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The Consistency Strength of MPCCC(R)

George Leibman

Abstract The Maximality Principle mpCCC is a scheme which states that if a
sentence of the language of zfc is true in some ccc-forcing extension V P, and
remains true in any further ccc-forcing extension of V P, then it is true in all
ccc-forcing extensions of V , including V itself. A parameterized form of this
principle, mpCCC(R), makes this assertion for formulas taking real parameters.
In this paper, we show that mpCCC(R) has the same consistency strength as
zfc, solving an open problem of Hamkins. We extend this result further to
parameter sets larger than R.

1 Introduction

The Maximality Principle, mp, is a scheme over all sentences of zfc. It states that
if a sentence of zfc is true in some forcing extension V P of V , and remains true in
any subsequent forcing extension of V P, then it is true in any forcing extension of V .
Equivalently (see [2]), the principle states that if a sentence of zfc is true in some
forcing extension V P of V , and remains true in any subsequent forcing extension
of V P, then it is true in V itself. This principle and modified versions of it were
discussed by Hamkins in [2]. If we let 0 be any class of posets, then mp0 makes
a similar assertion, but only allowing forcing with posets in 0. Thus, the class of
ccc forcing notions produces the corresponding maximality principle mpccc. The
principle mp and its variations mp0 can be further modified to include formulas
which take parameters from some set X ; these schemes are denoted as mp(X) and
mp0(X) respectively. So the class of ccc forcing notions, regarding formulas which
take real parameters, produces the corresponding maximality principle mpccc(R).

Allowing parameters may add strength to such a principle since the allowable
forcing notions may produce models which enlarge the parameter set. Indeed,
in [2] Hamkins showed that the maximality principle mp is equiconsistent with
zfc, while mp(R), the maximality principle with real parameters, has consistency
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strength strictly greater than zfc alone. Since he also showed that mpccc is also
equiconsistent with zfc, a natural expectation is that mpccc(R) will have a greater
consistency strength than zfc alone. The parameter set is certainly enlarged, since
ccc-forcing adds new reals. In this paper, we show that this intuition is false and
that mpccc(R) has the same consistency strength as zfc alone, solving an open
problem from [2].

We will use terminology from the language of modal logic by regarding models of
zfc as possible worlds in a Kripke model in which world B is accessible from world
A if B is a forcing extension of A. This leads to natural set-theoretic interpretations
of the modal concepts of possibility and necessity. A statement ϕ is possible or
forceable (♦ϕ in the notation of modal logic) if it is true in some forcing extension
and necessary (denoted by �ϕ) if it is true in every forcing extension. A sentence
is possibly necessary, or forceably necessary, if it is true in some forcing extension
and remains true in any subsequent forcing extension. mp becomes a scheme, the
collection of all instances of the statement “♦�ϕ implies �ϕ" (or its S4 equivalent,
“♦�ϕ implies ϕ")1 where ϕ ranges over all sentences in the language of zfc.

If 0 is a class of forcing notions, an accessibility relation can be expressed be-
tween models M1 and M2 by saying that M2 is a 0-forcing extension of M1 (that is,
that M2 = M1[G] where G is M1-generic over some P where P ∈ 0). A formula
ϕ is 0-necessary (denoted by �0ϕ) when it is true in all 0-forcing extensions. So
a formula is ccc-necessary if it is true in all ccc-forcing extensions. A formula ϕ
is 0-forceable (denoted by ♦0ϕ) when it is true in some 0-forcing extension. (Note
that, as in other interpretations of possibility and necessity, that ♦ and � are dual to
each other—♦ϕ can be defined as ¬�¬ϕ.) A formula ϕ is 0-possibly necessary or
0-forceably necessary (denoted by ♦0�0ϕ) if it is 0-forceable that ϕ is 0-necessary.
The determination as to whether a forcing notion P in a 0-forcing extension is itself
in 0 is made de dicto—the formula defining the class is interpreted in the model of
zfc in which P will be forced. In terms of the symbols just introduced, the prin-
ciple mp0 can be expressed as the scheme ♦0�0ϕ H⇒ �0ϕ where ϕ can be any
statement in the language of zfc.

The rest of this paper is organized as follows. Section 2 addresses the technical
requirement of providing elementary submodels of V in which a uniform definition
of the forcing relation can exist. Section 3 contains the main results of the paper.2

2 Elementary Submodels of V

The main results of this paper require definitions of forcing iterations. The successor
stages force sentences which are particular instances of a maximality principle for
which we seek a model. The full principle is then satisfied in the iterated extension,
hence consistent, because each instance has been handled at some stage. But such
a partial order at a successor stage uses the forcing relation in its definition. Unless
the ground model at this stage is a set, there is no uniform definition of the forcing
relation p 
 ϕ, as this would provide a definable truth predicate.

To provide set models of zfc at successor stages, we employ the strategy of [2]
of using an initial segment of the universe as an elementary submodel of it.3 In
particular, we generalize Lemma 2.5 of [2]. We first add a constant symbol δ to the
language of zfc, intended to stand for some ordinal. The following arguments will
take place in this expanded language, with a corresponding structure to interpret this
constant.
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Let ‘Vδ ≺ V ’ stand for the scheme that asserts, of any formula ϕ with a parameter
x , that

for every x ∈ Vδ, Vδ |H ϕ[x] if and only if ϕ(x).

Lemma 2.1 If T is any theory containing zfc as a subtheory, then Con(T ) if and
only if Con(T + Vδ ≺ V ).

Proof To prove the nontrivial direction, let M be a model for T . I will show that,
with a suitable interpretation of δ, M is a model for any finite collection of formulas
in T + Vδ ≺ V , which is therefore consistent. The conclusion then follows by
compactness.

Let 9∗ be any finite collection of instances of the scheme Vδ ≺ V . Let 9 be
the collection of formulas ψ(x), in the language of T , for which there is an in-
stance in 9∗ of the form ‘∀x ∈ Vδ Vδ |H ψ[x] if and only if ψ(x)’. We can write
9∗

= {“∀x ∈ Vδ Vδ |H ψ[x] if and only if ψ(x)”|ψ ∈ 9}.
9 is finite, so by Lévy reflection there is an initial segment Mγ of M such that for

all ψ ∈ 9, and for all x ∈ Mγ , if Mγ |H ψ[x], then ψ(x). So, interpreting δ as γ ,
M |H 9∗ (so 9∗ is consistent). As 9∗ was an arbitrary finite collection of formulas
from Vδ ≺ V , and since M also satisfies any finite fragment of T (being a model of
T ), the entire theory T + Vδ ≺ V is therefore consistent. �

Applying Lemma 2.1 where T is zfc, we can find a model M ′ for zfc + Vδ ≺ V
given the existence of a model M for zfc alone. In fact, a sharper observation can
be made which relates these models, namely, it can be arranged that M ≺ M ′, by
“reproving” the compactness theorem, that is, by building M ′ as an ultraproduct.

We first introduce a notation for an idea that will recur throughout the section. Let
T be any theory containing zfc as a subtheory. Let I = {8 ⊆ T |8 is finite} be the
set of finite collections of formulas in the theory T . For each8 in I , let Vδ ≺8 V de-
note the collection of statements {“∀x ∈ Vδ(Vδ |H ϕ[x] if and only if ϕ(x))”|ϕ ∈ 8},
that is, those instances of Vδ ≺ V only mentioning those formulas ϕ in 8. Notice
that any finite subcollection of the scheme Vδ ≺ V can be so represented.

Lemma 2.2 Let T be any theory containing zfc as a subtheory. Suppose M |H T .
Then there is M ′

|H T + Vδ ≺ V such that M ≺ M ′.

Proof Let M be a model for theory T , and let I be the set of finite collections of for-
mulas as defined above. By the Lévy Reflection Theorem, for each 8 in I , there is a
δ = δ8 for which Vδ ≺8 V holds in M . So the expansion of the model M to 〈M, δ8〉

is a model of T + Vδ ≺8 V . Denote this expanded model by M8. (Notice that if
8 ⊆ 9, then M9 |H Vδ ≺8 V .) Now construct an ultrafilter on I as follows: For
each 8 ∈ I , define d8 = {9 ∈ I |8 ⊆ 9}, the set of finite collections of formulas
containing 8 as a subcollection. Then DI = {d8|8 ∈ I } is easily seen to be a filter
on I . And by Zorn’s Lemma, there is an ultrafilter UI ⊇ DI on I . We can now take
the ultraproduct 〈M ′, δ〉 =

∏
M8/UI . Then 〈M ′, δ〉 is a model of Vδ ≺8 V , for any

8 in I , by Łos’s Theorem applied to the set {9 ∈ I |M9 |H Vδ ≺8 V } ⊇ d8 ∈ UI .
Since 〈M ′, δ〉 is a model of any finite subcollection of Vδ ≺ V (where δ is the

element of the ultraproduct which represents the equivalence class of the mapping I
to M via 8 7→ δ8), it must satisfy the entire scheme Vδ ≺ V . Finally, the reduct
M ′ of 〈M ′, δ〉 is simply the ultrapower of the model M over the ultrafilter UI , so
M ′

|H T and M ≺ M ′. �
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The following lemma says that Vδ ≺ V persists over forcing extensions when forcing
with “small” forcing notions, that is, those contained in Vδ . (The condition P ∈ Vδ
precludes, say, collapsing δ to ω, which would destroy the scheme Vδ ≺ V .) In
the following results, Vδ[G] ≺ V [G] will mean the obvious thing, namely, that
V [G] |H Vδ ≺ V , where Vδ is interpreted as Vδ[G] in V [G]. The expression Vδ[G]

is unambiguous, since in our usage, G is always generic over small forcing, in which
case (Vδ)[G] = (V [G])δ .

Lemma 2.3 Let Vδ ≺ V , let P ∈ Vδ be a notion of forcing, and let G be V -generic
over P. Then Vδ[G] ≺ V [G].

Proof Suppose x ∈ Vδ[G] such that Vδ[G] |H ϕ(x). Then there is a condition
p ∈ G ⊆ P such that Vδ |H p 
 ϕ(ẋ), so by elementarity V |H p 
 ϕ(ẋ); hence
V [G] |H ϕ(x). �

This is the way an initial segment Vδ , an elementary submodel of the universe, is
used in a forcing iteration to obtain a model in which a desired maximality principle
holds. Once a forcing notion has been found at each stage to force the necessity of a
particular forceably necessary formula in the elementary submodel, a generic G can
then be taken to produce an actual extension which is also an elementary submodel
in which the next iteration is definable.

Another direction in which Lemma 2.1 can be generalized is to show there is
a closed unbounded (club) class of cardinals δ for which Vδ ≺ V . This uses the
following strong form of the Reflection Principle.

Lemma 2.4 (Lévy) For any finite list of formulas 8 in the language of zfc the
following is a theorem of zfc:

There is a club class of cardinals C such that for each δ in C, Vδ ≺8 V .

Proof (This follows the usual proof of the Lévy Reflection Principle.) Without loss
of generality, suppose the list 8 = {ϕ1 . . . ϕn} is closed under subformulas. Define
a class function f : ORD → ORD as follows: For α in ORD, let f (α) be the least
ordinal γ such that, for all Ex in Vα , and for all i = 1, . . . , n, there exists y such
that ϕi (Ex, y) and y is in Vγ . If no such y exists, let f (α) = 0. Let D be the set of
closure points of f . (An ordinal α is a closure point of f if f “α ⊆ α.) It is easy
to see that D is a club class. For any δ in D, absoluteness for ϕ1, . . . , ϕn between
Vδ and V can be proven by induction on the complexity of each ϕi : Absoluteness
will be preserved under Boolean connectives, and the same is true under existential
quantification (the Tarski-Vaught criterion is satisfied since δ is a closure point of the
function f ). Since the cardinals also form a club class, the intersection of them with
D will be the desired club C . �

This leads to the next theorem, another variation of Lemma 2.1. As in Lemma 2.2,
the ground model is expanded to interpret a new predicate symbol in the language,
which in this case is the symbol for a club class.

Theorem 2.5 Let T0 be a theory containing zfc. Then the following are equiva-
lent:

(1) Con(T0),
(2) Con(T0 + T ),
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where T is the theory in the language {∈,C} which contains all instances of the Re-
placement and Comprehension axiom schemes augmented with the relation symbol
C, and which asserts

(i) C = 〈δα|α ∈ ORD〉 is a closed unbounded class of cardinals;
(ii) for all δ in C, Vδ ≺ V ;

(iii) for all α in ORD, δα < cf(δα+1).

Proof For the nontrivial direction—(1) implies (2)—we first give a model where
theory T only includes assertions (i) and (ii). Let M be a model of theory T0. It
will suffice to show that every finite subtheory of T0 + T is consistent. So let F be
such a finite subtheory. That is, F ⊆ zfc + {σ1, . . . , σn} ∪ {“C is club”}, where
σi = “∀δ ∈ C∀x ∈ Vδ(Vδ |H ϕi [x] if and only if ϕi (x))”. We show that M is a model
for F : Fix {ϕ1, . . . , ϕn}. By Lemma 2.4, there is a definable club class of cardinals
C such that for all i in 1, . . . , n, M |H “C is a club class” + “∀δ ∈ C, Vδ |H ϕi [x]

if and only if ϕi (x)”. But this is σi , so M |H σi . And since M models T0, it is a
model for F . And by compactness, M models all of T0 and T , where T includes
assertions (i) and (ii). But from M we can find a model which has a club C which
satisfies assertion (iii) as well. Simply define a new club class to be a continuous
subsequence of the original one by inductively defining, for each ordinal α, δα+1 =

the δ+α th element that follows δα in C . Take suprema at limits. Interpreting the
symbol C to be this thinned club ensures that δα < cf(δα+1). �

One should stress that in all applications of Theorem 2.5 one is using the language of
zfc expanded to have the relation symbol C and that the theory includes theory T
as described in the theorem as well as zfc in this expanded language.

Lemma 2.2 makes it conceptually easier to include in the theory T statements
about some element κ of V referring to it by a name added to the language of zfc.
This is done by expanding the model M to interpret the name of κ . Equiconsistency
of such statements together with Vδ ≺ V follows from Lemma 2.2 since the name
for κ is “rigid”—the model for Vδ ≺ V can be taken to be an elementary extension,
so the same κ can be found in both models. The next lemma, illustrating this, is an
enhancement of Lemma 2.1 that provides a condition on δ.

Lemma 2.6 Let T be any theory containing zfc as a subtheory. Let κ be any
cardinal in a model M of T expanded to include κ . Then there is an elementary
extension M ′ of M which is a model of T + Vδ ≺ V + cf(δ) > κ .

Proof We proceed exactly as in Lemma 2.1, performing additional work to address
the requirement on δ: By Lévy Reflection Lemma 2.4, for any fixed finite 8 ⊆ T ,
there is a class {α ∈ ORD|Vα ≺8 V } which is closed and unbounded. So it has a
κ+th member. We interpret δ as this member, giving cf(δ) = κ+ and Vδ ≺8 V . The
rest of the proof of Lemma 2.1 now gives M ′

|H T + Vδ ≺ V +cf(δ) > κ . �

A typical application of this lemma is to ensure that the cofinality of δ is greater
than ω.

3 The Consistency Strength of MPCCC(R)

In [2] Hamkins showed that the maximality principle with real parameters, mp(R),
has consistency strength strictly greater than zfc, while mp and mpccc are both
equiconsistent with zfc. That article also asks as to the consistency strength of
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the latter principle when real parameters are added. It would seem that doing so
should increase the consistency strength of mpccc as it did for mp, especially since
ccc-forcing will certainly add new reals that are not in the ground model. However,
contrary to expectation, we have the following theorem.

Theorem 3.1 The following are equivalent:

1. Con(zfc),
2. Con(zfc + mpccc(R)).

We need some preliminary results in order to proceed. We first quote a well-known
result (Lemma 5.14 of Chapter VIII from [4]). In the following series of lemmas, α is
any ordinal, I is an ideal on α+1, and I contains all finite subsets of α. Furthermore,
to say that an α-stage iteration has supports in I means that if λ < α is a limit ordinal,
then p =

〈
pµ|µ < λ

〉
∈ Pλ if and only if for all ξ < µ, p � ξ ∈ Pξ and the support

of p is in I.

Lemma 3.2 Assume that in V, α is a limit ordinal,〈〈
Pξ |ξ ≤ α

〉
,
〈
πξ |ξ < α

〉〉
is an α-stage iterated forcing construction with supports in I, and each element of I
is bounded in α. Suppose G is V-generic over Pα , S ∈ V , X ⊆ S, X ∈ V [G], and
(|S| < cf(α))V [G]. Then for some η < α, X ∈ V [Gη].

This lemma says that subsets from the forcing extension V [G]) of small sets in V
appear in some earlier stage. Another lemma we will use, whose proof is almost
identical, says that any small sets in V [G] which are subsets of sets in V appear in
some earlier stage.

Lemma 3.3 Assume that in V, α is a limit ordinal,〈〈
Pξ |ξ ≤ α

〉
,
〈
πξ |ξ < α

〉〉
is an α-stage iterated forcing construction with supports in I, and each element of I
is bounded in α. Suppose G is V-generic over Pα , S ∈ V , X ⊆ S, X ∈ V [G], and
(|X | < cf(α))V [G]. Then for some η < α, X ∈ V [Gη].

Proof Let σ be a P-name such that X = σG . Then s ∈ X if and only if there is
p ∈ G such that p 
Pα (š ∈ σ ). By our assumption on I, Pα =

⋃
ξ<α i ′′ξαPξ and

G =
⋃
ξ<α i ′′ξαGξ where Gξ = i−1

ξα G. In V [G], for each s ∈ X , fix ξs < α such that
∃p ∈ Gξ (iξα(p) 
Pα š ∈ σ ). Let η = sup{ξs : s ∈ X}. Since |X | < cf(α) in V [G],
η < α. Now X = {s ∈ S : ∃p ∈ Gη(iηα(p) 
Pα š ∈ σ )}. Since 
Pα is defined in
V , X ∈ V [Gη]. �

The following lemma is an application of Lemma 3.3 to sets of hereditary cardinality.

Lemma 3.4 Assume that in V, λ is a limit ordinal,〈〈
Pξ |ξ ≤ λ

〉
,
〈
πξ |ξ < λ

〉〉
is a λ-stage iterated forcing construction with supports in I, and each element of I
is bounded in λ. Suppose G is V-generic over Pλ and V [G] |H x ∈ H(cf(λ)), then
x ∈ V [Gη] for some η < λ.



Consistency Strength of MPCCC(R) 187

Proof The proof is by induction on the rank of x (up to cf(λ), since
H(cf(λ)) ⊂ R(cf(λ)). If x has rank 0, then it is the empty set, found in V [G0].
Now assume x has rank α > 0 and that y ∈ H(cf(λ)) implies y ∈ V [Gηy ] for some
ηy < λ, for all y of rank less than α. In particular, all y ∈ x satisfy this induction
hypothesis. Let γ be the supremum of all the ηy where y ∈ x . Since |x | < cf(λ) we
have that γ < λ, and all y ∈ x occur simultaneously in V [Gγ ], where they are all
members of the set R(α). Considering V [G] = V [Gγ ][G(γ )

λ ] as a forcing extension
of V [Gγ ], we can apply Lemma 3.3 to see that there is then some η < λ such that
x ∈ V [Gγ ][G(γ )

η ] = V [Gη]. �

Remark 3.5 The referee has pointed out that Lemma 3.4 also follows from the fact
that when κ is a cardinal, members of H(κ) can be coded by subsets of cardinals less
than κ . (Lemma 3.2 can then be applied directly.)

We will say that a class of forcing notions 0 is closed under iterations of length γ
with appropriate support if there is an ideal I on γ + 1 which provides supports (in
the sense given for Lemmas 3.2 through 3.4) for any such iteration and produces a
forcing notion which is still in 0. Moreover, we require that if Pγ is a γ -iteration of
forcing in 0, then for every α < γ , Pγ = Pα ∗ P{α,γ }, where P{α,γ }, an iteration of
forcing notions of 0, is defined in V Pα with support in the ideal I. An example of
such support would be where either direct or inverse limits are always taken; this is
Lemma 21.8 in [3].

The following lemma introduces the technique of applying the results of Section 2
in forcing iteration constructions.

Lemma 3.6 Let X be any set, and let 0 be a class of forcing notions which contains
trivial forcing, which is closed under two-step iterations, and is closed under itera-
tions of length κ = |X | with appropriate support. Suppose Vδ ≺ V and cf(δ) > κ .
Then there is a forcing notion P in 0 such that V P

|H mp0(X) and P ∈ Vδ .

Remark 3.7 The symbol X occurring in the expression V P
|H mp0(X) is to be

interpreted de re—it represents the same set in V P as when interpreted in V . For
example, in applying this lemma, the symbol RV will replace X . This is a different
situation than the one we shall see in this paper’s main result, in which the symbol R

represents a set which has a definition whose interpretation is de dicto; hence the set
varies from model to model.

Proof Let κ = |X |. Let π : ω×κ −→ κ be a bijective pairing function. Enumerate
all formulas with one parameter in the language of set theory as 〈ϕn|n ∈ ω〉 and all
elements x of X as 〈xµ|µ ∈ κ〉. Define a κ-iteration P = Pκ of 0 forcing notions,
with appropriate support, as follows. At successor stages, let Pα+1 = Pα ∗ Q̇α ,
where, if α = π(n, µ) and V Pα

δ |H “ϕn(xµ) is 0-forceably necessary”, then V Pα
δ |H

“Qα is a forcing notion in 0 that forces ‘ϕn(xµ) is 0-necessary’ ”; otherwise, Qα

is {∅}, the trivial forcing. Use appropriate support at limit stages. Note that, since
cf(δ) > κ , Pα is in Vδ for all α < κ .

Let G be V -generic over P. The claim is that V [G] |H mp0(X). To prove
the claim, suppose x ∈ X and V [G] |H “ϕ(x) is 0-forceably necessary”. It will
suffice to show that V [G] |H “ϕ(x) is 0-necessary”. Let ϕ = ϕn and x = xµ for
some α = π(n, µ). By factoring, V [G] = V [Gα][GTAIL] |H “ϕ(x) is 0-forceably
necessary”, so V [Gα] |H “ϕ(x) is 0-forceably necessary” as well. By elementarity,
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Vδ[Gα] |H “ϕ(x) is 0-forceably necessary”. But at stage α, the forcing notion Q

in Vδ has been defined to force �0ϕn(xµ). So Vδ[Gα+1] |H “ϕ(x) is 0-necessary”.
Again by elementarity, V [Gα+1] |H “ϕ(x) is 0-necessary”. And since V [G] is a
0-forcing extension of V [Gα+1], V [G] |H “ϕ(x) is 0-necessary”. This proves the
claim. Finally, since the iteration of P has appropriate support, P is in 0. And since
cf(δ) > κ , P is in Vδ . �

To prove the nontrivial implication of Theorem 3.1 it will suffice to prove that if there
is a model of zfc then there is a model of zfc + mpccc(R). I will give two proofs
of this.

First Proof of Theorem 3.1 We prove the consistency of a weak version of the prin-
ciple stated in the theorem. For any set X , using our notation, mpccc(X) is the
modified maximality principle that says any formula with parameters taken from the
set X which is ccc-forceably necessary is true. Let P be a ccc forcing notion.
Let us confine ourselves to the model V P and denote by RV the reals of the ground
model V . Let the principle mpccc(RV ) be the form of mpccc(X) interpreted in V P

with parameter set RV . By Lemma 2.6, it is consistent to assume that Vδ ≺ V , and
cf(δ) > 2ω. By a direct application of Lemma 3.6, there is a forcing notion P in ccc
such that V P

|H mpccc(RV ) and P ∈ Vδ .
We may now iterate this construction. Suppose V |H zfc. By Theorem 2.5

we may assume that there is a club class of cardinals C such that for all δ in C ,
Vδ ≺ V . We will construct a forcing extension which is a model of zfc+mpccc(R).
Construct a finite-support ω1-iteration P = Pω1 such that V P

|H mpccc(R) as
follows. Let P0 be the trivial notion of forcing. At stage α, select δα from the club C
such that the rank of Pα < δα (so that Pα is in Vδα ) and cf(δα) > (2ω)V

Pα . Working
in V Pα , define Pα+1 = Pα ∗ Q̇α , where Q̇ is a Pα-name of a ccc notion of forcing
such that V Pα∗Q̇α |H mpccc(RV Pα

). Such a Qα is guaranteed to exist by Lemma 3.6,
since the conditions Vδα ≺ V and cf(δα) > 2ω are satisfied by V Pα . This completes
the construction of P = Pω1 .

Let G be V -generic over P. I claim that V [G] |H mpccc(R). To see this, let
V [G] |H “ϕ(r) is ccc-forceably necessary”, where r ∈ R, the reals as interpreted
in V [G]. It will suffice to show that V [G] |H “ϕ(r) is ccc-necessary”. Note that r ,
as a real, is a subset of ω in V [G], while ω itself is in V . Therefore, since P is an
ω1 iteration with finite support and cf(ω1) > |ω|, r must be in some V [Gα], where
α < ω1, P = Pα ∗ Ṗ

(α)
ω1 is the factorization of P at stage α, and Gα is the projection

of G to Pα . (This follows from Lemma 3.2.) But the definition of P required that Qα

force mpccc(RV [Gα]), which therefore must hold at stage α+ 1. Indeed, refactoring
P = Pα+1 ∗ Ṗ

(α+1)
ω1 and setting Gα+1 to be the projection of G to Pα+1, we have that

r ∈ V [Gα] and V [Gα+1] |H mpccc(RV [Gα]) (as well as V [Gα+1] |H “ϕ(r) is ccc-
forceably necessary”, since V [G] = V [Gα+1][G

(α+1)
ω1 ] is a ccc-forcing extension

of V [Gα+1]). Therefore V [Gα+1] |H “ϕ(r) is ccc-necessary”. Since V [G] is a
ccc-forcing extension of V [Gα+1], we have that V [G] |H “ϕ(r) is ccc-necessary”
as required. �

Second Proof of Theorem 3.1 This time, we use a bookkeeping function style
argument. Suppose V |H zfc. By Theorem 2.5 we may assume that there
is in V a club class of cardinals C such that for all δ in C , Vδ ≺ V . Let
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π : ORD ' ω×ORD×ORD be a definable bijective class function π : α 7→ 〈n, β, µ〉

such that β ≤ α. Using π as a bookkeeping function, we define a sequence of iterated
forcing notions Pα , simultaneously with a sequence of cardinals δα , by transfinite
induction on α in ORD as follows. Let P0 be trivial forcing. Given Pα , let δα be the
least cardinal in the club C such that Pα is in Vδα . Define Q̇α in V Pα

δα
as follows: Let

π(α) = 〈n, β, µ〉. Consider the statement ϕ(x) = ϕn(x), the nth statement in the
language of zfc according to some enumeration, with single parameter x = xµ, the

µth name for a real in the model V
Pβ
δα

where β ≤ α, according to some definable

well-ordering of the universe. If, in V Pα
δα

, ϕ(x) is ccc-forceably necessary, let Q̇α

be the Vδα -least Pα-name of a forcing notion which performs a forcing that ϕ(x) is
ccc-necessary. Otherwise, let Q̇α be the Pα-name for trivial forcing. (This will be
the case, for example, if µ is not below δα , the height of the set model Vδα .) Now let
Pα+1 = Pα ∗ Q̇α . Finally, take finite support at limits. This defines the sequence Pα
for all α in ORD. Note that, for all such α, Pα is ccc and is contained in Vδα .

We wish to truncate this sequence at an appropriate length λ to obtain an iter-
ated forcing notion Pλ which forces a model of mpccc(R). This will occur if all
reals in V Pλ are introduced at some earlier stage of the iteration and the cofinal-
ity of λ is greater than ω. To ensure this, we define λ to be a closure point of
the function f : ORD −→ ORD which takes β, the stage at which a real pa-
rameter is introduced, to the least stage by which all formulas ϕ have been ap-
plied to all parameters in V Pβ . These parameters are V Pβ -names, and by using
nice names, discussed in detail in [4], of which there are |Pβ |

ω many in V Pβ , this
gives f (β) = supµ<|Pβ |ω {π(α) = 〈n, β, µ〉}. Now let λ be the first closure point of
f : ORD −→ ORD with cofinality ω1.

Let P = Pλ, and let G be V -generic over P. By the usual argument, we can now
establish that V [G] |H mpccc(R): Suppose V [G] |H “ϕ(r) is ccc-forceably neces-
sary”. Then there is α = 〈n, µ, β〉, where ϕ = ϕn and ṙ is the µth nice Pβ -name

of a real, for some β ≤ α (the name ṙ appears in the model V
Pβ
δα

by construc-
tion). Since V [G] is a ccc-forcing extension of V [Gα], where Gα is V -generic
over Pα , V [Gα] |H “ϕ(r) is ccc-forceably necessary”, whence by elementarity,
Vδα [Gα] |H “ϕ(r) is ccc-forceably necessary”. But by the construction of P, if
Gα+1 is Pα+1-generic over Vδα+1 , then Vδα+1 [Gα+1] |H “ϕ(r) is ccc-necessary”, so
by elementarity V [Gα+1] |H “ϕ(r) is ccc-necessary” and therefore V [G] |H “ϕ(r)
is ccc-necessary”. �

Remark 3.8 The second proof just given of Theorem 3.1 makes use of the existence
of closure points of the defined function f : ORD −→ ORD. In order to know such
closure points exist one needs to apply the Replacement scheme. Even the first proof
makes use of the Replacement Axiom Scheme enhanced with the symbol C in order
to construct the iteration Pα . These arguments take place in the language of zfc
expanded with the symbol C interpreted as a club class in an expanded model. This is
why we included, in Theorem 2.5, all instances of Replacement and Comprehension
that mention the club class C .

One might expect that Theorem 3.1 can be extended to parameter sets which are
power sets of sets of cardinality greater than ω, such as ω1 or ℵω17 , and in fact
this is the case. Let κ be a cardinal. Singling out the second proof strategy above,
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one can state and prove a generalization of Theorem 3.1 after making the following
definitions.

We will call a formula ψ(x) a definition of a set A if for all x , ψ(x) if and only if
x ∈ A. Let 0 be a class of forcing notions. A formula ϕ(x) is 0-absolute if for any
P in 0, and for any x in V , V P

|H ϕ(x) if and only if ϕ(x). A set defined by such
a formula ϕ(x) in all 0-forcing extensions as well as in V is said to be 0-absolutely
definable.

Theorem 3.9 Let κ be any ccc-absolutely definable cardinal. Then the following
are equivalent:

1. Con(zfc),
2. Con(zfc + mpccc(H(κ))).

Proof Just as in the second proof of Theorem 3.1, the proof in the nontrivial direc-
tion consists in building a ccc-forcing extension model for mpccc(H(κ)) from a
model V of zfc. Without loss of generality, by Theorem 2.5, assume in V a club
class of cardinals C such that for all δ in C , Vδ ≺ V . We use the same bookkeeping
class function. The definition of a sequence of iterated forcing notions Pα , simul-
taneously with a sequence of cardinals δα , again proceeds by transfinite induction
on α in ORD. At stage α, in defining Q̇α in V Pα

δα
, α now codes 〈n, β, µ〉 where µ

is now an index for the name for a subset x of κ in the model V
Pβ
δα

where β ≤ α,
and Q̇α forces that ϕ(x) is ccc-necessary if such a forcing notion exists. Again let
Pα+1 = Pα ∗ Q̇α with finite support at limits. This again gives Pα for all α in ORD,
with Pα being ccc and contained in Vδα .

Define a function f : ORD −→ ORD which takes β, the stage at which a real
parameter is introduced, to the least stage by which all formulas ϕ have been applied
to all parameters in V Pβ . Since we only need to count nice names, of which there are
(|Pβ |

ω)<κ = |Pβ |
<κ many in V Pβ , this gives f (β) = supµ<|Pβ |<κ {α = 〈n, β, µ〉}.

The closure points of this function form a club class in ORD. We truncate the class
iteration to length λ, the κth element of this sequence.

We claim Pλ produces a forcing extension V [G] which satisfies mpccc(H(κ)).
Since its length has cofinality κ , we know all names of parameters in V Pλ are intro-
duced at earlier stages, by Lemma 3.4. The rest of the argument is identical to the
corresponding part of the second proof of Theorem 3.1. �

Finally, we prove what appears to be an optimal equiconsistency with zfc (in
the sense that mpccc(H(2ω)) is known to require a proper class of inaccessible
cardinals—see Theorem 5.6 in [2]). The following proof is a modification of the
second proof of Theorem 3.1.

Theorem 3.10 If there is a club class C such that for all δ in C, Vδ ≺ V , then
there is a forcing extension which satisfies zfc+mpccc(H(cf(2ω))). Furthermore,
in this model, the value of cf(2ω) can be as large as any ccc-absolutely definable
cardinal.

Proof We use a bookkeeping function to define a sequence of iterated forcing no-
tions Pα , simultaneously with a sequence of cardinals δα , proceeding by transfinite
induction on α in ORD. Define P0 to be trivial forcing and δ0 = the first element
of the sequence C . Let π : ORD ' ω × ORD × ORD be a definable bijective
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class function π : α 7→ 〈n, β, µ〉 such that β ≤ α. At stage α, in defining Q̇α in
V Pα
δα

, α codes 〈n, β, µ〉 where µ is, as before, an index for the name of some set x

in the model V
Pβ
δβ

(according to some definable well-ordering of the universe) where

β ≤ α, and Q̇α forces that ϕn(x) is ccc-necessary if such a forcing notion exists.
Otherwise, let Qα be trivial forcing. Let Pα+1 = Pα ∗ Q̇α with finite support at
limits, while δα+1 is chosen from the tail of the class club C after δα such that Vδα+1

contains Pα+1. Define δα =
⋃
ξ<α δξ for limit α. This defines Pα and δα for all α in

ORD, where Pα is ccc and is contained in Vδα .
Let the function f : ORD −→ ORD take any ordinal β to the index of the least

stage by which all formulas have been applied to all parameters in V
Pβ
δβ

. The set of
closure points of f forms a club class in ORD. Let λ be a closure point of f of
uncountable cofinality, and truncate the sequence 〈Pα|α ∈ ORD〉 at λ. By definition
of the class club C , Vδλ contains the entire iteration Pλ, and δα < cf(δλ) for all
α < λ.

Let P = Pλ, and let G be V -generic over P. We can now show that V [G] |H

mpccc(H(cf(2ω))). We claim that, in V [G], cf(λ) = cf(2ω). First, the continuum is
forced to be larger than any cardinal below δα for unboundedly many α < λ over the
partial stages of the iteration Pλ, so V [G] satisfies 2ω ≥ δλ. And second, the forcing
notion Pλ is contained in Vδλ , so V [G] satisfies 2ω ≤ δλ, whence 2ω = δλ in V [G].
Now observe that by continuity, cf(λ) = cf(δλ), proving our claim. We further see
that all parameters in H(cf(λ)) found in V [G] appear at some previous stage, using
Lemma 3.4.

Suppose V [G] |H “ϕ(x) is ccc-forceably necessary and x ∈ H(cf(λ))”. (Then
x ∈ Vδλ [G] =

⋃
β<λ Vδβ [G], so x ∈ Vδβ [G] for some β < λ, so it has been han-

dled as a parameter for all forceably necessary statements unboundedly often over
this iteration.) Take α = 〈n, µ, β〉, where ϕ = ϕn and ẋ is the µth nice Pβ -name
of the parameter x , for some β ≤ α. Since V [G] is a ccc-forcing extension of
V [Gα], where Gα is V -generic over Pα , V [Gα] |H “ϕ(x) is ccc-forceably neces-
sary”, whence by elementarity, Vδα [Gα] |H “ϕ(x) is ccc-forceably necessary”. But
by the construction of P, if Gα+1 is Pα+1-generic over Vδα+1 , then Vδα+1 [Gα+1] |H

“ϕ(x) is ccc-necessary”, so by elementarity V [Gα+1] |H “ϕ(x) is ccc-necessary”
and therefore V [G] |H “ϕ(x) is ccc-necessary”.

Finally, notice that in our choice of λ, we can make cf(λ) any ccc-absolutely
definable regular cardinal we like, below λ. (Let the desired cofinality be κ . Now
choose λ to be the κth closure point of the function f .) �

Remark 3.11 In the above proof, for example, if cf(λ) is chosen to be ω23, we get a
model of zfc+mpccc(H(ω23))+cf(2ω) = ω23, an improvement over Theorem 3.9.

Remark 3.12 The construction in the proof of this theorem actually provides a
stronger parameter set than H(cf(2ω)). The sentences which are forced necessary
paired with their parameters occur unboundedly often in the forcing iteration. From
this fact, we see that for any ordinal η below δλ = 2ω, together with any ccc-
forceably necessary formula using it as a parameter, there is a stage α at which it is
forced to be necessary. Thus the set of ordinals below 2ω, that is, the set 2ω, can be
used as a parameter set. So the actual result of the theorem is the following corollary.

Corollary 3.13 The following theories are equiconsistent:
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1. zfc,
2. zfc + mpccc(H(cf(2ω)) ∪ 2ω).

Furthermore, in the second theory, the value of cf(2ω) can be as large as any ccc-
absolutely definable regular cardinal.

This answers a question posed in [2], in which Hamkins proves, as part of his Theo-
rem 5.6, the following theorem.

Theorem 3.14 The following theories are equiconsistent:
1. zfc + mpccc(2ω)+“2ω is regular”,
2. zfc+Vδ ≺ V +“δ is inaccessible”.

He goes on to ask whether the regularity of 2ω can be dropped from the first theory
while preserving its equiconsistency with the second. But that cannot be done. By
Corollary 3.13, a model of zfc alone implies existence of a model of the first theory
of Theorem 3.14 without regularity of 2ω, since mpccc(H(cf(2ω)) ∪ 2ω) implies
mpccc(2ω). This would give a model of the second theory of Theorem 3.14 and its
inaccessible δ, a contradiction, since inaccessible cardinals have higher consistency
strength than zfc.

Open questions remain, such as whether results similar to those in this paper are
possible for other kinds of forcing, say, for the class of proper forcing notions.

Notes

1. The S4 system of modal logic consists of the schemes (for any formula ϕ),
(1) ♦0ϕ ↔ ¬�0¬ϕ,
(2) �(ϕ → ψ) → (�ϕ → �ψ),
(3) �ϕ → ϕ, and
(4) �ϕ → ��ϕ.

The equivalence is left as an easy exercise. See [1] for a good introduction to modal logic
systems.

2. While preparing these results, the author noticed that the paper [5] addresses areas that
overlap topics in this paper and [2]. It prefigures, by a quarter of a century, the current
work on maximality principles. Further, it includes another class of reflection principles,
and applies all these ideas to abstract logics. Its results are powerful and interesting.
However, in spite of the intuitions behind its forcing arguments which convinced this
author of the truth of its claims, [5] is flawed. In several proofs, it makes use of a truth
predicate over the universe, which is forbidden by the fundamental result of Tarski. In the
proof of Theorem 28 in [5], a stage in a forcing iteration is defined as “If Bα is defined,
we let Bα+1 be determined as follows:. . . such that [[R(x1, . . . , xn)]]

Bα = 1. . . .” The
condition that a Boolean value of a statement is equal to 1 is equivalent to that statement
being true in the Boolean-valued extension. This cannot be expressed in the language of
zfc, nor serve as a definition, unless the ground model itself is somehow exempt from
Tarski’s result. For example, one could ensure that the ground model is a set by assuming
Vδ ≺ V , the tactic used in [2] and in this paper. Other results in [5] which depend on this
argument (Theorems 33, 34, and 35) share this flaw.

In fact, Theorem 32 in [5] is false. It says that for any ground model, there is always
a forcing extension which satisfies mpccc(A) for any set A. A counterexample can be
found within the proof of Theorem 2.8 in [2], which gives a model of zfc for which the
definable ordinals are unbounded. This is easy to arrange by taking the “definable cut”
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Wdef of a model W of zfc–the union of all Wα where α is definable. We also need that
W is a model where all such definitions are ccc-forcing absolute, but any model which
satisfies V = L will suffice. By the Tarski-Vaught criterion, Wdef is an elementary
submodel of W and therefore is a model of zfc. Clearly the class of definable ordinals
is unbounded in Wdef. Assume there is a forcing extension Wdef[G] which satisfies
mpccc(A). It still has the same ordinals as the ground model; hence the definable ordinals
are still unbounded. Working in Wdef[G], let γ be any definable ordinal. Consider the
ccc-forcing which enlarges the continuum to some cardinal greater than γ . Since this
inequality, 2ω > γ , is ccc-forceably necessary, it is already true by mpccc(A). So
in Wdef[G], 2ω is greater than any definable ordinal γ . But the definable ordinals are
unbounded in Wdef[G], a contradiction.

3. The models of zfc in which this occurs will be non-well-founded models. An alternative
approach, not taken here, would be to avoid these nonstandard models by constructing a
model for a maximality principle that applies to any finite fragment of zfc and then
finally applying the compactness theorem to find a model of the full maximality principle.
Our approach will be to apply the compactness theorem earlier on and allow iterations to
construct models of the full maximality principles.
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