essentially constant,
and consequently

H 1.bXY ;E/ D lim
 �
n

H 1.Yn;En/

is a finite-dimensional k-vector space. The finite dimensionality of a first cohomol-
ogy group plays the same role here as in the proofs of the Poincaré–Lefschetz–Hodge
theorem by Kodaira and Spencer, and of the GAGA existence theorem by Serre.
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Let us also indicate that the results in SGA2 have been extended in diverse direc-
tions by Raynaud [85] and Faltings [39] and that, besides the original cohomological
proofs, it is possible to give more “classical” proofs of Theorems 3.1 and 3.3, based
on Theorem 3.4 infra and its formal variant, which ultimately rely on the use of
“auxiliary polynomials,” familiar in Diophantine approximation and transcendence.

3.3 A theorem of Andreotti and Hartshorne Let us mention that diverse algebraiza-
tion results concerning formal meromorphic functions along subvarieties have also
been established, notably by Hironaka and Matsumura [53], Faltings [40] and [41],
and Chow [30].

We want to discuss briefly an algebraization result, concerning formal germs
along curves, that is related both to the results in [53], [40], [41], and [30] and to
the Grauert–Grothendieck Theorems 3.1 and 3.3. For the sake of simplicity, we state
it in the analytic framework, in which situation it goes back to Andreotti [4].

Theorem 3.4 Let C ,! PNC be a smooth connected projective complex algebraic
curve, and let V be a germ of a smooth C-analytic submanifold along C in PN .C/.

If the normal bundle NCV to C in V is ample, then V is algebraic.

Observe that the normal bundle NCV is an analytic vector bundle over C , which by
GAGA defines an algebraic vector bundle over C . When dimV D 2, it is a line
bundle, and its ampleness is equivalent to the positivity of its degree degC NCV .

In Theorem 3.4, the algebraicity ofV precisely means that the dimension dimV
Zar

of its Zariski closure V
Zar in PNC , which is at least equal to the complex dimension

dimV of the complex manifold V , actually coincides with dimV . This is equivalent
to the fact that the germ V is a “branch” along C of some (irreducible) algebraic
subset of PNC containing C .

Here again, Theorem 3.4 admits a formal generalization, valid over any base field,
where V is a smooth formal subscheme containingC of the formal completion of PN

k

along a smooth projective k-curve. It may also be extended to higher-dimensional
situations: the curve C may be replaced by any smooth projective subvariety Y of
dimension at least 1. This condition is similar to the dimension condition in the asser-
tions Gr1 in Theorems 3.1 and 3.3. Actually Gr1 may be derived from Theorem 3.4
and its higher-dimensional and formal generalization by considering the graphs of
analytic or formal sections (see [16]).

In its analytic (resp., formal) form, Theorem 3.4 is a direct consequence—by the
“anonymous” argument recalled in Section 2.1—of a result of Andreotti [4] (resp.,
of Hartshorne [49]) which asserts that the field of meromorphic functions (resp.,
of formal meromorphic functions) on V is a field of transcendence degree at most
dimV over C (resp., over k).

Theorem 3.4 may also be established by directly estimating the Hilbert function of
the Zariski closure ofV , with no recourse to the (formal) meromorphic functions (see
Bost [13, Section 3.3], and [15]). This type of argument may be seen as a geometric
counterpart of the use of auxiliary polynomials in Diophantine approximation and
transcendence proofs.

Algebraization criteria in the style of Theorem 3.4 have been recently reconsid-
ered in Bogomolov and McQuillan [11] and [13] in relation to algebraicity proper-
ties of leaves of algebraic foliations (see Kebekus, Solá Conde, and Toma [60] for
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geometric applications and references, and see Bost [14] for similar geometric appli-
cations to groups schemes over projective curves).

3.4 Algebraization over function fields The above algebraization theorems concern-
ing formal “objects” over projective varieties on some base field k may be used to
derive algebraization theorems over projective varieties on function fields of the form
k.C /, where C denotes some projective variety over k.

We illustrate this general principle by formulating an application of Theorem 3.4
to the algebraicity of formal germs in varieties over the function field C.C / defined
by some smooth projective complex curve C . The details of its derivation, which is
straightforward, will be left to the reader, as well as the derivation from the formal
variant of Theorem 3.4 of a similar algebraicity criterion for formal germs in varieties
over a general function field k.C /.

Let C be a smooth projective complex curve, and let � W X ! C be a projective
complex variety fibered over C . (In other words, � is a flat surjective morphism of
complex schemes.)

Let K WD C.C / be the function field of C , and let X WD XK be the generic
fiber of � . It is a projective K-variety, and conversely, any projective K-variety may
be realized as the generic fiber of a suitable projective model X fibered over C as
above.

Let P be a K-point of X . By the projectivity of � , it extends to a section P of �
over C .

Consider a smooth formal germ of a subvariety through P in X ,bV WD lim
�!

i

Vi ;

namely, a smooth formal subscheme of the completion bXP . Here again it is said

to be algebraic when its Zariski closure bV ZarX
in the K-scheme X has the same

dimension as bV .
The Vi ’s are zero-dimensional subschemes of X D XK supported by P . Their

closures in X,
Vi WD Vi

ZarX
;

are one-dimensional subschemes of X with support P and constitute an inductive
system

V0 D P ,�! V1 ,�! V2 ,�! � � � ,�! Vi ,�! ViC1 ,�! � � � :

In general this system .Vi /i2N does not define a formal subscheme of the completion
OXP smooth over C . However, it is the case when there exists a germ V of analytic
submanifold of Xan along P that “extends” .Vi /i2N in the sense that Vi is the i th
infinitesimal neighborhood of P in V .

Corollary 3.5 With the above notation, if bV extends to a germ V of a smooth
analytic submanifold of Xan along P and if the normal bundle NP V to P in V is
ample, then bV is algebraic.
A generalization of this corollary, formulated in terms of formal geometry only, holds
when the base field C is replaced by an arbitrary base field k. Namely, bV is algebraic
when it extends to a formal subscheme OV of OXP smooth over the base curve C and
when the normal bundle NP

OV is ample.
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4 Algebraization and Transcendence

Various classical results in transcendence theory and Diophantine approximation
may be rephrased in geometric terms as algebraization results, asserting the alge-
braicity of certain formal or analytic subvarieties inside algebraic varieties defined
over number fields, provided that suitable arithmetic and analytic conditions are sat-
isfied (see, e.g., [13], [15], Chambert-Loir [28], Gasbarri [42]).

In this article, we are concerned with transcendence results of “Schneider–Lang
type” in the line of the classical theorems of Schneider (see [89], [90]) about the
transcendence of values of abelian functions and of their modern amplification by
Lang (see [65], [66], [67]). We shall content ourselves with two instances of these
transcendence theorems, whose proofs involve only elementary analytic techniques.
We refer the reader to Bombieri [12], Waldschmidt [100], Demailly [37], Gasbarri
[42], and Herblot [52] for more general higher-dimensional situations and references
to related work.

In the remainder of the article, Q will denote the algebraic closure of Q in C—
or equivalently, an algebraic closure of Q equipped with some preferred embedding
in C.

4.1 Algebraicity of leaves of rank 1 algebraic foliations LetK be a number field em-
bedded in C, let X be a smooth quasi-projective variety over K, and let L ,! TX=K
be a subvector bundle of rank 1 of its tangent bundle.

By base field extension from K to C and analytification, we obtain a complex
analytic manifold X an

C and an analytic subvector bundle Lan
C ,! TXan

C
. Since Lan

C
has rank 1, it is integrable (in other words, its sheaf of sections is stable under Lie
bracket) and defines a C-analytic foliation of X an

C . Consider some analytic leaf F of
this foliation—it is a connected Riemann surface, equipped with an injective analytic
immersion into X an

C —and assume that, for some closed discrete subset � of C, we
are given a nonconstant analytic map:

f W C n� �! F :

The map f defines an analytic map from C n� into the quasi-projective complex
variety X an

C ,! PN .C/. As such, it is said to be meromorphic on C when it extends
to an analytic map, which we will still denote f , from C to PN .C/. When this holds,
it is said to be of order at most � for some � 2 RC when, for every � > 0, it admits
an analytic lift9

F D .F0; : : : ; FN / W C �! CNC1 n ¹0º
such that

logC max
0�i�N

ˇ̌
Fi .t/

ˇ̌
D O

�
jt j�C�

�
when jt j ! C1:

Here is a first instance of a transcendence theorem à la Schneider–Lang (see, e.g.,
[52], notably Section 6, for a proof and for a discussion of earlier variants).

Theorem 4.1 Let K;X;F ; �, and f be as above. If
(1) f is meromorphic of finite order at most �, and
(2) there exists a subset A of C n� such that f .A/ � X.K/, whose cardinality
jAj satisfies

jAj > 2�ŒK W Q�;
then F is algebraic.



Algebraization, Transcendence, and D-Group Schemes 397

Here the algebraicity of F precisely means that the Riemann surface F , injectively
immersed in X an

C , is actually a (necessarily closed and smooth) complex algebraic
curve in XC. It is equivalent to the algebraicity of the formal germ bF f .z/ of F

through f .z/, for any z 2 A. The formal germ bF f .z/ ,! bXC;f .z/ is indeed defined10
over K, and consequently its Zariski closure in XC is also. Finally, when conditions
(1) and (2) hold, F is the set of complex points of some smooth closed K-curve
in X .

Classically a transcendence theorem à la Schneider–Lang like Theorem 4.1 is
rather expressed in the following contrapositive formulation: if f is meromorphic of
finite order � and if F is not algebraic, then the cardinality of the subset f �1.X.K//
of C n� is at most 2�ŒK W Q�.

A simple but nontrivial instance of Theorem 4.1 arises when

X WD A1 �Gm;
L WD .@=@x C y@=@y/OX

(where x and y denote the standard coordinates on A1 � Gm ,! A2), and F is the
image of

f W C �! X an
C ;

t 7�! .t; et /:

Clearly f is of order at most 1 and F is not algebraic, and Theorem 4.1 asserts that,
for any number field K in C, the intersection f �1.X.K// is finite, of cardinality at
most 2ŒK W Q�. Besides, if for some z in K, f .z/ belongs to X.K/, then for any
n 2 Z, f .nz/ belongs toX.K/. Consequently in this case Theorem 4.1 boils down to
the theorem of Hermite and Lindemann, which asserts that for any nonzero complex
number z, .z; ez/ does not belong to Q2.

4.2 Algebraic Lie subalgebras Let G be a (quasi-projective) algebraic group over Q,
and let LieG denote its Lie algebra. Observe that

LieGC WD LieG ˝Q C ' Lie.GC/

may be identified with the Lie algebra of the complex Lie group Gan
C . In particular,

we may consider the exponential map of this Lie group:

expGC W LieGC �! Gan
C :

It is a C-analytic map, étale at zero, and of finite order.
We may also consider the formal variant of this exponential map:

bexpG W .LieG/^0
�
�! bGe;

which is an isomorphism between the formal completion of LieG at zero—defined
as the formal spectrum of the completion of the symmetric algebra Sym�.LieG/_,

.LieG/^0 WD Spf
�
Sym�.LieG/_

�^
—and the formal completion bGe of G at its unit element e.

AQ-Lie subalgebra V of LieG will be called algebraicwhen the formal subgroup
bexpGV ^0 that it defines may be algebraized, or equivalently, when there exists a Q-
algebraic subgroupH of G such that V D LieH .
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Transcendence techniques à la Schneider–Lang may be used to derive “arithmetic
criteria” for a Lie subalgebra of LieG to be algebraic. For instance, when G is
commutative—so that any Q-vector subspace of LieG is a Lie subalgebra—they
lead to the following result, which appears as a vast generalization of Schneider’s
original result in [89] (see Lang [68, Chapter IV, Section 4, Theorem 2] when G
is a linear group or an abelian variety, and see [100, Théorème 5.2.1] for a general
commutative algebraic group G).
Theorem 4.2 For any commutative algebraic group G over Q and any Q-vector
subspace V of LieG, the following two conditions are equivalent:

(1) V is an algebraic Lie subalgebra;
(2) there exists a family .wi /i2I of element of VC such that, for any i 2 I ,

expGC wi 2 G.Q/;
which generates the C-vector space VC.

The direct implication .1/ ) .2/ is straightforward. The converse implication
.2/ ) .1/ is a transcendence statement. Consider, for instance, the case where
G D G2m. Then the (connected) algebraic subgroups of G are defined by monomial
equations, and consequently the algebraic Lie subalgebras V of

LieG D LieG2m D Q � x@=@x ˚Q � y@=@y

are precisely the Q-vector subspaces of LieG which are Q-rational in the basis
.x@=@x; y@=@y/. Therefore Theorem 4.2 for G D G2m becomes the theorem of
Gelfand and Schneider, which asserts that for any ˛ in Q� and any nonzero complex
number log˛ such that exp.log˛/ D ˛, and for any ˇ in Q nQ, ˛ˇ WD exp.ˇ log˛/
does not belong to Q.

Observe also that, when dim V D 1, Theorem 4.2 follows from Theorem 4.1
applied to the translation invariant subvector bundle L in TG=Q such that Le D V .
(Choose K large enough to have G and V defined over K.) In general, Theorem 4.2
may be seen as an algebraic integrability criterion for translation-invariant algebraic
foliations on the algebraic groups G.

Let me point out that Theorem 4.2 is now subsumed in stronger transcendence
results on commutative algebraic groups, such as the theorems of Baker on linear
forms in logarithms and the analytic subgroup theorem of Wüstholz. The reader may
find a recent survey of these results in the monograph by Baker and Wüstholz [6].

4.3 Morphisms of commutative algebraic groups In the remainder of the article, we
shall use a corollary of Theorem 4.2 which describes morphisms of connected com-
mutative algebraic groups over Q in terms of Lie theoretic data. This type of conse-
quence was already pointed out by Bertrand in [8, Section 5, Proposition 2B], where
Theorem 4.2 is applied in a similar way to investigate the ring of endomorphisms of
a commutative algebraic group.

If G is a connected commutative algebraic group over C, we may introduce its
group of “periods”

PerG WD ker expG ;
defined as the kernel of its exponential map. It is a discrete subgroup of its Lie
algebra LieG and fits into an exact sequence of commutative complex Lie groups

0 �! PerG ,�! LieG
expG
���! Gan

�! 0:
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We shall say that G satisfies condition LP when the group of periods PerG gen-
erates LieG as a complex vector space.

Observe that this condition is preserved by isogenies and by forming quotients
and products, and is satisfied by the multiplicative group GmC, complex abelian va-
rieties, and universal vector extensions. Actually, a connected commutative algebraic
group G over C satisfies condition LP precisely when G is “almost semiabelian” or
“antiadditive” in the sense of Bertrand and Pillay [9, Section 3.1], namely, when
the torsion points of G.C/ are Zariski-dense in G or, equivalently, when there is no
nontrivial morphism of algebraic groups from G to the additive group GaC (cf. [9,
Appendix I]). In particular condition LP is a purely algebraic condition, invariant
under the automorphisms of the field C.

Corollary 4.3 LetG1 andG2 be connected commutative algebraic groups overQ.
(1) For any ' in the Z-module Homgp=Q.G1; G2/ of morphisms of algebraic

groups over Q from G1 to G2, the Q-linear map

Lie ' WD D'.e/ W LieG1 �! LieG2
satisfies

.Lie '/C.PerG1C/ � PerG2C:
The map

Lie W Homgp=Q.G1; G2/

�!
®
 2 HomQ.LieG1;LieG2/j C.PerG1C/ � PerG2C

¯
(4.1)

so defined is an injective morphism of Z-modules.
(2) When the group G1C satisfies condition LP, then the morphism (4.1) is bijec-

tive.

Proof Assertion (1) follows from identification of .Lie '/C with the differential
Lie 'C WD D'C.e/ of the complexification 'C W G1C ! G2C of the morphism of
Q-algebraic groups ', together with the commutativity of the diagram:

LieG1C
Lie'C
�����! LieG2C

expG1C

??y ??yexpG2C
Gan
1C

'C
�����! Gan

2C

To prove (2), assume that condition LP is satisfied by G1C, and consider some
Q-linear map

 W LieG1 �! LieG2
such that  C.PerG1C/ � PerG2C. We need to establish the existence of a morphism
of Q-algebraic groups ' W G1 �! G2 such that

 D Lie ': (4.2)

To achieve this, we will apply Theorem 4.2 to the group G WD G1�G2 and to the
subspace V of

LieG D LieG1 ˚ LieG2
defined as the graph of  .
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Indeed, as G is commutative, V is a Lie subalgebra of LieG. Moreover, the
complex vector space VC is the graph of  C and therefore contains

BPerG1C WD
®�

;  C.
/

�
; 
 2 PerG1C

¯
;

which is included in PerG1C � PerG2C D PerGC. Besides, the condition LP on
G1C shows that BPerG1C generates this C-vector space. According to Theorem 4.2,
V is algebraic and is the Lie algebra of some connected Q-algebraic subgroup H
of G.

The first projection p WD pr1jH W H �! G1 is étale. Moreover,H an
C is the image

by expGC of VC. This immediately implies that pC W HC �! G1C is injective, and
finally that p is an isomorphism. In other words, H is the graph of some morphism
' of algebraic groups from G1 to G2. Clearly it satisfies (4.2).

4.4 Transcendence theorems and the analogy between number fields and functions
fields Theorems 4.1 and 4.2 may be seen as arithmetic counterparts of algebraization
theorems such as Andreotti’s Theorem 3.4, or Gr1 in Theorems 3.1 and 3.3, or more
specifically, of their consequences concerning algebraization over function fields,
such as Corollary 3.5 and its formal variant. The role of the function field C.C / or
k.C / is now played by Q or by a number field K over which the geometric data X
and L, or G and V , are defined.

Observe that the so-called Kronecker dimension ofK—namely, the Krull dimen-
sion of SpecOK—is one and that the algebraization Theorems 4.1 and 4.2, which
are algebraicity criteria for smooth formal germs of subvarieties through K-rational
points, isomorphic to SpecK, are indeed algebraization theorems concerning smooth
formal germs along some arithmetic curves SpecOK in some integral model of the
given K-variety.

The classical proofs of Theorems 4.1 and 4.2 may be understood in a way that
makes this geometric analogy precise. This geometric approach even suggests the
formulation and the proof of new transcendence theorems, as demonstrated by the
recent works of Gasbarri [42] and Herblot [52] who have established sophisticated
generalizations of previously known transcendence theorems à la Schneider–Lang.
I might also refer the reader to [28] and [15] for discussions of this geometric ap-
proach and of some of its applications in the framework of Diophantine results à la
Chudnovsky (see [31], [32]) instead of Schneider–Lang. The arithmetic counterparts
of the ampleness conditions in the geometric theorem of Andreotti and Hartshorne
and Gr1 appear more clearly in this somewhat simpler framework.

At the present stage, in this analogy, there is no known counterpart in transcen-
dence theory of the general existence theorems, such as Gr2 in Theorems 3.1 and
3.3. This absence appears especially regrettable when one considers the important
geometric applications of these theorems: we have discussed at length several con-
sequences of the GAGA existence theorem in Sections 1.2, 2.2, and 2.3; as demon-
strated in [47], Gr2 is the key to a modern approach to “Lefschetz-type theorems”
which compare invariants, such as their fundamental group or their Picard group, of
projective varieties to the ones of their hyperplane section.

The dimension condition

dim Y � 2
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in Gr2 leads one, in a Kroneckerian perspective, to expect a suitable arithmetic coun-
terpart of Gr2 to be an algebraization criterion concerning formal line or vector bun-
dles over the completion bXY of some algebraic variety X over a number field K,
along a smooth projective embedded curve Y over K or, if one prefers, over the
completion bXY of some scheme of finite type X over SpecOK along a projective
arithmetic surface Y.

In the spirit of transcendence theorems à la Schneider–Lang, like Theorems 4.1
and 4.2, this criterion would also require some “differential algebraic” conditions
(comparable to the occurrence of algebraic foliations in these theorems) and some
“analytic control” on the considered formal vector bundles.

The remainder of this article is devoted to presenting such a criterion, in a conjec-
tural form, and its relation to the Grothendieck period conjecture in codimension 1.

The proof of this last conjecture for abelian varieties may actually be derived
from Theorem 4.2 and its Corollary 4.3. As it provides a further illustration of the
“concrete geometric content” of transcendence theorems à la Schneider–Lang, we
begin by a discussion of this material in Section 5. Then, in Sections 6.1–6.5, we
review the formalism of D-group schemes and of their extensions that will be used
in the last part to formulate our conjectural algebraization criterion.

5 The Grothendieck Period Conjecture for Cycles of
Codimension 1 in Abelian Varieties

5.1 Grothendieck’s conjecture GPC1.X/ Let X be a smooth projective algebraic
variety over Q, let XC denote the smooth complex projective variety X ˝Q C, and
let X an be the corresponding compact complex manifold.

As discussed in Section 2.2, the Picard groups ofX ,XC, andX an
C —which classify

the algebraic lines bundles over X and XC, and the analytic line bundles over X an
C —

fit into the following commutative diagram:

Pic.X/
c1dR=Q
�����! H 2

dR.X=Q/??y ??y:˝Q1C

Pic.XC/
c1dR=C
�����! H 2

dR.XC=C/??y:an ??y:an
Pic.X an

C /
can
1dR

�����! H 2
dR.X

an
C =C/??yc1top ??yde Rham isomorphism

H 2.X an
C ;Z/

2�i.:˝Z1C/
��������! H 2.X an

C ;C/

The upper vertical arrows are induced by the field extension Q ,! C. The map
Pic.X/ �! Pic.XC/ maps the class of some line bundle L over X to the class of the
line bundleLC overXC, and is injective but not surjective when the connected Picard
variety Pic0.X=Q/ has positive dimension.11 However, since any line bundle overXC
is algebraically equivalent to some line bundle defined over Q, the images of Pic.X/
and Pic.XC/ by the first Chern class coincide. The mapH 2

dR.X=Q/ �! H 2
dR.XC=C/
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induces an isomorphism H 2
dR.X=Q/ ˝Q C

�
�! H 2

dR.XC=C/. The image in
H 2

dR.XC=C/ of an element ˛ inH 2
dR.X=Q/ will be denoted ˛ ˝Q 1C.

The two middle vertical arrows �an, defined by analytification, are isomorphisms
according to GAGA. The analytification isomorphism H 2

dR.XC=C/
�
�! H 2

dR.X
an
C =

C/ will be noted as an equality.
The image of some class ˇ 2 H 2.X an

C ;Z/ by the natural map H 2.X an
C ;Z/ �!

H 2.X an
C ;C/ (defined by extending the coefficients from Z to C) will be denoted

ˇ˝Z1C, and the image of some class 
 inH 2
dR.X

an
C =C/ by the de Rham isomorphism

will be denoted 
B.
We may define the subgroupH 2

Gr.X/ of “Grothendieck’s classes” inH 2
dR.X=Q/˚

H 2.X an
C ;Z/ by the condition that, for any ˛ 2 H 2

dR.X=Q/ and any ˇ 2 H 2.X an
C ;Z/:

.˛; ˇ/ 2 H 2
Gr.X/” .˛ ˝Q 1C/

B
D 2�iˇ ˝Z 1C: (5.1)

The commutativity of the diagram above shows that the algebraic and topological
first Chern classes define a morphism of abelian groups:

c1dRB W Pic.X/ �! H 2
Gr.X/;

ŒL� 7�! .c1dR.L/; c1top.L
an
C //:

The classical Grothendieck period conjecture12 leads one to conjecture that the
morphism c1dRB is onto, namely, that a class 
 inH 2.X an

C ;Z/ such that 2�i �
˝Z1C
is Q-rational in

H 2.X an
C ;C/ ' H

2
dR.X=Q/˝Q C

is algebraic in the sense of Section 1.2.
This conjectural assertion may be called the Grothendieck period conjecture in

codimension 1 for the smooth projective variety X over Q and will be denoted
GPC1.X/ in the remainder of the article.

Conjecture GPC1.X/ admits aQ-rational version, a priori weaker, that asserts the
surjectivity of the map

c1dRBQ W Pic.X/Q �! H 2
Gr.X/Q

deduced from c1dRB by tensoring with Q. (The tensor product H 2
Gr.X/Q WD

H 2
Gr.X/ ˝ Q may be identified with the Q-vector subspace of H 2

dR.X=Q/ ˚
H 2.X an

C ;Q/ defined by the right-hand side of (5.1), with � ˝Z � replaced by � ˝Q.)
A special feature of the codimension 1 case of the Grothendieck period conjecture
is that this rational version of the conjecture—which is the one that appears in the
references in note 12—actually implies the above “integral” version. Indeed, for any
positive integer n, a class 
 inH 2.X an

C ;Z/ is algebraic if n
 is algebraic.
More generally, for any positive integer k, we may consider the Grothendieck

period conjecture in codimension k, GPCk.X/: it asserts that any class 
 in
H 2k.X an

C ;Q/ such that .2�i/k
 ˝Q 1C is Q-rational in H 2k.X an
C ;C/ ' H 2k

dR .X=

Q/ ˝Q C is algebraic. See [1, Section 7.5] for a discussion of the close relation
between the original version of the Grothendieck period conjecture and the fullness
conjecture for the “de Rham–Betti realization,” namely, the conjunction of conjec-
tures GPCk.X/ for all smooth projective varieties X over Q and all integers k.13 To
my knowledge, the known results concerning these conjectures may be summarized
as follows.
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(i) The original Grothendieck period conjecture is known to be valid for a motive
in the Tannakian category generated by the Tate motive (transcendence of �) or for
an elliptic curve with complex multiplication (Chudnovsky).

(ii) The fullness of the de Rham–Betti realization is known for H 1 (cf. [1, Sec-
tion 7.2.3], where it is derived from the transcendence results in Wüstholz [101]; this
fullness is basically the content of Theorem 5.3 infra and, as shown in the next para-
graphs, may be derived from Schneider–Lang’s Theorem 4.2 and its Corollary 4.3).

In the next sections, we shall establish the validity of Grothendieck’s period con-
jecture in codimension 1 for abelian varieties.

Theorem 5.1 For any abelian variety A over Q, GPC1.A/ holds.

The proof of Theorem 5.1 will be based on the “transcendental” characterization of
algebraic Lie subalgebras in Theorem 4.2, via its Corollary 4.3 applied to universal
vector extensions of abelian varieties, and on the identification of the Néron–Severi
group of an abelian variety with the group of symmetric morphisms from the abelian
variety to its dual (cf. [15, Theorem 6.4]). We present the details of this proof in Sec-
tion 5.4. As a preliminary, in Section 5.2 we recall classical facts concerning abelian
varieties, their duality, and their universal vector extensions, and in Section 5.3 we
introduce the elementary, but convenient, formalism of the category CdRB of the “de
Rham–Betti realizations” (in the spirit of the realization categories à la Deligne and
Jannsen [59]; see also [1, Section 7.5]).

5.2 Abelian varieties, duality, and universal extensions In this section, we work over
an algebraically closed field k of characteristic zero.
5.2.1 Dual abelian varieties and de Rham (co)homology If A is an abelian variety
over k, we shall denote OA WD Pic0.A=k/ the dual abelian variety. The group OA.k/
of its k-rational points may be identified with the subgroup Pic0.A/ of Pic.A/ of
isomorphism classes of line bundles algebraically equivalent to zero or, equivalently,
with the kernel of

c1dR W Pic.A/ �! H 2
dR.A=k/:

To any morphism ' W A �! B of abelian varieties over k is attached the dual
morphism O' W OB �! OA. It maps the class of some line bundle L over B alge-
braically equivalent to zero to the class of '�.L/. This construction is additive and
(contravariantly) functorial.

Let PA denote the Poincaré line bundle over A � OA. Its restriction to 0A � OA
is trivial, and for any Oa 2 OA.k/, the isomorphism class of its restriction to A � Oa
is precisely Oa itself, and these properties characterize PA up to isomorphism. By
mapping a point a in A.k/ to the class �A.a/ of P

Aja� OA
, ones defines a canonical

isomorphism
�A W A

�
�!

OOA;

which is sometimes written as an equality.
Recall that the following “biduality” properties are satisfied (cf. [7, Section V.1]

or Coleman [33, Section 1]). For any ' W A �! B as above, OO' W OOA �! OOB and ' (or
more exactly, �B ı ' ı �A) coincide. Moreover, under the composite isomorphism

A � OA
�
�! OA � A

Id OA��A
�����! OA �

OOA;

.a; Oa/ 7�! . Oa; a/;
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the Poincaré bundle PA of A becomes the Poincaré bundle P OA of OA:�
.Id OA ��A/ ı �

��
P OA

�
�! PA: (5.2)

Moreover, c1dR.PA/ belongs to the Künneth componentH 1
dR.A=k/˝H

1
dR.
OA=k/

ofH 2.A � OA=k/. If we define

H1dR.A=k/ WD H
1
dR.A=k/

_
D Homk

�
H 1

dR.A=k/; k
�
;

then c1dR.PA/ defines an element$A in

H1dR.A=k/
_
˝k H

1
dR.
OA=k/ ' Homk

�
H1dR.A=k/;H

1
dR.
OA=k/

�
which actually is an isomorphism:

$A W H1dR.A=k/
�
�! H 1

dR.
OA=k/ D H1dR. OA=k/

_:

The duality isomorphism$A satisfies the following functoriality property.
Let ' W A �! B be a morphism of abelian varieties over k. It induces a k-linear

map between de Rham cohomology groups:

H 1
dR.'/ WD '

�
W H 1

dR.B=k/ �! H 1
dR.A=k/;

and then by duality, between homology groups:

H1dR.'/ WD H
1
dR.'/

t
W H1dR.A=k/ �! H1dR.B=k/:

Then the dual morphism of abelian varieties

O' W OB �! OA

satisfies
H1dR. O'/ D $

_�1
A ıH1.'/

_
ı$_B : (5.3)

This follows from the isomorphism of line bundles over A � OB:

.IdA � O'/�PA ' .' � Id OB/
�PB

and from the implied equality between first Chern classes.
Observe however that the isomorphism

$ OA W H1dR.
OA=k/

�
�! H 1

dR.
OOA=k/ ' H1dR.

OOA=k/_

differs by a sign from the transpose of$A:

$ OA D �H1dR.�A/
_
ı$_A : (5.4)

This follows from the equality of first Chern classes implied by the isomorphism
(5.2) and from the fact that switching the factors A ' OOA and OA introduces a sign in
the Künneth morphism

H 1
dR.A=k/˝k H

1
dR.
OA=k/ ,�! H 2

dR.A �
OA=k/:
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5.2.2 Néron–Severi groups and symmetric morphisms To any line bundle L over A
is attached a morphism of abelian varieties over k,

'L W A �! OA

that is defined by
'L.a/ WD Œ�

�
aL˝ L

_�

for any a 2 A.k/, where �a denotes the translation by a on A. Moreover, 'L is zero
if and only if L is algebraically equivalent to zero and, for any two line bundles L1
and L2 on A, 'L1˝L2 D 'L1 C 'L2 . Consequently this construction induces an
injective morphism of Z-modules:

NS.A/ WD Pic.A/=Pic0.A/ �! Homgp=k.A; OA/;

ŒL� 7�! 'L:

Its image is the subgroup Homgp=k.A; OA/
sym of symmetric morphisms, namely, the

subgroup of morphisms ' W A �! OA such that

O' ı �A D ': (5.5)

This actually holds for abelian schemes over an arbitrary base, as established by
Nishi and Oda (cf. Oda [78, p. 77, note 2]).

Observe that, at the level of de Rham (co)homology groups, the symmetry condi-
tion (5.5) translates into a skew-symmetry condition on

$_A ıH1.'/ W H1dR.A=k/ �! H1dR.A=k/
_:

Indeed the “duality” formulas (5.3) and (5.4) imply the relation

$_A ıH1. O' ı �A/ D �
�
$_A ıH1.'/

�_
: (5.6)

In particular, when the base field k is C, the above identification of NS.A/ with
Homgp=k.A; OA/

sym is basically the classical theory of Riemann forms attached to line
bundles over complex abelian varieties.
5.2.3 Universal vector extensions (cf. Rosenlicht [88], Serre [17], [33], [75], [76],
[93]).

For any abelian variety A over k, we shall denote EA the k-vector space

�.A;�1A=k/ ' �
1
A=k;0A

' .LieA/_:

Observe that we have a canonical identification

E OA ' .Lie OA/
_
' H 1.A;OA/

_:

Let V be a finite-dimensional k-vector space, and let V gp denote the associated k-
vector group (namely the commutative algebraic group over K, such that the group
V gp.k/ “is” the additive group .V;C/). Recall that any extension of commutative
algebraic groups over k,

0 �! V gp
�! G �! A �! 0 (5.7)

of some abelian variety A over k by V gp determines an OA˝k V -torsor over A, and
that this construction defines a canonical isomorphism14

Ext1c-gp=k.A; V
gp/

�
�! Ext1OA-mod.OA;OA ˝k V /

' H 1.A;OA/˝k V ' Homk.E OA; V /: (5.8)
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Moreover, an extension (5.7) of commutative algebraic groups of an abelian variety
by a vector group admits no nontrivial automorphism. Consequently, the isomor-
phism (5.8) with V D E OA shows that to the element IdE OA is canonically associated a
vector extension of A by the vector group defined by E OA, which we shall denote

0 �! E OA ,�! E.A/
pA
�! A �! 0: (5.9)

It is the universal vector extension of A: any vector extension (5.7) may be realized
uniquely as a pushout of (5.9), namely, as the pushout by its “classifying element” in
the right-hand side of (5.8).
5.2.4 The functor E Let ' W A �! B be a morphism of abelian varieties over k. We
may consider the pullback by ' of the universal vector extension of B and use the
universal property of the universal vector extension of A. We thus get the existence
and unicity of a morphism E.'/ of k-algebraic groups, which makes the following
diagram commutative:

E.A/
E.'/
�����! E.B/??ypA ??ypB

A
'

�����! B:

The construction ofE.'/ is clearly additive and functorial in '. Moreover, it is easily
seen to be fully faithful.

Lemma 5.2 For any two abelian varieties A and B over k, the morphism of Z-
modules

Homgp=k.A;B/ �! Homgp=k
�
E.A/;E.B/

�
;

(5.10)
' 7�! E.'/

is an isomorphism.

5.2.5 Biduality and universal vector extensions We shall also use that the biduality
isomorphism

�A W A.k/
�
�!

OOA.k/ D ker c1dR W H 1. OA;O�
OA
/ �! H 1

dR.
OA;��

OA=k
/

may be lifted to an isomorphism

�E.A/ W E.A/.k/
�
�! H 1. OA;��

OA=k
/;

where ��
OA=k

denotes the complex

O�
OA

d log
�! �1

OA=k

d
�! �2

OA=k

d
�! � � � ;

which makes commutative the following diagram with exact lines:15

0 �����! E OA �����! E.A/.k/
pA

�����! A.k/ �����! 0

'

??y '

??y�E.A/ '

??y�A
0 �����! H1. OA;��1��

OA=k
/ �����! H1. OA;��

OA=k
/ �����!

OOA.k/ �����! 0

(5.11)
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(For constructing the second line, recall that F 1H 2
dR.
OA=k/ WD H 2. OA; ��1��

OA=k
/

injects intoH 2
dR.
OA=k/ and that c1dR W H 1. OA;O�

OA
/! H 1

dR.
OA;��

OA=k
/ coincides with

d log W H 1. OA;O�
OA
/! F 1H 2

dR.
OA=k/.)

Moreover, the “infinitesimal” version16 of �E.A/ defines an isomorphism

IA WD Lie �E.A/ W LieE.A/ �! H 1. OA;��
OA=k
/ D H 1

dR.
OA=k/;

and the infinitesimal version of (5.11) is an isomorphism of exact sequences of finite-
dimensional k-vector spaces:

0 �����! E OA �����! LieE.A/
LiepA
�����! LieA �����! 0

D

??y '

??yIA '

??yLie �A
0 �����! E OA �����! H 1

dR.
OA=k/ �����! H 1. OA;O OA/ �����! 0

(5.12)

(The second line defines the Hodge filtration onH 1
dR.
OA=k/.)

Finally, we get an isomorphism of k-vector spaces

JA WD $
�1
A ı IA W LieE.A/

�
�! H1dR.A=k/:

It is easily checked to be functorial. Namely, for any morphism ' W A �! B of
abelian varieties over k, the diagram

LieE.A/
LieE.'/
�����! LieE.B/

'

??yJA '

??yJB
H1dR.A=k/

H1dR.'/
�����! H1dR.B=k/

(5.13)

is commutative.

5.3 The category CdRB

5.3.1 Definitions We define an additive category CdRB—where C stands for “cate-
gory” or “comparison” and dRB stands for “de Rham–Betti”—in the following way.

Its objects are triples
M D .MdR;MB; cM /;

where MdR is a finite-dimensional Q-vector space, MB is a free Z-module of finite
rank, and cM is an isomorphism of C-vector spaces:

cM WMdR ˝Q C
�
�!MB ˝Z C:

In other terms, an object M of CdRB may be seen as the data of the finite-
dimensional C-vector space

MC WDMdR ˝Q C 'MB ˝Z C;

together with a “Q-form”MdR and a “Z-form”MB ofMC.
If M and N are objects in CdRB, the additive group of morphisms from M to

N in CdRB is the subgroup HomdRB.M;N / in HomQ.MdR; NdR/˚ HomZ.MB; NB/
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consisting of pairs of maps ' D .'dR; 'B/ such that the following diagram is com-
mutative:

MdR ˝Q C
'dR˝QIdC
������! NdR ˝Q C

'

??ycM '

??ycN
MB ˝Z C

'B˝ZIdC
������! NB ˝Z C

These morphisms may be identified with the C-linear maps 'C from MC to NC
which are compatible both to their Q-forms and their Z-forms. The composition of
these morphisms is the obvious one, defined by the composition of the “de Rham,”
“Betti,” and “complex” realizations 'dR, 'B, and 'C, respectively.

The category CdRB is endowed with an internal tensor product, defined by

M ˝N WD .MdR ˝Q NdR;MB ˝Z NB; cM ˝C cN /;

and with an internal duality functor, defined by

M_ WD
�
HomQ.MdR;Q/;HomZ.MB;Z/; ct

�
and

'_ WD .'tdR; '
t
B/ D .: ı 'dR; : ı 'B/:

For any integer k, we denote Z.k/ the object of CdRB defined by Z.k/Q D Q and
Z.k/B D .2�i/kZ in Z.k/C D C. Observe that Z.0/ and the obvious isomorphism
Z.0/ ˝ Z.0/

�
�! Z.0/, mapping 1 ˝ 1 to 1, define a unit object of CdRB, which,

endowed with ˝ and �_ becomes a rigid tensor category. In particular, for any two
objectsM and N of CdRB, we have a natural isomorphism:

HomdRB.M;N /
�
�! HomdR

�
Z.0/;M_ ˝N

�
;

(5.14)
.'dR; 'B/ 7�! .1 7! 'dR; 1 7! 'B/:

Moreover, for every integer k, we get an identification

HomdRB
�
Z.0/;M ˝ Z.k/

� �
�!MdR \ .2�i/

kMB; (5.15)

where the intersection is taken in MC, by mapping a morphism ' W Z.0/ �!
M ˝ Z.k/ to 'C.1/.
5.3.2 Examples, I: The (co)homology of smooth projective varieties over Q For any
smooth projective variety X overQ and for any integer i � 0, the algebraic de Rham
cohomology of X and the Betti cohomology of X an

C determine an object H i
dRB.X/

in CdRB defined as follows:

H i
dRB WD

�
H i

dR.X=Q/;H
i
B.X

an
C ;Z/=torsion; c

�
;

where c denotes the composition of the comparison isomorphism defined by the base
change isomorphism, analytification, and the de Rham isomorphism

H i
dR.X=Q/˝Q C

�
�! H i

dR.XC=C/
�
�! H i

dR.X
an
C /

�
�! H i .X an

C ;C/;

and of the inverse of the isomorphism defined by extension of coefficients�
H i .X an

C ;Z/=torsion
�
˝Z C ' H i .X an

C ;Z/˝Z C
�
�! H i .X an

C ;C/:

To a morphism
' W X �! Y
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of smooth projective varieties over Q is attached a morphism in “de Rham–Betti
cohomology”:

H i
dRB.'/ WD

�
H i

dR.'/;H
i
B.'/

�
defined by the “pullback” morphisms

H i
dR.'/ WD '

�
W H i

dR.Y=Q/ �! H i
dR.X=Q/

and
H i

B.'/ WD '
an�
C W H i .Y an

C ;Z/=torsion �! H i .X an
C ;Z/=torsion

in algebraic de Rham and Betti cohomology. This construction is clearly functorial.
Observe that, as an instance of (5.15), we have a natural identification

H 2
Gr.X/ ' HomdRB

�
Z.0/;H 2

dRB.X/˝ Z.1/
�
: (5.16)

We shall also define the de Rham–Betti homology functor by duality in CdRB:

HidRB.X/ WD H
i
dRB.X/

_ and HidRB.'/ WD H
i
dRB.'/

_:

Observe thatHidRB.X/B andHidRB.X/C may be identified with the Betti homology
groupsHi .X an

C ;Z/ modulo torsion andHi .X an
C ;C/ of X an

C .
5.3.3 Examples, II: The homology of abelian varieties Let A be an abelian variety of
dimension g over Q, and let E.A/ be its universal vector extension.

Consider the exponential map of the associated complex Lie group:

expE.A/C W LieE.A/C �! E.A/anC :

Its kernel, the group of periods PerE.A/C of E.A/C, is a free Z-module of rank 2g,
and the inclusion PerE.A/C ,! LieE.A/C extends to an isomorphism

PerE.A/C ˝Z C
�
�! LieE.A/C: (5.17)

Consequently we may attach the following object of CdRB to the abelian variety A:

LiePerE.A/ WD
�
LieE.A/;PerE.A/C; c

�
;

where c denotes the inverse of the isomorphism (5.17).
As recalled in Section 5.2.5 above, the construction of E.A/ as the moduli space

of line bundles with (integrable) connections over the dual abelian variety OA provides
a canonical isomorphism of Q-vector spaces:

IA W LieE.A/
�
�! H 1

dR.
OA=Q/:

Moreover, the isomorphism of complex vector spaces

LieE.A/C
IA;CDIAC
�������! H 1

dR.
OA=Q/˝Q C

' H 1
dR.
OAC=C/

GAGACdeRham
����������! H 1. OAan

C ;C/

maps PerE.A/C onto H 1. OAan
C ; 2�iZ/. This follows from the description of

E.A/anC as H 1. OAan
C ; �

�

OAan
C
/, where ��

OAan
C
denotes the complex Oan

OAan
C

d log
�! �1

OAan
C

d
�!

�1
OAan
C

d
�! � � � .

In other words, IA defines an isomorphism in CdRB:

IA;dRB W LiePerE.A/
�
�! H 1

dRB.
OA/˝ Z.1/:
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Besides, the isomorphism $A;dR constructed in Section 5.2.1 above admits an
obvious analogue $AC;B involving the Betti (co)homology of Aan

C and OAan
C , which

are defined by means of c1B.PAC/. Up to a factor 2�i coming from the relation

c1dR.PA/C D 2�ic1B.PAC/;

it is compatible with the isomorphism $A;dR in algebraic de Rham (co)homology.
In other words, they define an isomorphism in CdRB:

$A;dRB WD .$A;dR;$AC;B/ W H1;dRB.A/
�
�! H 1

dRB.
OA/˝ Z.1/:

Finally, we get a canonical isomorphism in CdRB:

JA;dRB WD $
�1
A;dRB ı IA;dRB W LiePerE.A/

�
�! H1;dRB.A/: (5.18)

This construction is easily seen to be functorial in A. Namely, for any morphism
' W A �! B of abelian varieties over Q,

LiePerE.'/ WD
�
LieE.'/;LieE.'/CjPerE.A/C

�
is an element of HomdRB.LiePerE.A/;LiePerE.B//, and the following diagram
commutes in CdRB:

LiePerE.A/
LiePerE.'/
�������! LiePerE.B/

'

??yJA;dRB '

??yJB;dRB
H1;dRB.A/

H1dRB.'/
������! H1dRB.B/

5.3.4 Extensions For any two objects M and N in CdRB, we may consider the set
Ext1dRB.M;N / of 1-extensions ofM by N in CdRB, namely, of diagrams in CdRB of
the form

E W 0 �! N
˛
�! X

ˇ
�!M �! 0

such that ˇ ı ˛ D 0 and the diagrams

EdR W 0 �! NdR
˛dR
�! XdR

ˇdR
�!MdR �! 0

and
EB W 0 �! NB

˛B
�! XB

ˇB
�!MB �! 0

are short exact sequences of Q-vector spaces and of Z-modules, respectively.
Equipped with the Baer sum, Ext1dRB.M;N / becomes an abelian group. Actually,

for any extension E as above, we may choose a Q-linear splitting �dR W MdR ! XdR
of EdR and a Z-linear splitting �B W MB ! XB of EB. Then �dRC WD �dR ˝Q 1C and
�BC WD �B ˝Z 1C are C-linear splittings of

EC W 0 �! NC
˛C
�! XC

ˇC
�!MC �! 0;

and consequently �dRC � �BC may be written ˛C ı ' for some uniquely determined
' in .M_ ˝N/C. The map

Ext1dRB.M;N /
�
�! .M_ ˝N/C=

�
.M_ ˝N/dR C .M

_
˝N/B

�
;

(5.19)
ŒE� 7�! Œ'�

so defined is easily seen to be an isomorphism of abelian groups.
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In particular, we get the usual isomorphisms:

Ext1dRB.M;N /
�
�! Ext1dRB

�
Z.0/;M_ ˝N

�
�
�! Ext1dRB

�
M ˝N_;Z.0/

�
: (5.20)

5.4 Abelian varieties over Q satisfy GPC1 We are now in position to complete the
proof of Theorem 5.1.

As already observed, universal vector extensions of abelian varieties satisfy con-
dition LP. Corollary 4.3 therefore implies that, for any two abelian varieties A and
B over Q, the map

LiePer W Homgp=Q
�
E.A/;E.B/

�
�! HomdRB

�
LiePerE.A/;LiePerE.B/

�
;

 7�! LiePer WD .Lie ;Lie CjPerE.A/C/

is an isomorphism of Z-modules.
Together with the isomorphism (5.10), which identifies morphisms between

abelian varieties and between their universal vector extensions, this establishes
the first assertion in the following theorem; the second assertion follows from the
existence of a functorial isomorphism (5.18) between LiePerE.A/ andH1;dRB.A/.

Theorem 5.3 For any two abelian varieties A and B over Q, the maps

Homgp=Q.A;B/ �! HomdRB
�
LiePerE.A/;LiePerE.B/

�
;

' 7�! LiePerE.'/

and
H1;dRB W Homgp=Q.A;B/ �! HomdRB

�
H1;dRB.A/;H1;dRB.B/

�
are isomorphisms of Z-modules.

In other words, the realization functor H1;dRB from the category of abelian varieties
over Q to the category CdRB is fully faithful (cf. [1, Section 7.5.3], where a “ra-
tional” version of this isomorphism is established, by a reference to some advanced
transcendence results of Wüstholz [101]).

To complete the proof of Theorem 5.1, we consider an abelian variety A over Q
and we apply Theorem 5.3 to A and its dual abelian variety OA. In this way, we get an
isomorphism

H1;dRB W Homgp=Q.A;
OA/
�
�! HomdRB

�
H1;dRB.A/;H1;dRB. OA/

�
:

Composing this isomorphism with the transpose of

$A;dRB W H1;dRB.A/
�
�! H 1

dRB.
OA/˝ Z.1/

and with the natural identification (5.14), we get an isomorphism

Homgp=Q.A;
OA/
�
�! HomdRB

�
Z.0/;H 1

dRB.A/˝H
1
dRB.A/˝ Z.1/

�
: (5.21)

The discussion on signs in Section 5.2.2 (notably the identity (5.6)) shows that this
isomorphism maps the subgroup of symmetric morphisms from A to OA onto the sub-
group of skew-symmetric, or alternating, elements17 in HomdRB.Z.0/;H 1

dRB.A/ ˝

H 1
dRB.A/˝ Z.1//:

Homgp=Q.A;
OA/sym

�
�! HomdRB

�
Z.0/;H 1

dRB.A/˝H
1
dRB.A/˝ Z.1/

�alt
: (5.22)
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The fact that the morphism of Z-modules in (5.22) is an isomorphism is nothing
but, in a disguised form, the validity of GPC1.A/. Indeed, by composition with the
isomorphism

NS.A/ WD Pic.A/=Pic0.A/
�
�! Homgp=Q.A;

OA/sym;

ŒL� 7�! 'L;

the isomorphism (5.22) becomes the isomorphism

NS.A/
�
�! HomdRB

�
Z.0/;H 1

dRB.A/˝H
1
dRB.A/˝ Z.1/

�alt
: (5.23)

The “Betti” component of (5.23) takes its values in .H 1
B.AC/˝Z H

1
B.AC//

alt and is
well known to coincide with the classical “Riemann form” of elements of the Néron–
Severi group (see, e.g., Birkenhake and Lange [10, Chapter 2]). Consequently, after
the identification of

HomdRB
�
Z.0/;H 1

dRB.A/˝H
1
dRB.A/˝ Z.1/

�alt
and

HomdRB
�
Z.0/;H 2

dRB.A/˝ Z.1/
�
D H 2

Gr.A/;

the isomorphism (5.22) may be read as asserting that the map
c1dRB W NS.A/ �! H 2

Gr.A/

is an isomorphism. This is precisely the content of GPC1.A/.

5.5 Q-points of abelian varieties and extensions in CdRB
18 Let A denote an abelian

variety over Q.
Consider some line bundle L over A, algebraically equivalent to zero, equipped

with some rigidification � W k ' L0A . Recall that the Gm-torsor L�
�L
��! A over A,

deduced from the total space of L by deleting its zero section, may be endowed with
a unique structure of a Q-algebraic group which makes the diagram

0 �! GmQ
�
�! L�

�L
�! A �! 0

a short exact sequence of commutativeQ-algebraic groups, and that this construction
establishes an isomorphism of groups:

OA.Q/
�
�! Ext1c-gp=Q.A;GmQ/:

The fiber product
E.L�/ ' L� �A E.A/

defines a commutative Q-algebraic group which fits into the following commutative
diagram with exact lines:

0 �����! GmQ
Q�

�����! E.L�/
Q�L

�����! E.A/ �����! 0??yD ??y ??ypA
0 �����! GmQ

�
�����! L�

�L
�����! A �����! 0

By considering the Lie algebra (over Q) and the periods (over C) of the first line,
we get a 1-extension in CdRB:

0 �! Z.1/
LiePer Q�
����! LiePerE.L�/

LiePer Q�L
������! LiePerE.A/ �! 0: (5.24)
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Thanks to the canonical isomorphisms in CdRB,

LiePerE.A/
�
�! H1dRB.A/

�
�! H 1

dRB.
OA/˝ Z.1/

�
�! H1dRB.A/

_
˝ Z.1/;

its class defines an element in

�dRB.L/ 2 Ext1dRB
�
H1dRB.A/;Z.1/

� �
�! Ext1dRB

�
Z.0/;H1dRB. OA/

�
:

The proof of the following proposition is again an application of Corollary 4.3.

Proposition 5.4 The morphism of abelian groups

�dRB W OA.Q/ �! Ext1dRB
�
Z.0/;H1dRB. OA/

�
is injective.

We leave the details to the reader and only emphasize that giving a direct description
of the subgroup �dRB. OA.Q// of Ext1dRB.Z.0/;H1dRB. OA// appears to be an intriguing
and difficult issue.

6 D-group Schemes

In this part, we introduce D-schemes and D-group schemes in a geometric setting,
suitable for the application to Diophantine geometry we want to discuss in the re-
mainder of the article. These definitions are variants of the original definitions by
Buium [20], [21], [25, Chapter 3] which make sense over some fixed differential
base field (of characteristic zero). Here we shall consider D-schemes and group
schemes over some smooth base variety instead: this framework is the one of Mal-
grange in [70], with the field of complex numbers replaced by some arbitrary field of
characteristic zero.

For simplicity, we shall make smoothness and quasi-projectivity assumptions
which actually could be relaxed in many places. Actually, on a base scheme of finite
type over a field of characteristic zero, D-schemes are nothing but the “crystals
in relative schemes” mentioned in a famous letter of Grothendieck to Tate.19 The
approach toD-schemes as “crystals,” defined in terms of infinitesimal sites and strat-
ifications, has much to recommend it (see, e.g., [98, Section 8]), but I have preferred
to stick to a more naive approach in the spirit of classical differential geometry, at
the expense of extra regularity assumptions, based on a definition ofD-schemes that
mimics the one of integrable Ehresmann connections on differentiable fiber bundles
(see Ehresmann [38]).

In the following sections we denote k a fixed field of characteristic zero.

6.1 Basic definitions Let S denote a smooth quasi-projective scheme over k.
6.1.1 D-schemes By a D-scheme over S we shall mean a pair .X;F /, where
X

�
�! S is a smooth, quasi-projective scheme over S (hence over k) and F is an

integrable20 subvector bundle of the “absolute” tangent bundle TX=k of X such that

TX=k D TX=S ˚ F :

This last condition means precisely that F determines a splitting of the exact se-
quence of vector bundles over the k-scheme X ,

0 �! TX=S ,�! TX=k
D�
�! ��TS=k �! 0;
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defined by the differential of � or, equivalently, that the restriction ofD� to F is an
isomorphism:

D�jF W F
�
�! ��TS=k : (6.1)

A morphism ofD-schemes over S ,

' W .X1;F1/ �! .X2;F2/; (6.2)

is a morphism of S -schemes ' W X1 ! X2 whose “absolute” differential

D' W TX1=k �! '�TX2=k

maps F1 to '�F2.
Observe that, if ' is a morphism ofD-schemes over S from .X1;F1/ to .X2;F2/,

then conditions (6.1) for .X1;F1/ and .X2;F2/ imply that D' maps F1 isomorphi-
cally onto '�F2.

Morphisms of D-schemes may be obviously composed and define the category
of (smooth, quasi-projective)D-schemes over S . Clearly, this category admits finite
products: .S; TS=k/ is a final object, and the product of two D-schemes .X1;F1/
and .X2;F2/ over S may be constructed as theD-scheme .X;F / consisting of their
product as schemes over S ,

X WD X1 �S X2;

equipped with the subvector bundle F of TX=k which is the “direct sum of F1 and
F2 over TS=k ,” formally defined as the kernel of the surjective morphism of vector
bundles over X :

.D�1 ;�D�2/ W .F1 � F2/jX �! ��TS=k :

(It lies inside the kernel of

.D�1 ;�D�2/ W .TX1=k � TX2=k/jX �! ��TS=k ;

which may be identified with TX=k .)
A closedD-subscheme of aD-scheme .X;F / over S is the image of a morphism

of D-schemes with range .X;F / that is also a closed immersion. Equivalently, it is
a closed, smooth subscheme Y of X such that its tangent bundle TY=k , which may
be identified to a subvector bundle of TX=kjY , contains FjY .

A horizontal section of some D-scheme .X;F / over S is a right inverse of
the structural morphism X �! S in the category of D-schemes over S . In
other words, it is a section P of this morphism over S , the differential of which,
DP W TS=k �! P �TX=k , takes its values in P �F , or equivalently, the image of
which is aD-subscheme of .X;F /.

From the integrable subvector bundle F of TX=k , the normal bundle P �TX=S of
any horizontal section P inherits an integrable connection.
6.1.2 D-group schemes A (smooth, quasi-projective)D-group scheme over S is de-
fined as a group object in the category ofD-schemes over S .

A D-group scheme G over S may be identified with a pair .G;F / where G is
a smooth, quasi-projective group scheme over S and F a subvector bundle of TG=k
which makes .G;F / a D-scheme over S , in such a way that the graphs of the unit
section eG , of the inverse map, and of the composition map of the group scheme G
becomeD-subschemes of theD-schemes G, G2, and G3 over S .
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In intuitive terms, a D-group scheme may be thought as a smooth group scheme
over S equipped with some “algebraic connection” compatible with its group struc-
ture.

Since its unit section eG is horizontal, the relative Lie algebra LieS G WD e�GTG=S
of the group scheme G over S underlying someD-group scheme G over S becomes
endowed with a natural integrable connection. The so-defined module with inte-
grable connection shall be denoted LieS G.

Assume that S is integral (or, equivalently, connected) of dimension s, and con-
sider its field of rational functions k.S/. Let us choose some k.S/-basis .v1; : : : ; vs/
of the k.S/-vector space of rational sections of TS=k such that the Lie brackets
Œvi ; vj � all vanish.21 Then the field k.S/ equipped with the derivations .ı1; : : : ; ıs/
becomes a differential field in the classical sense of Ritt and Kolchin. Let us finally
choose a differential closure .KI ı1; : : : ; ıs/ of .k.S/I ı1; : : : ; ıs/. Through the base
changes

SpecK �! Spec k.S/ ,�! S;

any D-group scheme .G;F / over S in our sense defines D-group schemes in the
sense of Buium over the differential fields .k.S/I ı1; : : : ; ıs/ and .KI ı1; : : : ; ıs/,
and a �0-group, that is, a differential algebraic group of finite dimension, in the
sense of Kolchin, by considering the subgroup of the group G.K/ of K-points of G
consisting of its “horizontal points.” (We refer the reader to Buium [21, Chapter 5],
Pillay [80], [81], and Bertrand and Pillay [9] for discussions of the relations between
Buium’sD-groups and differential algebraic groups.)
6.1.3 Extensions Let G1 D .G1;F1/ and G2 D .G2;F2/ be two commutative D-
group schemes over S . An extension of G1 by G2 in the category of commutative
D-group schemes over S is a diagram

0 �! G2
i
�! G

p
�! G1 �! 0 (6.3)

in this category such that the underlying diagram of commutative group schemes
over S ,

0 �! G2
i
�! G

p
�! G1 �! 0;

is a short exact sequence22 (see Kowalski and Pillay [64] for related constructions).
The Baer sum of two extensions of G1 by G2 may be defined in an obvious way.

Equipped with this operation, the set Ext1cD-gp=S .G1;G2/ of isomorphism classes of
these extensions defines an abelian group, which satisfies the usual functorialities in
S , G1, and G2.

We may apply the functor LieS to the extension (6.3). We obtain a short exact
sequence of modules with integrable connections over S :

0 �! LieS G2

LieS i
���! LieS G

LieS p
����! LieS G1 �! 0:

This construction defines an additive map, say, when S is projective:

Lie1S W Ext
1
cD-gp=S .G1;G2/ �! Ext1mic=S .LieS G1;LieS G2/

' H 1
dR
�
S; .LieS G1/

_
˝ LieS G2

�
;

where we use the notation introduced in Section 2.2.5, formula (2.9).
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6.1.4 Functoriality in S If ' W S 0 �! S is a morphism of projective schemes over k,
then, from anyD-scheme .X;F / over S , we may deduce aD-scheme .X 0;F 0/ over
S 0 by “pulling it back” by ' as follows : X 0 is the smooth, quasi-projective S 0-scheme
defined as the fiber product X �S S 0; if Q' W X 0 �! X denotes the canonical “first
projection” morphism and D Q' W TX 0=k �! Q'�TX=k its differential, the D-structure
on X 0 over S 0 is defined by the integrable subvector bundle of TX 0=k

F 0 WD D Q'�1. Q'�F /:

This construction of “base change” is functorial, and transformsD-group schemes
over S into D-group schemes over S 0. It satisfies an obvious compatibility with the
Lie algebra functor (fromD-group schemes to modules with integrable connections)
and the pullback of modules with integrable connections.

TheD-schemes over Spec k are nothing but the smooth, quasi-projective schemes
over k. A constant D-scheme over S is a D-scheme isomorphic to the pullback by
the k-morphism S �! Spec k of some smooth, quasi-projective schemes over k. In
the remainder of the article, we shall denote Gm;S the constant multiplicative group
scheme over S , defined as the pullback of the algebraic groupGm;k . After the change
of base S �! Spec k, the isomorphism

LieGm;k
�
�! k;

X:@=@X 7�! 1

becomes an isomorphism of modules with integrable connections:

LieS Gm;S
�
�! .OS ; d /:

6.1.5 Change of base fields If k0 is a field extension of k, the extension of scalars
from k to k0 associates a D-scheme .Xk0 ;Fk0/ over Sk0 , defined over the base field
k0, to any D-scheme .X;F / over S . This operation satisfies obvious functoriality
properties that we shall use freely in the remainder of the article. In particular, it
attaches D-group schemes over Sk0 to D-group schemes over S and defines mor-
phisms of extension groups:

Ext1cD-gp=S .G1;G2/ �! Ext1cD-gp=Sk0
.G1k0 ;G2k0/:

6.2 D-schemes and analytification When the base field k is C, aD-scheme .X;F /
(resp., aD-group scheme .G;F /) over S determines, through analytification, a “D-
analytic space” .X an;F an/ (resp., a “D-complex Lie group” .Gan;F an/) over the
complex manifold S an. We shall omit the formal definitions of these notions—just
“copy” the above ones in the analytic context—and content ourselves with a few
observations.

First, after analytification, aD-scheme .X;F / projective over S becomes locally
constant in the analytic category. Namely, for any point s0 of S an, there exists an
open neighborhood� of s0 in S an and an isomorphism of C-analytic spaces over�,

‰s0 W � �X
an
s0

�
�! X an

� ; (6.4)

such that
‰s0.s0; �/ D IdXan

s0
(6.5)

and, for any .s; x/ in � �X an
s0
,

F‰s0 .s;x/ D D‰s0.s; x/.Ts�˚ 0/: (6.6)
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This follows from the analytic integrability of F an, together with the properness
of the structural morphism X an �! S an in the analytic topology. (Observe that
conditions (6.5) and (6.6) uniquely determine ‰s0 for � connected.)

Second, as pointed out by Hamm (cf. [21, Chapter 2, 1.3]), a similar statement
holds for any D-group scheme .G;F / over S . Thus we get a (unique) isomorphism
of complex Lie groups over23 � (assumed to be small enough and connected),

‰s0 W � �G
an
s0

�
�! Gan

� ; (6.7)

which satisfy the initial condition (6.5) and the horizontality condition (6.6).
Consider in particular the case of a commutative D-group scheme G D .G;F /

over S , with connected fibers. Then the “relative” exponential map

expG=S W LieS G �! Gan

defines a surjective morphism of complex Lie groups over S an. It is compatible with
the “horizontal” structures defined by the integrable connection on LieS G and by
(6.6), and consequently its kernel

PerS G WD ker expG=S
is a local system (that is, a locally free sheaf ) of Z-modules of finite rank over S an,
which fits into a short exact sequence in the category of commutative complex Lie
groups over S an:

0 �! PerS G ,�! LieS G
expG=S
����! Gan

�! 0:

This is even a short exact sequence of commutativeD-complex Lie groups, which
should be denoted

0 �! PerS G ,�! LieS G
expG=S
����! Gan

�! 0:

This shows, in particular, that when s varies in S an, the dimension of the complex
subvector space of LieGs generated by its period lattice PerGs is locally constant (in
the analytic topology). Consequently, if S (hence S an) is connected and if, for some
s0 2 S , Gs0 satisfies condition LP (cf. Section 4.3), then Gs satisfies LP for every
s in S , and the structure of G as a D-group scheme over S is uniquely determined
by its structure of a group scheme. Similarly, if G1 and G2 are two commutative
D-groups schemes over S , and if G1 has connected fibers satisfying LP, then any
morphism of group schemes fromG1 toG2 is a morphism ofD-group schemes from
G1 to G2.

These remarks will apply to the D-group schemes associated to abelian schemes
and to their extension by multiplicative groups considered in Sections 6.4 and 6.5
infra (see also [9, Lemma 3.4] for similar unicity statements in a more “differential
algebraic” formulation).

Associating its local system of periods PerS G to aD-group scheme G is a func-
torial construction (in S and G). Applied to extensions, it defines a morphism of
Z-modules, for any two commutativeD-groups schemes G1 and G2 with connected
fibers over S :

Per1S W Ext
1
cD-gp=S .G1;G2/ �! Ext1Ab-Sheaves=San.PerS G1;PerS G2/

' H 1
�
S an; .PerS G1/_ ˝ PerS G2

�
: (6.8)
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6.3 Moduli spaces of vector bundles with connections as D-schemes If the S -
scheme X underlying some D-scheme .X;F / as above is projective over S , then,
locally in the étale topology of S , X is “constant” over S (namely, when k is
algebraically closed, of the form X0 �k S , after replacing S by some étale neigh-
borhood of any given point of S ). This follows from the representability of the
Isom-functors in the projective case, together with the formal integrability of F and
Artin’s algebraization theorem (cf. Buium [20, Chapter II, Section 1] and Gillet [43,
Section 3]).

This property is a refinement, which makes sense in pure algebraic geometry, of
the local analytic triviality of projective D-schemes when k D C. It strongly limits
the possible constructions of smooth projectiveD-schemes.

It is remarkable that, in contrast, highly “nonconstant” smooth quasi-projective
D-schemes arise naturally. Indeed the construction of the moduli spaces MICN .M;
o/ of vector bundles with connection recalled in Section 2.3.3 above, applied to
smooth projective families of pointed projective varieties parameterized by S , pro-
vides quasi-projectiveD-schemes over S .

Namely, if M is a smooth, projective S -scheme with geometrically connected
fibers, and if o denotes a section of M over S , then Simpson’s techniques apply to
this relative situation. They lead to the construction of a flat, quasi-projective S -
scheme24 MICN .M=S; o/, the fiber of which over some point s 2 S.k/ may be
identified with the moduli space MICN .Ms; o.s//. Formally, for any S -scheme †,
MICN .M=S; o/.†/ classifies vector bundles of rank N over X† WD X �S †, rigid-
ified over o†, and equipped with an integrable connection relative to †.

The S -scheme MICN .M=S; o/ admits a canonical structure ofD-scheme over S ,
which reflects its so-called crystalline nature. For general M and N , this scheme
may actually not be smooth over S , and properly speaking it is not covered by the
above definition of D-schemes (which should be replaced by a suitable definition in
terms of the infinitesimal site and stratifications associated to X=k). However, in the
remainder of the article, we shall be mainly concerned by the situation whereN D 1,
in which case MIC1.M=S; o/ is a smooth, quasi-projective, group scheme over S ,
and we allow ourselves to neglect this issue of regularity.

When k D C, the D-scheme structure of MICN .M=S; o/ may be described as
follows. When s varies in the complex manifold S an, the family of fundamental
groups

�s WD �1
�
M an
s ; o.s/

�
define a local system (i.e., locally constant sheaf ) of groups on S an. Over any simply
connected open subset � in S an, it may be trivialized: for any pair of points .s0; s1/
in �, we get a canonical isomorphism


s1;s0 W �s0
�
�! �s1 ;

which clearly induces an isomorphism of representations spaces:

ˆRep
s1;s0
W RepN .�s0/

�
�! RepN .�s1/;

� 7�! � ı 
�1s0;s1 :

Moreover, the monodromy isomorphisms (2.14),

mono.s/ WMICN .M=S; o/s DMICN
�
Ms; o.s/

� �
�! RepN .�s/
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and their inverses depend analytically on s, in the sense that, if s0 denotes a base
point in �, the bijection of sets

‰s0 W � � RepN .�s0/
�
�! MICN .M=S; o/�; (6.9)

.s; �/ 7�! mon�1s
�
ˆRep
s;s0
.�/
�

is an isomorphism of C-analytic spaces over �.
The D-scheme structure over s of X WD MICN .M=S; o/ is compatible with the

“analytic trivialization” (6.9). Assume indeed that MICN .M=S; o/ is smooth over
S (for instance, suppose that N D 1); then the subvector bundle F of TX=C which
defines this structure becomes “horizontal” via the above isomorphism:

for any .s; �/ 2 � � RepN .�s0/, Fˆ.s;�/ D D‰s0.s; �/.Ts�˚ 0/:

It is quite remarkable that the analytic subvector bundle F of TX=C defined
through this formula in terms of the local analytic trivializations (6.9) of X over S is
an algebraic subvector bundle of TX=C.

This is due to Grothendieck and to Mazur and Messing [75] when N D 1 (see
also [21]), and to Simpson [98, Section 8]) in general. Basically their proof consists
in considering the avatar in formal geometry (over the formal completion bS s0 of S
at s0) of the local analytic trivialization of MICN .M=S; o/ over� induced by (6.9):

‰MIC
s0
WD ‰s0 ı .Id� �mono.s0// W � �MICN .M=S; o/0

�
�!MICN .M=S; o/�: (6.10)

It turns out that the formal analogue of (6.10) overbS s0 may be directly constructed in
(formal) algebraic geometry, with no recourse to analytic techniques, over any base
field k of characteristic zero.

The existence of the local analytic trivializations ‰MIC
s0

is indeed a direct conse-
quence of the following basic observation: if .E;r/ is an analytic vector bundle with
integrable connection over some connected analytic submanifold Y of some analytic
manifold X , then .E;r/ uniquely extends, as a vector bundle with integrable con-
nection, over any sufficiently small open connected neighborhood of Y in X . This
property admits a natural avatar in formal geometry, valid over any base field of
characteristic zero, which implies the existence of a formal analogue of ‰MIC

s0
. This

construction, with s0 varying in S , endows MICN .M=S; o/ with a structure of a
D-scheme over S .

6.4 Universal vector extensions as D-group schemes25 The above discussion may be
specialized to the case N D 1. Then MIC1.M=S; o/ is a smooth, quasi-projective
group scheme over S—its group structure is induced by the tensor product of rigidi-
fied line bundles with connections—and its neutral component MIC1.M=S; o/0 may
be identified with the universal vector extensionE.Pic0.M=S// of the connected rel-
ative Picard variety Pic0.M=S/ ofM over S . Moreover, the structure of aD-scheme
over S on MIC1.M=S; o/ is compatible with its structure of a group scheme.

Let us introduce the relative Albanese variety of M over S , namely the abelian
scheme over S defined as

A WD 4Pic0.M=S/;
and the relative Albanese morphism

˛o WM �! A
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attached to the section o. It induces an isomorphism of group schemes over S (see,
e.g., [17, Appendix B])

˛�o WMIC1.M=S; o/0
�
�!MIC1.A=S; 0A;0/

0;

compatible with their structure of D-schemes. Together with the identification of
group schemes over S ,

MIC1.A=S; 0A/
0
DMIC1.A=S; 0A/

�
�! E.bA/;

this shows that (i) to study MIC1.M=S; o/0, we may consider the case where M
is some abelian scheme over S I and (ii) that the universal vector extension E.bA/—
hence by duality the universal vector extension of any abelian scheme over S—is
endowed with a natural structure ofD-group schemes that we shall denote E.bA/.

The analytic description of theD-structure on the moduli spaces MICN .M=S; o/
boils down in the present situation to the following description of the D-group
scheme E.B/ defined by the universal vector extension E.B/ attached to some
abelian scheme B (see also [75, Section 4.4]).

Assume that k D C, and consider an abelian scheme over S , of relative dimen-
sion g,

� W B �! S:

As in Section 6.2, we may consider the analytic description of the complex Lie group
Ban over S an as a quotient of LieS B by its local system of periods:

0 �! PerS B ,�! LieS B
expB=S

�����! Ban
�! 0:

This local system PerS B is locally free of rank 2g and may be identified with the
local systems of fundamental groups, of fiber at s 2 S :

�1.Bs; 0Bs / ' H1.B
an
s ;Z/:

In the remainder of the article, we shall denote it H1B.B
an=S an/. In turn, the dual

local system
H1

B .B
an=S an/ WD H1B.B

an=S an/_

may be identified with R1�an
� ZBan .

As discussed in Section 5.3.3, for any s 2 S an, we have a canonical isomorphism,

JBs W LieE.Bs/
�
�! H1dR.Bs=C/ ' H1.Ban

s ;C/ ' H1.B
an
s ;Z/˝Z C; (6.11)

which sends Per Bs isomorphically onto H1.Ban
s ;Z/. These isomorphisms depend

analytically on s 2 S an and define isomorphisms JB of analytic vector bundles and
local systems over S an, which fit into a commutative diagram:

PerS E.B/
JB
�����!
�

H1B.B
an=S an/??y ??y

LieS E.B/
JB
�����!
�

H1B.B
an=S an/˝Z C

where the vertical maps are the obvious injections. They induce an isomorphism of
complex Lie groups over S an:

J�B W E.B/
an �
�! H1B.B

an=S an/˝Z Gan
mC
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which makes the following diagram commutative:

0 �!H1B.B
an=S an/

J�1
B

������! LieS E.B/
expE.B/=S
�������! E.B/an �! 0??yD ??yJB

??yJ�B
0 �!H1B.B

an=S an/
:˝Z1C
������! H1B.B

an=S an/˝Z C
IdH1B˝Ze
��������! H1B.B

an=S an/˝Z Gan
mC �! 0

(6.12)
(Recall that e WD exp.2�i �/.)

In (6.12), both lines are short exact sequences of commutative complex Lie groups
over S an, and the vertical arrows are isomorphisms. These isomorphisms are ac-
tually compatible with the D-structures in the analytic category: the connection
on LieS E.B/ is the dual of the Gauss–Manin connection on H1

dR.B=S/ and is
mapped by JB to the connection on H1B.B

an=S an/ ˝Z C which makes horizon-
tal the sections of the local system H1B.B

an=S an/; the local analytic trivializations
of E.B/an induced by theD-structure of E.B/ become, under the isomorphism J�

B
,

the local trivializations of H1B.B
an=S an/˝ZGan

mC induced by local trivializations of
H1B.B

an=S an/.

6.5 Extensions of abelian schemes by Gm and D-group schemes The construction
of the algebraic groups L� and E.L�/ attached to some line bundle L algebraically
equivalent to zero on some abelian variety A discussed in Section 5.5 extends to a
relative situation.

Consider for instance an abelian scheme B over S as in Section 6.4. If L is a line
bundle over B, equipped with a rigidification along the zero section of B,

� W OS
�
�! 0�BL;

and algebraically equivalent to zero on the fibers of B—in other words, if .L; �/
defines a section P over S over the dual abelian scheme bB—then the Gm-torsor
�L W L� �! B, deduced from the total space of L by deleting its zero section,
admits a unique structure of a commutative group scheme over S which makes the
diagram

0 �! GmS
�
�! L�

�L
�! B �! 0 (6.13)

an extension of smooth commutative group schemes over S . By pulling back this
extension along the morphism

pB W E.B/ �! B;

we define a smooth commutative group scheme
E.L�/ WD L� �B E.B/

which fits into an short exact sequence of group schemes over S :

0 �! GmS
�0

�! E.L�/
Q�L
�! E.B/ �! 0: (6.14)

In the remainder of the article we shall use that E.L�/ may be canonically
equipped with a D-structure, so that it becomes a commutative D-group scheme
E.L�/ over S and the extension of commutative group schemes (6.14) becomes an
extension of commutativeD-group schemes:

0 �! GmS
�0

�! E.L�/
Q�L
�! E.B/ �! 0: (6.15)



422 Jean-Benoît Bost

This construction is alluded to in Brylinski [19, (2.2.2.1)], and appears in a “dif-
ferential algebraic context” in [9, Lemma 3.4(i)–(ii)] and in a “geometric context” in
Andreatta and Barbieri-Viale [2] (see also Andreatta and Bertapelle [3]). The con-
struction of theD-structure on E.L�/ and of the extension (6.15) may be understood
as follows in terms of moduli spaces of vector bundles with integrable connections.

The construction of the relative moduli spaces MICN .M=S; o/ and of their D-
structure discussed in Section 6.3 directly extends to the moduli spaces MICN .M=
S; o; o0/ of vector bundles equipped with a relative integrable connection rigidified
along two sections o and o0 of M over S . Besides, as explained in Section 6.4,
E.B/ may be identified with the D-group scheme MIC1.bB=S; 0bB/. The discus-
sion of Section 2.3.5 may be extended to the relative case and allows one to identify
E.L�/ with MIC1.bB=S; 0bB ;P /, in a way compatible with their respective struc-
ture of Gm-torsors over E.B/ and MIC1.bB=S; 0bB/. The canonical D-structure on
E.L�/ is theD-structure deduced from the one on MIC1.bB=S; 0bB ;P / through this
identification.

7 A Conjecture

In this final part, we consider the following geometric data: a smooth projective
connected curve C over Q, and an abelian scheme over C , � W A �! C .

As before we denote E.A/ the universal vector extension of this abelian scheme.
It is a smooth connected commutative group scheme over C , endowed with a canon-
ical structure of a D-group scheme. If necessary, we shall use the notation E.A/
to denote E.A/ considered as a D-group scheme over C , to distinguish it from the
“plain” group scheme E.A/ over C .

As usual, we denote bA the abelian scheme over C dual to A.
We shall make the following simplifying assumption:

The vector bundle EA WD .LieC A/_ is ample. (7.1)

Recall that, in general, EA is only semipositive. Condition (7.1) implies the van-
ishing of the .Q.C /=Q/-trace of the geometric generic fiber AQ.C/ of A and shall
ensure that the extensions of formal D-groups (7.6) and local systems (7.7) consid-
ered below have no nontrivial automorphisms (hence have their middle term defined,
up to unique isomorphism, by their extension class).

7.1 A construction Suppose that we are given the following datum:
(i) a section P over C of the dual abelian scheme A.
By the very definition of A, it defines

(ii) a line bundle L over A, equipped with a rigidification � W OC
�
�! 0�

A
L

along the zero section, algebraically equivalent to zero on the fiber of
� W A �! C .

As recalled above, the Gm-torsor L� over A defines in a unique way
(iii) an extension of smooth commutative group schemes over C ,

0 �! Gm;S
�
�! L� �! A �! 0:

Finally, through the construction described in Section 6.5, we obtain
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(iv) an extension of commutativeD-group scheme over C ,
0 �! GmS �! E.L�/ �! E.A/ �! 0:

These successive operations are easily seen to establish a bijective correspondence
between the four kinds of data (i)–(iv) above, and to be additive.

Lemma 7.1 The above construction defines isomorphisms of Z-modulesbA.C / ��! Ext1c-gp=C .A;GmS /
�
�!Ext1cD-gp

�
E.A/;GmS

�
:

This would actually hold in the general situation considered in Section 6.5, without
any further assumption on the base scheme S .

7.2 Lie1
C

and Per1
C an

C
Recall that the dual of the module with integrable connection

LieC E.A/ over C may be identified with the relative de Rham cohomology of A

over C equipped with the Gauss–Manin connection .H1
dR.A=C /;rGM /, and the

local system of periods PerCC E.A/C over C an
C with the local system defined by the

relative Betti first homology of Aan
C over Can

C , which we denote H1
B .A

an
C =C

an
C /.

Besides, the module with integrable connection LieC Gm;C over C may be identi-
fied with the trivial module with integrable connection .OC ; d /, and the local system
of periods PerCC Gm;CC over C an

C with the constant local system ZC an
C
.

Consequently the maps Lie1S and Per1S defined on extension classes of commuta-
tiveD-group schemes in Sections 6.1.3 and 6.2 take here the following form:

Lie1C W Ext
1
cD-gp=C

�
E.A/;GmS

�
�! H 1

dR
�
C;
�
H1

dR.A=C /;rGM
��

and
Per1C an

C
W Ext1cD-gp=CC

�
E.A/C;GmSC

�
�! H 1

�
C an
C ;H

1
B .A

an
C =C

an
C /
�
:

Observe that, after tensoring with C, the range spaces of these two maps become
canonically isomorphic. Indeed we have “elementary” isomorphisms defined by the
base change from Q to C,

H 1
dR
�
C;
�
H1

dR.A=C /;rGM
��
˝Q C

�
�! H 1

dR
�
CC;

�
H1

dR.AC=CC/;rGM
��

(7.2)
and by extension of coefficients from Z to C,

H 1
�
C an
C ;H

1
B .A

an
C =C

an
C /
�
˝Z C

�
�! H 1

�
C an
C ;H

1
B .A

an
C =C

an
C /C

�
; (7.3)

and the complex vector spaces in the right-hand sides of (7.2) and (7.3) may be
identified by means of the comparison isomorphisms between Betti and algebraic de
Rham cohomology (with coefficients) discussed in Section 2.2.5.

If E is an element of Ext1cD-gp.E.A/;GmS /, we shall denote EC its “complexifi-
cation” in the group Ext1cD-gp.E.A/C;GmSC/ (in the sense of Section 6.1.5).

The following lemma is proved in the same way as Lemma 2.1, which compared
the first Chern classes in de Rham and Betti cohomology (see also the discussion in
Section 7.3.3 infra).

Lemma 7.2 For any extension class E in Ext1cD-gp.E.A/;GmC /, the equality

.Lie1C E/˝Q 1C D 2�i.Per
1
C an
C

EC/˝Z 1C (7.4)

holds in
H 1

dR
�
C;
�
H1

dR.A=C /;rGM
��
˝Q C ' H 1

�
C an
C ;H

1
B .A

an
C =C

an
C /
�
˝Z C:
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7.3 A conjecture

7.3.1 We finally arrive at the formulation of the conjecture which constitutes the
aim of this article.

Conjecture 7.3 Any pair of classes of extensions .˛; ˇ/ with ˛ in H 1
dR.C;

.H1
dR.A=C /;rGM // and ˇ inH 1.C an

C ;H
1
B .A

an
C =C

an
C // which satisfies the compati-

bility relation
˛ ˝Q 1C D 2�iˇ ˝Z 1C (7.5)

in
H 1

dR
�
C;
�
H1

dR.A=C /;rGM
��
˝Q C ' H 1

�
C an
C ;H

1
B .A

an
C =C

an
C /
�
˝Z C

is of the form .LieS E;Per1C an
C

EC/ for some class E in Ext1cD-gp.E.A/;GmC / and
hence is obtained from some section P of the dual abelian scheme bA over C .

The class E and the section P , if they exist, are uniquely determined by these condi-
tions.

By using the Leray–Serre spectral sequence to analyze the group H 2
Gr.A/ at-

tached to A (seen as a smooth projective variety over Q) by means of the fibering
� W A �! C and by using a relative generalization (over C ) of Theorem 5.1, we
may prove the following.

Proposition 7.4 With the above notation, Conjecture 7.3 holds if and only if the
smooth projective variety A over Q satisfies GPC1.A/.

7.3.2 Consider f W S �! C a smooth projective connected surface S over Q
fibered over C . Assume for simplicity that f is a smooth morphism (all fibers of
f are therefore smooth projective curve) and admits a section o. Then we may
introduce the relative Jacobian

J WD Jac.S=C /
of S over C . It is an abelian scheme over C . Using the section o, we may define a
relative Jacobian embedding

jo W S ,�! J:

(It is a closed embedding, over S , which maps o to the zero section 0J of J over C .)
Pulling back by jo establishes a bijection between line bundles L over J defining as
above sections over C of the dual abelian schemes bJ26 and line bundles M over S ,
rigidified along o and of degree zero on the fibers of f .

With this notation, we have the following variant27 of Proposition 7.4.

Proposition 7.5 The validity of GPC1.S/ is equivalent to the validity of Conjec-
ture 7.3 for A D J.

Conjecture 7.3 may be extended to possibly degenerating families of abelian varieties
over C (say, with semiabelian bad fibers). This generalized version may be applied
to the relative Jacobian of any smooth projective surface fibered over C (say, with
semistable fibers) and would imply the validity of GPC1 for any smooth projective
surface and, actually, for any smooth projective variety over Q. This approach to
GPC1 through fibrations of surfaces over curves and associated families of Jacobian
varieties is very much in the spirit of the classical works of Picard, Poincaré, and
Lefschetz which constituted our starting point in Section 1.2.
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7.3.3 To avoid technicalities, I prefer not to discuss this in detail and would instead
stress the fact that Conjecture 7.3 may be rephrased as an algebraization criterion
concerning formal line bundles, satisfying suitable “differential algebraic” and “an-
alytic” conditions, in the spirit of Theorems 4.1 and 4.2 à la Schneider–Lang, as
expected in Section 4.4.

Indeed, consider a pair of classes .˛; ˇ/ as in Conjecture 7.3.
The class ˛ lies in

H 1
dR
�
C;
�
H1

dR.A=C /;rGM
��
' Ext1mic=C

�
LieC E.A/;LieC GmS

�
and defines an extension of vector bundles with (integrable) connections over C ,
defined over Q:

0 �! LieC GmC �! .M;r/ �! LieC E.A/ �! 0:

It may be interpreted as an extension of “formal commutative D-group schemes
over C ”:

0 �!bGmC �! Gfor �!1E.A/ �! 0; (7.6)
where bGmC (resp., 1E.A/) denotes the completion of the D-group scheme GmC

(resp., E.A/) over C along its unit (resp., zero) section. (Here we use that the base
field Q has characteristic zero, so that we have formal exponential maps at our dis-
posal.)

Observe that, by forgetting theD-structure, from (7.6) we deduce an extension of
formal groups over C ,

0 �!bGmC �! Gfor �! 1E.A/ �! 0;

which in turn defines a Gm-torsor or, equivalently, a line bundle Nfor, on the formal
completion 1E.A/.

The class ˇ lies in

H 1
�
C an
C ;H

1
B .A

an
C =C

an
C /
�
' Ext1Ab-Sheaves.PerCC AC;ZC an

C
/

and defines an extension of local systems over free Z-modules of finite rank overC an
C :

0 �! ZC an
C
�! � �! PerCC AC �! 0: (7.7)

After tensoring with the multiplicative group Gan
mC, we deduce from (7.7) an exten-

sion of “commutativeD-complex Lie groups” over C an
C :

0 �! Gan
m;CC

�! � ˝Gan
m;CC

�! E.A/anC �! 0: (7.8)

This construction is easily seen to establish a one-to-one correspondence between
extensions of local systems (7.7) and extension in the analytic category of E.A/anC by
Gan
m;CC

. When ˇ is the image by Per1CC
of some extension class ŒEC�, the extension

(7.8) is nothing but the analytification Ean
C of EC.

Here again the extension (7.8) defines some analytic line bundleN an overE.A/anC ,
by forgetting theD-structure and part of the group structure on � ˝Gan

m;CC
.

The equality (7.5)
˛ ˝Q 1C D 2�iˇ ˝Z 1C

expresses the fact that the extension of “commutative formal analyticD-groups” over
C an
C deduced from (7.8) by completion along the zero sections coincides with the

analytification of the “commutative formal D-groups” over CC deduced from (7.6)
by extending the base field from Q to C.
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Finally, Conjecture 7.3 may be rephrased as asserting the algebraicity of any pair
.N for;N an/, consisting of a formal line bundle N for on the formal completion 1E.A/
of E.A/ along its zero section and of some analytic line bundle N an over E.A/anC
such that the associated Gm-torsors N for� and N an� may be endowed with suitably
compatible structures ofD-group schemes over C and C an

C (in the respective formal
and analytic categories).

Notes

1. We refer the reader to Buium [21] and [25], Pillay [79], Bouscaren [18], and Marker
[74] for more systematic presentations, surveys, and additional references.

2. That is, given on the Zariski-open set U˛ \ Uˇ by the quotient of two (nonvanishing
over U˛ \ Uˇ ) homogeneous polynomials of the same degree on CNC1.

3. Conversely, to recover Kodaira and Spencer’s version from Lefschetz and Hodge’s, one
needs to know that any topologically trivial analytic line bundle overX is algebraic: this
follows from the algebraicity of the Albanese variety and of the Albanese morphism of
X , and from the algebraicity of analytic line bundles over complex abelian varieties.
But for the algebraicity of the Albanese morphism, itself a consequence of Chow’s
theorem (cf. 2.3.1 infra), these results are actually consequences of Hodge theory and
of Lefschetz’s work on complex abelian varieties.

4. Curiously enough, Siegel points out the relation of Chow’s paper with Poincaré’s arti-
cle, but does not seem aware that Chow’s theorem may be derived from (2.1).

5. In a more mundane vein, I would simply add that an especially negative assessment by
Lefschetz of the approach of Kodaira and Spencer [61] turns out to be well documented
(see, e.g., Kohn et al. [63, p. 21]).

6. The precise definition of the map ˛ 7! ˛anC actually involves the specific sign conven-
tions used in homological algebra and sheaf cohomology. The “standard” convention
used in Deligne [36] indeed introduces a minus sign in the above compatibility relation:
c1;dR.L/

an
C
D �2�ic1;top.L

an
C /. In the remainder of the article, we shall generally ne-

glect these delicate problems of signs involved in various “canonical” isomorphisms
and their compatibility—although the important sign issue encountered in Section 5.2
(see notably (5.4) and (5.6)) would plead for a more careful treatment, on the model of
Berthelot, Breen, and Messing [7, Section V.1].

7. To “algebraize” an analytic connection ran over Ean by means of the GAGA compar-
ison theorem, identify (algebraic or analytic) connections with (algebraic or analytic)
splittings of the Atiyah extension of E, 0 ! �1

M
˝ E ! J 1

M
E ! E ! 0, defined

by the vector bundle J 1
M
E of 1-jets of E overM .

8. This occurrence of commutative algebraic groups over C that are analytically, but not
algebraically, isomorphic was first pointed out by Conforto (see Conforto [34], [35] and
Severi [94, Appendice]).

9. In other words, for every t 2 C, f .t/ D .F0.t/ W � � � W FN .t//.
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10. In other words, it is deduced by extension of scalars from K to C from a formal germ
in the formal completion bXf .z/ of X at the K-rational point f .z/.

11. That is, when the “irregularity” h1;0.X/ D h0;1.X/ of X is positive.

12. This conjecture is mentioned briefly in [46, note (10), p. 102] and with more details in
Lang [68, Chapter IV, Historical Note]. We refer the reader to Andre [1, Section 7.5,
Chapitre 23], for a “modern” presentation and for variants and generalizations.

13. Notably the original Grothendieck period conjecture for a given smooth projective va-
riety X over Q should imply the conjunction of conjectures GPCk.Xn/ for all positive
integers k and n.

14. Where Ext1c-gp=k and Ext1
OA-mod stand for “group of 1-extensions” in the category of

commutative algebraic groups over k, and of sheaves of OA-modules, respectively.

15. Recall that ��1��
OA=k

denotes the “stupid” truncation 0! �1
OA=k
! �2

OA=k
! � � � of

��
OA=k

.

16. Both the above isomorphism �E.A/ at the level of k-points and this infinitesimal version
are special instances of a canonical isomorphism �E.A/ of fpqc k-sheaves (cf. [75] and
[17]).

17. Namely, the elements sent to their opposite by the automorphism of HomdRB.Z.0/;
H1

dRB.A/˝H
1
dRB.A/˝ Z.1// defined by “switching” the two copies ofH1

dRB.A/.

18. This section could be skipped at first reading. It has been included since Proposition 5.4
constitutes an application of the theorem of Schneider–Lang close in spirit to the ones
in the previous section, and for comparison with Conjecture 7.3 infra.

19. Quoted in [57, Section 4.1]:“Un cristal possède deux propriétés caractéristiques : la
rigidité et la faculté de croître dans un voisinage approprié. Il y a des cristaux de toute
espèce de substances : des cristaux de soude, de soufre, de modules, d’anneaux, de
schémas relatifs, etc.”

20. In other words, its sheaf of regular sections is closed under Lie bracket.

21. Such bases exist: simply write k.S/ as a finite-degree extension of k.X1; : : : ; Xs/, and
lift the standard basis .@=@X1; : : : ; @=@Xs/.

22. As usual, by this we mean a short exact sequence of fppf sheaves over S . Since we work
over a base field k of characteristic zero, this is equivalent to the following “geometric”
condition, expressed in terms of some algebraic closure k of k: for any point s 2 S.k/,
the diagram

0 �! G2s.k/
is
�! Gs.k/

ps
�! G1s.k/ �! 0;

is a short exact sequence of abelian groups.
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23. By a “complex Lie group over a complex analytic manifoldM ,” we mean a group object
in the category of complex analytic manifolds “smooth” (in the “algebrogeometric”
sense, that is, “submersive”) overM .

24. In [98], this S -scheme is denoted RDR.M=S; o;N /.

25. The content of Sections 6.4 and 6.5 is thoroughly discussed, with a slightly different
perspective, in [9, Part 3 and Appendix], which constitutes the main reference for these
two sections.

26. That is, line bundles rigidified along J, and algebraically equivalent to zero in the fibers
of J over C .

27. This variant is actually simpler than Proposition 7.4: its proof does not require Theo-
rem 5.1 and its relative generalization.

References

[1] André, Y., Une introduction aux motifs: Motifs purs, motifs mixtes, périodes, vol. 17 of
Panoramas et Synthèses, Société Mathématique de France, Paris, 2004. MR 2115000.
402, 403, 411, 427

[2] Andreatta, F., and L. Barbieri-Viale, “Crystalline realizations of 1-motives,” Math-
ematische Annalen, vol. 331 (2005), pp. 111–72. Zbl 1101.14018. MR 2107442.
DOI 10.1007/s00208-004-0576-4. 422

[3] Andreatta, F., and A. Bertapelle, “Universal extension crystals of 1-motives and ap-
plications,” Journal of Pure and Applied Algebra, vol. 215 (2011), pp. 1919–44.
MR 2776433. DOI 10.1016/j.jpaa.2010.11.004. 422

[4] Andreotti, A., “Théorèmes de dépendance algébrique sur les espaces complexes
pseudo-concaves,” Bulletin de la Société Mathématique de France, vol. 91 (1963), pp.
1–38. MR 0152674. 378, 394

[5] Anonymous (attributed to J.-P. Serre), “Correspondence,” American Journal of Math-
ematics, vol. 78 (1956), p. 898. MR 1507467. DOI 10.2307/2372475. 383

[6] Baker, A., and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, vol. 9
of New Mathematical Monographs, Cambridge University Press, Cambridge, 2007.
MR 2382891. 398

[7] Berthelot, P., L. Breen, and W. Messing, Théorie de Dieudonné cristalline, II, vol.
930 of Lecture Notes in Mathematics, Springer, Berlin, 1982. Zbl 0516.14015.
MR 0667344. 403, 426

[8] Bertrand, D., “Endomorphismes de groupes algébriques: Applications arithmétiques,”
pp. 1–45 inDiophantine Approximations and Transcendental Numbers (Luminy, 1982),
vol. 31 of Progress in Mathematics, Birkhäuser, Boston, 1983. MR 0702188. 398

[9] Bertrand, D., and A. Pillay, “A Lindemann–Weierstrass theorem for semi-abelian va-
rieties over function fields,” Journal of the American Mathematical Society, vol. 23
(2010), pp. 491–533. Zbl pre05775675. MR 2601041. DOI 10.1090/S0894-0347-09-
00653-5. 399, 415, 417, 422, 428

[10] Birkenhake, C., and H. Lange, Complex Abelian Varieties, 2nd ed., vol. 302
of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 2004.
MR 2062673. 412

[11] Bogomolov, F., and M. L. McQuillan “Rational curves on foliated varieties,” preprint,
2001. 394

[12] Bombieri, E., “Algebraic values of meromorphic maps,” Inventiones Mathematicae,

http://www.ams.org/mathscinet-getitem?mr=2115000
http://www.emis.de/cgi-bin/MATH-item?1101.14018
http://www.ams.org/mathscinet-getitem?mr=2107442
http://dx.doi.org/10.1007/s00208-004-0576-4
http://www.ams.org/mathscinet-getitem?mr=2776433
http://dx.doi.org/10.1016/j.jpaa.2010.11.004
http://www.ams.org/mathscinet-getitem?mr=0152674
http://www.ams.org/mathscinet-getitem?mr=1507467
http://dx.doi.org/10.2307/2372475
http://www.ams.org/mathscinet-getitem?mr=2382891
http://www.emis.de/cgi-bin/MATH-item?0516.14015
http://www.ams.org/mathscinet-getitem?mr=0667344
http://www.ams.org/mathscinet-getitem?mr=0702188
http://www.emis.de/cgi-bin/MATH-item?pre05775675
http://www.ams.org/mathscinet-getitem?mr=2601041
http://dx.doi.org/10.1090/S0894-0347-09-00653-5
http://dx.doi.org/10.1090/S0894-0347-09-00653-5
http://www.ams.org/mathscinet-getitem?mr=2062673


Algebraization, Transcendence, and D-Group Schemes 429

vol. 10 (1970), pp. 267–87. Zbl 0214.33702. MR 0306201. 396
[13] Bost, J.-B., “Algebraic leaves of algebraic foliations over number fields,” Publications

Mathématiques. Institut de Hautes Études Scientifiques, vol. 93 (2001), pp. 161–221.
Zbl 1034.14010. MR 1863738. DOI 10.1007/s10240-001-8191-3. 377, 394, 396

[14] Bost, J.-B., “Germs of analytic varieties in algebraic varieties: Canonical metrics
and arithmetic algebraization theorems,” pp. 371–418 in Geometric Aspects of Dwork
Theory, vol. II, edited by A. Adolphson et al., Walter de Gruyter, Berlin, 2004.
MR 2023294. 395

[15] Bost, J.-B., “Evaluation maps, slopes, and algebraicity criteria,” pp. 537–62 in Inter-
national Congress of Mathematicians (Madrid, 2006), vol. II, European Mathematical
Society, Zürich, 2006. MR 2275609. 394, 396, 400, 403

[16] Bost, J.-B., and A. Chambert-Loir, “Analytic curves in algebraic varieties over number
fields,” pp. 69–124 in Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin,
vol. I, vol. 269 of Progress in Mathematics, Birkhäuser, Boston, 2009. MR 2641171.
DOI 10.1007/978-0-8176-4745-2_3. 377, 394

[17] Bost, J.-B., and K. Künnemann, “Hermitian vector bundles and extension groups on
arithmetic schemes, II: The arithmetic Atiyah extension, Astérisque, vol. 327 (2009),
pp. 361–424. MR 2642363. 390, 391, 405, 420, 427

[18] Bouscaren, E., ed., Model Theory and Algebraic Geometry: An Introduction to E.
Hrushovski’s Proof of the Geometric Mordell–Lang Conjecture, vol. 1696 of Lec-
ture Notes in Mathematics, Springer, Berlin, 1998. Zbl 0920.03046. MR 1678586.
DOI 10.1007/978-3-540-68521-0. 426

[19] Brylinski, J.-L., “‘1-motifs’ et formes automorphes (théorie arithmétique des domaines
de Siegel),” pp. 43–106 in Conference on Automorphic Theory (Dijon, France, 1981),
vol. 15 of Publications Mathématiques de l‘Université de Paris VII, Université de Paris
VII, Paris, 1983. MR 0723182. 422

[20] Buium, A., Differential Function Fields and Moduli of Algebraic Varieties, vol. 1226 of
Lecture Notes in Mathematics, Springer, Berlin, 1986. Zbl 0613.12018. MR 0874111.
413, 418

[21] Buium, A., Differential Algebraic Groups of Finite Dimension, vol. 1506 of Lecture
Notes in Mathematics, Springer, Berlin, 1992. Zbl 0756.14028. MR 1176753. 413,
415, 417, 419, 426

[22] Buium, A., “Intersections in jet spaces and a conjecture of S. Lang,” Annals of
Mathematics (2), vol. 136 (1992), pp. 557–67. Zbl 0817.14021. MR 1189865.
DOI 10.2307/2946600. 379

[23] Buium, A., “Effective bound for the geometric Lang conjecture,” Duke Mathe-
matical Journal, vol. 71 (1993), pp. 475–99. Zbl 0812.14029. MR 1233446.
DOI 10.1215/S0012-7094-93-07120-7.

[24] Buium, A., “Geometry of differential polynomial functions, I: Algebraic groups,”
American Journal of Mathematics, vol. 115 (1993), pp. 1385–1444. Zbl 0797.14016.
MR 1254738. DOI 10.2307/2374970. 379

[25] Buium, A., Differential Algebra and Diophantine Geometry, Actualités Mathéma-
tiques, Hermann, Paris, 1994. Zbl 0870.12007. MR 1487891. 413, 426

[26] Buium, A., and J. F. Voloch, “Integral points of abelian varieties over function
fields of characteristic zero,” Mathematische Annalen, vol. 297 (1993), pp. 303–7.
Zbl 0789.14017. MR 1241808. DOI 10.1007/BF01459503. 379

[27] Cartan, H., and J.-P. Serre, “Un théorème de finitude concernant les variétés analytiques
compactes,” Comptes Rendus Académie des Sciences. Paris, vol. 237 (1953), pp. 128–
30. MR 0066010. 383

[28] Chambert-Loir, A., “Théorèmes d’algébricité en géométrie diophantienne (d’après
J.-B. Bost, Y. André, D. and G. Chudnovsky),” Astérisque, vol. 282 (2002), pp. 175–
209, Séminaire Bourbaki, vol. 2000/2001, no. 886. MR 1975179. 377, 396, 400

http://www.emis.de/cgi-bin/MATH-item?0214.33702
http://www.ams.org/mathscinet-getitem?mr=0306201
http://www.emis.de/cgi-bin/MATH-item?1034.14010
http://www.ams.org/mathscinet-getitem?mr=1863738
http://dx.doi.org/10.1007/s10240-001-8191-3
http://www.ams.org/mathscinet-getitem?mr=2023294
http://www.ams.org/mathscinet-getitem?mr=2275609
http://www.ams.org/mathscinet-getitem?mr=2641171
http://dx.doi.org/10.1007/978-0-8176-4745-2\protect \T1\textunderscore 3
http://www.ams.org/mathscinet-getitem?mr=2642363
http://www.emis.de/cgi-bin/MATH-item?0920.03046
http://www.ams.org/mathscinet-getitem?mr=1678586
http://dx.doi.org/10.1007/978-3-540-68521-0
http://www.ams.org/mathscinet-getitem?mr=0723182
http://www.emis.de/cgi-bin/MATH-item?0613.12018
http://www.ams.org/mathscinet-getitem?mr=0874111
http://www.emis.de/cgi-bin/MATH-item?0756.14028
http://www.ams.org/mathscinet-getitem?mr=1176753
http://www.emis.de/cgi-bin/MATH-item?0817.14021
http://www.ams.org/mathscinet-getitem?mr=1189865
http://dx.doi.org/10.2307/2946600
http://www.emis.de/cgi-bin/MATH-item?0812.14029
http://www.ams.org/mathscinet-getitem?mr=1233446
http://dx.doi.org/10.1215/S0012-7094-93-07120-7
http://www.emis.de/cgi-bin/MATH-item?0797.14016
http://www.ams.org/mathscinet-getitem?mr=1254738
http://dx.doi.org/10.2307/2374970
http://www.emis.de/cgi-bin/MATH-item?0870.12007
http://www.ams.org/mathscinet-getitem?mr=1487891
http://www.emis.de/cgi-bin/MATH-item?0789.14017
http://www.ams.org/mathscinet-getitem?mr=1241808
http://dx.doi.org/10.1007/BF01459503
http://www.ams.org/mathscinet-getitem?mr=0066010
http://www.ams.org/mathscinet-getitem?mr=1975179


430 Jean-Benoît Bost

[29] Chow, W.-L., “On compact complex analytic varieties,” American Journal of Mathe-
matics, vol. 71 (1949), pp. 893–914. Zbl 0041.48302. MR 0033093. 380, 383

[30] Chow, W.-L., “Formal functions on homogeneous spaces,” Inventiones Mathematicae,
vol. 86 (1986), pp. 115–30. Zbl 0615.14029. MR 0853447. DOI 10.1007/BF01391497.
394

[31] Chudnovsky, D. V., and G. V. Chudnovsky, “Applications of Padé approximations to
the Grothendieck conjecture on linear differential equations,” pp. 52–100 in Number
Theory (New York 1983–84), vol. 1135 of Lectures Notes in Mathematics, Springer,
Berlin, 1985. MR 0803350. DOI 10.1007/BFb0074601. 400

[32] Chudnovsky, D. V., and G. V. Chudnovsky, “Padé approximations and Diophantine ge-
ometry,” Proceedings of the National Academy of Sciences of the USA, vol. 82 (1985),
pp. 2212–16. MR 0788857. DOI 10.1073/pnas.82.8.2212. 400

[33] Coleman, R. F., “The universal vectorial bi-extension and p-adic heights,” Inven-
tiones Mathematicae, vol. 103 (1991), pp. 631–50. Zbl 0763.14009. MR 1091621.
DOI 10.1007/BF01239529. 403, 405

[34] Conforto, F., “Sopra le trasformazioni in sè della varietà di Jacobi relativa ad una curva
di genere effettivo diverso dal genere virtuale, in ispecie nel caso di genere effettivo
nullo,” Annali di Matematica Pura ed Applicata (4), vol. 27 (1948), pp. 273–91.
Zbl 0041.36708. MR 0033103. 426

[35] Conforto, F., “Sulla nozione di corpi equivalenti e di corpi coincidenti nella teoria
delle funzioni quasi abeliane,” Rendiconti del Seminario Matematico della Università
di Padova, vol. 18 (1949), pp. 292–310. MR 0032768. 426

[36] Deligne, P., “Théorie de Hodge, II,” Publications Mathématiques. Institut de Hautes
Études Scientifiques, vol. 40 (1971), pp. 5–57. Zbl 0219.14007. MR 0498551. 426

[37] Demailly, J.-P., “Formules de Jensen en plusieurs variables et applications arithmé-
tiques,” Bulletin de la Société Mathématique de France, vol. 110 (1982), pp. 75–102.
MR 0662130. 396

[38] Ehresmann, C., “Les connexions infinitésimales dans un espace fibré différentiable,”
pp. 29–55 in Colloque de Topologie (éspaces fibres), Bruxelles, 1950, Masson, Paris,
1951. MR 0042768. 413

[39] Faltings, G., “Algebraisation of some formal vector bundles,” Annals of Math-
ematics (2), vol. 110 (1979), pp. 501–14. Zbl 0395.14005. MR 0554381.
DOI 10.2307/1971235. 394

[40] Faltings, G., “Some theorems about formal functions,” Publications of the Research
Institute for Mathematical Sciences, vol. 16 (1980), pp. 721–37. MR 0602466.
DOI 10.2977/prims/1195186927. 394

[41] Faltings, G., “Formale Geometrie und homogene Räume,” Inventiones Mathematicae,
vol. 64 (1981), pp. 123–65. MR 0621773. DOI 10.1007/BF01393937. 394

[42] Gasbarri, C., “Analytic subvarieties with many rational points,” Mathematis-
che Annalen, vol. 346 (2010), pp. 199–243. Zbl 1244.11072. MR 2558892.
DOI 10.1007/s00208-009-0394-9. 377, 396, 400

[43] Gillet, H., “Differential algebra: A scheme theory approach,” pp. 95–123 inDifferential
Algebra and Related Topics (Newark, NJ, 2000), World Sci. Publ., River Edge, NJ,
2002. MR 1921696. DOI 10.1142/9789812778437_0003. 418

[44] Grothendieck, A., Éléments de géométrie algébrique, III: Étude cohomologique des
faisceaux cohérents, I, vol. 11 of Publications Mathématiques. Institut de Hautes
Études Scientifiques, 1961. MR 0217085. 391, 392, 393

[45] Grothendieck, A., Fondements de la géométrie algébrique. [Extraits du Séminaire
Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962. MR 0146040. 378,
391, 392, 393

[46] Grothendieck, A., “On the de Rham cohomology of algebraic varieties,” Publications
Mathématiques. Institut de Hautes Études Scientifiques, vol. 29 (1966), pp. 95–103.

http://www.emis.de/cgi-bin/MATH-item?0041.48302
http://www.ams.org/mathscinet-getitem?mr=0033093
http://www.emis.de/cgi-bin/MATH-item?0615.14029
http://www.ams.org/mathscinet-getitem?mr=0853447
http://dx.doi.org/10.1007/BF01391497
http://www.ams.org/mathscinet-getitem?mr=0803350
http://dx.doi.org/10.1007/BFb0074601
http://www.ams.org/mathscinet-getitem?mr=0788857
http://dx.doi.org/10.1073/pnas.82.8.2212
http://www.emis.de/cgi-bin/MATH-item?0763.14009
http://www.ams.org/mathscinet-getitem?mr=1091621
http://dx.doi.org/10.1007/BF01239529
http://www.emis.de/cgi-bin/MATH-item?0041.36708
http://www.ams.org/mathscinet-getitem?mr=0033103
http://www.ams.org/mathscinet-getitem?mr=0032768
http://www.emis.de/cgi-bin/MATH-item?0219.14007
http://www.ams.org/mathscinet-getitem?mr=0498551
http://www.ams.org/mathscinet-getitem?mr=0662130
http://www.ams.org/mathscinet-getitem?mr=0042768
http://www.emis.de/cgi-bin/MATH-item?0395.14005
http://www.ams.org/mathscinet-getitem?mr=0554381
http://dx.doi.org/10.2307/1971235
http://www.ams.org/mathscinet-getitem?mr=0602466
http://dx.doi.org/10.2977/prims/1195186927
http://www.ams.org/mathscinet-getitem?mr=0621773
http://dx.doi.org/10.1007/BF01393937
http://www.emis.de/cgi-bin/MATH-item?1244.11072
http://www.ams.org/mathscinet-getitem?mr=2558892
http://dx.doi.org/10.1007/s00208-009-0394-9
http://www.ams.org/mathscinet-getitem?mr=1921696
http://dx.doi.org/10.1142/9789812778437\protect \T1\textunderscore 0003
http://www.ams.org/mathscinet-getitem?mr=0217085
http://www.ams.org/mathscinet-getitem?mr=0146040


Algebraization, Transcendence, and D-Group Schemes 431

MR 0199194. 384, 427
[47] Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lef-

schetz locaux et globaux. Séminaire de Géométrie Algébrique du Bois-Marie 1962
(SGA 2), vol. 2 of Advanced Studies in Pure Mathematics, North-Holland, Amsterdam;
Masson et Cie, Paris, 1968. MR 0476737. 378, 391, 392, 400

[48] Gunning, R. C., Introduction to Holomorphic Functions of Several Variables, Vol.
II: Local Theory, Wadsworth and Brooks/Cole Mathematics Series, Wadsworth and
Brooks/Cole, Monterey, CA, 1990. Zbl 0699.32001. MR 1057177. 384

[49] Hartshorne, R., “Cohomological dimension of algebraic varieties,” Annals of Mathe-
matics (2), vol. 88 (1968), pp. 403–50. Zbl 0169.23302. MR 0232780. 394

[50] Hartshorne, R., Ample Subvarieties of Algebraic Varieties, vol. 156 of Lecture Notes in
Mathematics, Springer, Berlin, 1970. Zbl 0208.48901. MR 0282977. 378

[51] Hartshorne, R., “On the De Rham cohomology of algebraic varieties,” Publications
Mathématiques. Institut de Hautes Études Scientifiques, vol. 45 (1975), pp. 5–99.
Zbl 0326.14004. MR 0432647. 384

[52] Herblot, M., “Algebraic points on meromorphic curves,” preprint, arXiv:1204.6336v1
[math. NT]. Zbl 1242.11052. 396, 400

[53] Hironaka, H., and H. Matsumura, “Formal functions and formal embeddings,” Journal
of the Mathematical Society of Japan, vol. 20 (1968), pp. 52–82. MR 0251043. 394

[54] Hodge, W. V. D., The Theory and Applications of Harmonic Integrals, Cambridge Uni-
versity Press, Cambridge, England: Macmillan, New York, 1941. MR 0003947. 380

[55] Hrushovski, E., “The Mordell-Lang conjecture for function fields,” Journal of the
American Mathematical Society, vol. 9 (1996), pp. 667–690. Zbl 0864.03026.
MR 1333294. DOI 10.1090/S0894-0347-96-00202-0. 379

[56] Hrushovski, E., and B. Zilber, “Zariski geometries,” Journal of the American Mathe-
matical Society, vol. 9 (1996), pp. 1–56. MR 1311822. DOI 10.1090/S0894-0347-96-
00180-4. 383

[57] Illusie, L., “Crystalline cohomology,” pp. 43–70 in Motives (Seattle, 1991), vol. 55
of Proceedings of Symposia in Pure Mathematics, American Mathematical Society,
Providence, 1994. MR 1265522. 427

[58] Illusie, L., “Grothendieck’s existence theorem in formal geometry,” pp. 179–233 in
Fundamental Algebraic Geometry, vol. 123 ofMathematical Surveys and Monographs,
American Mathematical Society, Providence, 2005. MR 2223409. 391, 392, 393

[59] Jannsen, U., Mixed Motives and Algebraic K-Theory, with appendices by S. Bloch
and C. Schoen, vol. 1400 of Lecture Notes in Mathematics, Springer, Berlin, 1990.
MR 1043451. 403

[60] Kebekus, S., L. Solá Conde, and M. Toma, “Rationally connected foliations after Bo-
gomolov and McQuillan,” Journal of Algebraic Geometry, vol. 16 (2007), pp. 65–81.
MR 2257320. DOI 10.1090/S1056-3911-06-00435-8. 394

[61] Kodaira, K., and D. C. Spencer, “Divisor class groups on algebraic varieties,” Pro-
ceedings of the National Academy of Sciences of the USA, vol. 39 (1953), pp. 872–77.
Zbl 0051.14601. MR 0063122. 380, 383, 426

[62] Kodaira, K., and D. C. Spencer, “Groups of complex line bundles over compact Kähler
varieties,” Proceedings of the National Academy of Sciences of the USA, vol. 39 (1953),
pp. 868–72. Zbl 0051.14503. MR 0063121. 381

[63] Kohn, J. J., P. A. Griffiths, H. Goldschmidt, E. Bombieri, B. Cenkl, P. Garabedian, and
L. Nirenberg, “Donald C. Spencer (1912–2001),” Notices of the American Mathemati-
cal Society, vol. 51 (2004), pp. 17–29. MR 2022672. 426

[64] Kowalski, P., and A. Pillay, “Quantifier elimination for algebraic D-groups,” Trans-
actions of the American Mathematical Society, vol. 358 (2006), pp. 167–81.
Zbl 1075.03014. MR 2171228. DOI 10.1090/S0002-9947-05-03820-1. 415

http://www.ams.org/mathscinet-getitem?mr=0199194
http://www.ams.org/mathscinet-getitem?mr=0476737
http://www.emis.de/cgi-bin/MATH-item?0699.32001
http://www.ams.org/mathscinet-getitem?mr=1057177
http://www.emis.de/cgi-bin/MATH-item?0169.23302
http://www.ams.org/mathscinet-getitem?mr=0232780
http://www.emis.de/cgi-bin/MATH-item?0208.48901
http://www.ams.org/mathscinet-getitem?mr=0282977
http://www.emis.de/cgi-bin/MATH-item?0326.14004
http://www.ams.org/mathscinet-getitem?mr=0432647
http://www.emis.de/cgi-bin/MATH-item?1242.11052
http://www.ams.org/mathscinet-getitem?mr=0251043
http://www.ams.org/mathscinet-getitem?mr=0003947
http://www.emis.de/cgi-bin/MATH-item?0864.03026
http://www.ams.org/mathscinet-getitem?mr=1333294
http://dx.doi.org/10.1090/S0894-0347-96-00202-0
http://www.ams.org/mathscinet-getitem?mr=1311822
http://dx.doi.org/10.1090/S0894-0347-96-00180-4
http://dx.doi.org/10.1090/S0894-0347-96-00180-4
http://www.ams.org/mathscinet-getitem?mr=1265522
http://www.ams.org/mathscinet-getitem?mr=2223409
http://www.ams.org/mathscinet-getitem?mr=1043451
http://www.ams.org/mathscinet-getitem?mr=2257320
http://dx.doi.org/10.1090/S1056-3911-06-00435-8
http://www.emis.de/cgi-bin/MATH-item?0051.14601
http://www.ams.org/mathscinet-getitem?mr=0063122
http://www.emis.de/cgi-bin/MATH-item?0051.14503
http://www.ams.org/mathscinet-getitem?mr=0063121
http://www.ams.org/mathscinet-getitem?mr=2022672
http://www.emis.de/cgi-bin/MATH-item?1075.03014
http://www.ams.org/mathscinet-getitem?mr=2171228
http://dx.doi.org/10.1090/S0002-9947-05-03820-1


432 Jean-Benoît Bost

[65] Lang, S., “Transcendental points on group varieties,” Topology, vol. 1 (1962), pp. 313–
18. Zbl 0116.38105. MR 0156852. 396

[66] Lang, S., “Algebraic values of meromorphic functions,” Topology, vol. 3 (1965), pp.
183–91. Zbl 0133.13804. MR 0190092. 396

[67] Lang, S., “Algebraic values of meromorphic functions, II,” Topology, vol. 5 (1966), pp.
363–70. Zbl 0168.19002. MR 0202670. 396

[68] Lang, S., Introduction to Transcendental Numbers, Addison-Wesley Series in Mathe-
matics, Addison-Wesley, Reading, MA; London, Ontario, 1966. MR 0214547. 398,
427

[69] Le Potier, J., “Fibrés de Higgs et systèmes locaux,” Astérisque, vol. 201-203 (1991),
pp. 221–68, Séminaire Bourbaki 1990/91, no. 737. MR 1157844. 388, 389

[70] Malgrange, B., “Differential algebraic groups,” pp. 292–312 in Algebraic Approach
to Differential Equations, World Scientific, Hackensack, NJ, 2010. MR 2766096.
DOI 10.1142/9789814273244_0007. 413

[71] Manin, Ju. I., “Algebraic curves over fields with differentiation” (in Russian),
Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, vol. 22 (1958), pp. 737–56.
MR 0103889. 379

[72] Manin, Ju. I., “The Hasse–Witt matrix of an algebraic curve,” Izvestiya Akademii Nauk
SSSR. Seriya Matematicheskaya, vol. 25 (1961), pp. 153–72. MR 0124324.

[73] Manin, Ju. I., “Rational points on algebraic curves over function fields,” Izvestiya
Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 27 (1963), pp. 1395–440.
MR 0157971. 379

[74] Marker, D., “Manin kernels,” pp. 1–21 in Connections Between Model Theory and
Algebraic and Analytic Geometry, vol. 6 of Quaderni di Matematica, Dept. Math.,
Seconda Univ. Napoli, Caserta, 2000. MR 1930680. 426

[75] Mazur, B., and W. Messing, Universal Extensions and One Dimensional Crystalline
Cohomology, vol. 370 of Lecture Notes in Mathematics, Springer, Berlin, 1974.
Zbl 0301.14016. MR 0374150. 390, 405, 419, 420, 427

[76] Messing, W., “The universal extension of an abelian variety by a vector group,” pp.
359–72 in Symposia Mathematica, Vol. XI (Rome, 1972), Academic Press, London,
1973. MR 0337991. 390, 405

[77] Mumford, D., Algebraic Geometry, I: Complex Projective Varieties, vol. 221
of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1976.
MR 0453732. 384, 388

[78] Oda, T., “The first de Rham cohomology group and Dieudonné modules,” An-
nales Scientifiques de l’École Normale Supérieure (4), vol. 2 (1969), pp. 63–135.
Zbl 0175.47901. MR 0241435. 405

[79] Pillay, A., “Model theory and Diophantine geometry,” Bulletin of the American Mathe-
matical Society (N.S.), vol. 34 (1997), pp. 405–22. MR 1458425. DOI 10.1090/S0273-
0979-97-00730-1. 426

[80] Pillay, A., “Some foundational questions concerning differential algebraic groups,”
Pacific Journal of Mathematics, vol. 179 (1997), pp. 179–200. MR 1452531.
DOI 10.2140/pjm.1997.179.179. 415

[81] Pillay, A., “Algebraic D-groups and differential Galois theory,” Pacific
Journal of Mathematics, vol. 216 (2004), pp. 343–60. MR 2094550.
DOI 10.2140/pjm.2004.216.343. 415

[82] Poincaré, H., “Sur les fonctions abéliennes,” Acta Mathematica, vol. 26 (1902), pp.
43–98. MR 1554952. DOI 10.1007/BF02415485. 383, 384

[83] Puiseux, V., “Recherches sur les fonctions algébriques,” Journal de Mathématiques
pures et appliquées, vol. 15 (1850), pp. 365–480. 384

[84] Puiseux, V., “Nouvelles recherches sur les fonctions algébriques,” Journal de Mathé-
matiques pures et appliquées, vol. 16 (1851), pp. 228–240. 384

http://www.emis.de/cgi-bin/MATH-item?0116.38105
http://www.ams.org/mathscinet-getitem?mr=0156852
http://www.emis.de/cgi-bin/MATH-item?0133.13804
http://www.ams.org/mathscinet-getitem?mr=0190092
http://www.emis.de/cgi-bin/MATH-item?0168.19002
http://www.ams.org/mathscinet-getitem?mr=0202670
http://www.ams.org/mathscinet-getitem?mr=0214547
http://www.ams.org/mathscinet-getitem?mr=1157844
http://www.ams.org/mathscinet-getitem?mr=2766096
http://dx.doi.org/10.1142/9789814273244\protect \T1\textunderscore 0007
http://www.ams.org/mathscinet-getitem?mr=0103889
http://www.ams.org/mathscinet-getitem?mr=0124324
http://www.ams.org/mathscinet-getitem?mr=0157971
http://www.ams.org/mathscinet-getitem?mr=1930680
http://www.emis.de/cgi-bin/MATH-item?0301.14016
http://www.ams.org/mathscinet-getitem?mr=0374150
http://www.ams.org/mathscinet-getitem?mr=0337991
http://www.ams.org/mathscinet-getitem?mr=0453732
http://www.emis.de/cgi-bin/MATH-item?0175.47901
http://www.ams.org/mathscinet-getitem?mr=0241435
http://www.ams.org/mathscinet-getitem?mr=1458425
http://dx.doi.org/10.1090/S0273-0979-97-00730-1
http://dx.doi.org/10.1090/S0273-0979-97-00730-1
http://www.ams.org/mathscinet-getitem?mr=1452531
http://dx.doi.org/10.2140/pjm.1997.179.179
http://www.ams.org/mathscinet-getitem?mr=2094550
http://dx.doi.org/10.2140/pjm.2004.216.343
http://www.ams.org/mathscinet-getitem?mr=1554952
http://dx.doi.org/10.1007/BF02415485


Algebraization, Transcendence, and D-Group Schemes 433

[85] Raynaud, M., “Théorèmes de Lefschetz en cohomologie cohérente et en cohomologie
étale,” vol. 103 of Bulletin de la Société Mathématique de France, Soc. Math. France,
Paris, 1975. MR 0407021. 394

[86] Remmert, R., “Meromorphe Funktionen in kompakten komplexen Räumen,” Mathe-
matische Annalen, vol. 132 (1956), pp. 277–88. Zbl 0072.08001. MR 0086354. 384

[87] Riemann, B., “Theorie der Abel’schen Functionen,” Journal für die Reine und Ange-
wandte Mathematik, vol. 54 (1857), pp. 115–55. Zbl 054.1427cj. 379

[88] Rosenlicht, M., “Extensions of vector groups by abelian varieties,” American Journal
of Mathematics, vol. 80 (1958), pp. 685–714. Zbl 0091.33303. MR 0099340. 405

[89] Schneider, T., “Zur Theorie der Abelschen Funktionen und Integrale,” Journal für die
Reine und Angewandte Mathematik, vol. 183 (1941), pp. 110–28. MR 0006170. 396,
398

[90] Schneider, T., Einführung in die transzendenten Zahlen, Springer, Berlin, 1957.
MR 0086842. 396

[91] Serre, J.-P., “Fonctions automorphes: Quelques majorations dans le cas où X=G est
compact,” Séminaire H. Cartan, vol. 6 (1953–1954), no. 2. 384

[92] Serre, J.-P., “Géométrie algébrique et géométrie analytique,” Université de Grenoble.
Annales de l’Institut Fourier, vol. 6 (1955–1956), pp. 1–42. MR 0082175. 382

[93] Serre, J.-P., Groupes algébriques et corps de classes, vol. 7 of Publications de l’institut
de mathématique de l’université de Nancago, VII, Hermann, Paris, 1959. MR 0103191.
405

[94] Severi, F., Funzioni quasi abeliane, 2nd augmented edition, vol. 20 of Pontificiae
Academiae Scientiarum Scripta Varia, Pontificia Academia Scientiarum, Vatican City,
1961. MR 0167885. 426

[95] Shafarevich, I. R., Basic Algebraic Geometry, translated from the Russian by K.
A. Hirsch, revised printing of vol. 213 of Grundlehren der Mathematischen Wis-
senschaften, Springer Study Edition, Springer, Berlin, 1977. MR 0447223. 384

[96] Siegel, C. L., “Meromorphe Funktionen auf kompakten analytischen Mannig-
faltigkeiten,” Nachrichten der Akademie der Wissenschaften in Göttingen II—
Mathematisch-Physikalische Klasse, vol. 1955, pp. 71–77. MR 0074061. 384

[97] Simpson, C. T., “Moduli of representations of the fundamental group of a smooth
projective variety, I,” Publications Mathématiques. Institut des Hautes Études Scien-
tifiques, vol. 79 (1994), pp. 47–129. Zbl 0891.14005. MR 1307297. 388, 389, 390,
391

[98] Simpson, C. T., “Moduli of representations of the fundamental group of a smooth
projective variety, II,” Publications Mathématiques. Institut des Hautes Études Scien-
tifiques, vol. 80 (1994), pp. 5–79. MR 1320603. 388, 389, 390, 413, 419, 428

[99] Thimm, W., “Über meromorphe Abbildungen von komplexen Mannigfaltigkeiten,”
Mathematische Annalen, vol. 128 (1954), pp. 1–48. MR 0066471. 384

[100] Waldschmidt, M., Nombres transcendants et groupes algébriques, with appendices by
D. Bertrand and J.-P. Serre, vol. 69–70 of Astérisque, Société Mathématique de France,
Paris, 1979. MR 0570648. 396, 398

[101] Wüstholz, G., Zum Periodenproblem, Inventiones Mathematicae, vol. 78 (1984), pp.
381–91. MR 0768986. DOI 10.1007/BF01388443. 403, 411

[102] Zariski, O., “Theory and applications of holomorphic functions on algebraic varieties
over arbitrary ground fields,” Memoirs of the American Mathematical Society, vol.
1951, no. 5. MR 0041487. 391

[103] Zariski, O., Algebraic Surfaces, with appendices by S. S. Abhyankar, J. Lipman, and
D. Mumford, reprint of the 1971 edition, Classics in Mathematics, Springer, Berlin,
1995. MR 1336146. 384

http://www.ams.org/mathscinet-getitem?mr=0407021
http://www.emis.de/cgi-bin/MATH-item?0072.08001
http://www.ams.org/mathscinet-getitem?mr=0086354
http://www.emis.de/cgi-bin/MATH-item?054.1427cj
http://www.emis.de/cgi-bin/MATH-item?0091.33303
http://www.ams.org/mathscinet-getitem?mr=0099340
http://www.ams.org/mathscinet-getitem?mr=0006170
http://www.ams.org/mathscinet-getitem?mr=0086842
http://www.ams.org/mathscinet-getitem?mr=0082175
http://www.ams.org/mathscinet-getitem?mr=0103191
http://www.ams.org/mathscinet-getitem?mr=0167885
http://www.ams.org/mathscinet-getitem?mr=0447223
http://www.ams.org/mathscinet-getitem?mr=0074061
http://www.emis.de/cgi-bin/MATH-item?0891.14005
http://www.ams.org/mathscinet-getitem?mr=1307297
http://www.ams.org/mathscinet-getitem?mr=1320603
http://www.ams.org/mathscinet-getitem?mr=0066471
http://www.ams.org/mathscinet-getitem?mr=0570648
http://www.ams.org/mathscinet-getitem?mr=0768986
http://dx.doi.org/10.1007/BF01388443
http://www.ams.org/mathscinet-getitem?mr=0041487
http://www.ams.org/mathscinet-getitem?mr=1336146


434 Jean-Benoît Bost

Acknowledgments

I heartily thank Daniel Bertrand for generously sharing his insights of transcendence
theory and differential algebraic groups over the years and for helpful remarks on a
preliminary version. I am grateful to the referees for useful comments and to J. P. Serre
for his remarks on Section 2. I also thank Zoé Chatzidakis for her gentle insistence
that I transform my oral presentation in Oléron into some written contribution, and
the Centro di Ricerca Matematica Ennio di Giorgi (Pisa) for its hospitality during the
completion of this article.
During the preparation of this article, the author has been partially supported by the

project MODIG of the Agence Nationale de la Recherche (grant ANR-09-BLAN-0047)
and by the Institut Universitaire de France.

Département de Mathématiques
Université Paris-Sud
Bâtiment 425, 91405 Orsay CEDEX
France
jean-benoit.bost@math.u-psud.fr

mailto:jean-benoit.bost@math.u-psud.fr

	0 Foreword
	1 Algebraization of Analytic Objects, I
	1.1 Algebraization of compact Riemann surfaces and of projective analytic sets
	1.2 Algebraization of line bundles over complex projective varieties
	1.3 GAGA

	2 Algebraization of Analytic Objects, II: Comments and Applications
	2.1 Un peu d'histoire
	2.2 Algebraic de Rham cohomology
	2.3 Algebraic and analytic structures, and moduli spaces of vector bundles with integrable connections

	3 Algebraization of Formal Objects
	3.1 A theorem of Grauert and Grothendieck
	3.2 Formal geometry
	3.3 A theorem of Andreotti and Hartshorne
	3.4 Algebraization over function fields

	4 Algebraization and Transcendence
	4.1 Algebraicity of leaves of rank 1 algebraic foliations
	4.2 Algebraic Lie subalgebras
	4.3 Morphisms of commutative algebraic groups
	4.4 Transcendence theorems and the analogy between number fields and functions fields

	5 The Grothendieck Period Conjecture for Cycles of Codimension 1 in Abelian Varieties
	5.1 Grothendieck's conjecture GPC1(X)
	5.2 Abelian varieties, duality, and universal extensions
	5.3 The category CdRB
	5.4 Abelian varieties over Q satisfy GPC1
	5.5 Q-points of abelian varieties and extensions in CdRB

	6 D-group Schemes
	6.1 Basic definitions
	6.2 D-schemes and analytification
	6.3 Moduli spaces of vector bundles with connections as D-schemes
	6.4 Universal vector extensions as D-group schemes
	6.5 Extensions of abelian schemes by Gm and D-group schemes

	7 A Conjecture
	7.1 A construction
	7.2 LieC1 and Per1CCan
	7.3 A conjecture

	Notes
	References
	Acknowledgments
	Author's addresses

