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A Topological Approach to Yablo’s Paradox

Claudio Bernardi

Abstract Some years ago, Yablo gave a paradox concerning an infinite se-
quence of sentences: if each sentence of the sequence is ‘every subsequent sen-
tence in the sequence is false’, a contradiction easily follows. In this paper we
suggest a formalization of Yablo’s paradox in algebraic and topological terms.
Our main theorem states that, under a suitable condition, any continuous function
from 2N to 2N has a fixed point. This can be translated in the original framework
as follows. Consider an infinite sequence of sentences, where any sentence refers
to the truth values of the subsequent sentences: if the corresponding function is
continuous, no paradox arises.

1 Introduction

This paper deals with Yablo’s paradox, which, according to its author, is a paradox
without self-reference (see Yablo [11] or, for an earlier version, Yablo [10, p. 340]).
There are several papers discussing Yablo’s argument. In particular, there was much
debate about whether Yablo’s paradox involves self-reference or not: according to
some criticisms, Yablo’s construction is, in fact, self-referential (see, for instance,
Priest [8]). Leitgeb [6] argues that the opponents in this debate refer to two different
notions of self-reference, and, moreover, both of these notions seem to be inade-
quate. See also Leitgeb [7], where a definition of self-reference is given: if one
assumes this definition, the statements in Yablo’s paradox are not self-referential.
According to other criticisms, it would be more appropriate to say that Yablo’s ar-
gument leads to a situation that is ω-inconsistent rather than to a contradiction (see
Cook [3], Ketland [5]). In my opinion, Yablo’s paradox does not depend on a gen-
uine self-referential argument, or, at least, its logical schema is quite different from
the classical self-referential schemata. But this discussion is not the aim of this pa-
per. Our purpose is to examine the paradox from a topological point of view: in a
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more general context, we show that a paradox arises when a certain function is not
continuous with respect to a suitable topology.

Let us point out that other known constructions similar to Yablo’s paradox ex-
ist. In particular, we would like to mention the paradox of the class of all grounded
classes in Shen-Yuting [13] and the hypergame paradox in Zwicker [14]. For a
comparison between self-reference and these constructions, see Bernardi [1, Sec-
tion 1]. See also Bernardi and D’Agostino [2], where a proof schema is extracted
from Yablo-style arguments.

In Section 2 we recall Yablo’s paradox and briefly comment on it. In Section 3
we introduce a formal framework, which allows us, in Section 4, to prove the main
theorem of this paper. Finally, Section 5 is devoted to examples and further remarks.

2 Yablo’s Paradox

Yablo’s paradox can be stated as follows. Consider an infinite sequence of sentences
s0, s1, s2, . . . , where each sentence sn is ‘every subsequent sentence in the sequence
(i.e., every sentence sm with m > n) is false’. A contradiction arises when we try
to make a consistent assignment of truth values to all sentences. Let us suppose that
there is a sentence si which is false; then for a suitable j > i the sentence s j must be
true. So, in any case, we can assume that there is a true sentence s j . We deduce that,
for all n greater than j , all sentences sn are false. However, as a consequence, the
sentence s j+1 should be true, because what is stated is correct. In other words, every
T -value must be followed only by F-values, while every F-value must be followed
by at least one T -value, which is clearly impossible.

In the sequence of sentences, each of them refers only to the sentences that occur
later in the sequence (i.e., sentences of higher index). In this way, circularity and self-
reference seem to be avoided: if sn refers to sm , then sm does not refer to sn . One
can object that the sequence refers to itself. On the other hand, it is quite obvious
that, if each sn refers to the preceding sentences, no paradox arises: starting from s0
we can assign truth values to every sentence in one and only one way, whatever the
sentences are.

Remark 2.1 In the original version, the sentence sn is ‘for all m > n, sm is untrue’.
Let us briefly explain the difference between false and untrue. A spontaneous way to
try to overcome the Liar paradox is to say that the sentence ‘this sentence is false’ is
meaningless; so, it is neither true nor false. However, this is not a solution: it is suf-
ficient to consider the so-called Strengthened Liar sentence ‘this sentence is untrue’
(in the sense that it is either meaningless or false), and we get again a contradiction.
However, in our approach, we will always refer to a two-valued logic and make no
difference between the terms false and untrue.

In Yablo’s paradox, every sentence must be considered as a non-well-founded or an
ungrounded sentence in the sense of Kripke: the process of determining its truth
value, by examining the sentences it refers to, does not terminate. Note that we
cannot define a rank, or a level for ungrounded sentences—see also Yi [12, p. 561]
for a distinction between grounded and rooted. Are we allowed to consider un-
grounded sentences? There is no doubt that there are “serious difficulties in dealing
with sentences that form an infinite chain of semantic attributions” [12]. Similarly,
in [8, footnote 5], discussing a set-theoretic analogue of the paradox given in Gold-
stein [4], the author says, “Given the non-well-foundedness of the situation, it is not
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at all clear that there is such a sequence, even in naïve set theory.” Our main result
(Theorem 4.2 in Section 4) states a condition under which ungrounded situations can
be safely considered.

In Section 3, in order to approach a general situation, we will make use of a
denumerable sequence of sentences (sn)n∈N indexed by the set N. Instead of N, we
could also consider the set Z− of negative integers: in fact, from an intuitive point
of view, one might prefer the set Z− because the concept of an ungrounded sentence
corresponds to an infinite regression (it can be useful to think of a descending chain
—see [12] and [1]). Without any substantial difference, we could also consider the
set Z of all integers.

3 Formalizing the Paradox

Let us translate the situation in algebraic terms. Instead of false and true, consider 0
and 1, and let 2 be the set {0, 1}. Let us suppose that every sentence sn in a sequence
(sn)n∈N refers to the truth values of sentences in the sequence. Assume also that each
sentence is truth functional; this means that its truth value depends only on the truth
values of the involved sentences. Under these assumptions, any sequence (sn)n∈N
induces a function f from 2N to 2N. Indeed, what is stated in the sentence sn (for
every n) induces a function fn whose value can be either 0 or 1 depending only on
the truth values of the sentences involved in sn . We can express all the functions fn
by means of a single function f from 2N to 2N.

Definition 3.1 An assignment of truth values to all sentences is a function from
N to 2, that is, an element a of the set 2N. (Of course, 2N can be identified with the
power set P (N).) We shall refer to an as the nth component of a.

Given any assignment of truth values (that is, an element a of 2N), let us consider it
as expressing the truth values of sentences of the given sequence. Starting from this
assignment, the function fn gives the truth value that the nth sentence assumes as a
consequence. For instance, let us assume that the second sentence is ‘the next two
sentences are false’. Then the second component of f (a) is 1 if and only if a3 = 0
and a4 = 0.

Now, the key remark is the following. Given a sequence of sentences, assigning
truth values to all sentences in a consistent way corresponds to finding a fixed point
for the corresponding function f (see also [8]). Therefore, we look for an element a
of 2N such that a = f (a).

Definition 3.2 An initial segment of an element a of 2N is a finite family
a|m = a|{0,...,m−1} = (a j )| j<m = (a0, a1, . . . , am−1). A final segment of an
element a of 2N is an infinite family a|N−{0,...,m} = (a j )| j>m = (am+1, . . . ).

As we have already noted, in order to avoid both direct and indirect self-reference, the
truth value of every sentence must depend only on the truth value of the subsequent
sentences. The following definition translates this property in our context.

Definition 3.3 A function f from 2N to 2N is said to be ordered if, for every n, the
nth component of f (a) depends only on the final segment a|N−{0,...,n} = (a j )| j>n .
This means that, given two elements a and b, if their components having indices
greater than n are equal, then the nth components of f (a) and f (b) are equal too.
Note that, if f is ordered, the value a0 has no influence on f (a).
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In the following sections, we will consider 2N as a topological space, that is, as the
product of denumerably many copies of the discrete space {0, 1}. According to the
definition of a product space, 2N is not a discrete space, but it is compact by the
Tychonoff Theorem. In this space, a sequence (ah)h∈N of elements of 2N converges
to an element a of 2N if and only if, for every n, the nth components of ah eventually
equal the nth component of a. As is well known, a function f : 2N

→ 2N is continuous
if and only if all its component functions fn : 2N

→ 2 are continuous. The space 2N

is metrizable; in fact, it is homeomorphic to Cantor set. It follows that a function f :

2N
→2N is continuous if and only if it is sequentially continuous (i.e., it preserves the

limit of any given sequence).

4 If the Function Is Continuous, a Fixed Point Does Exist

First of all, we have to point out that not all ordered functions from 2N to 2N have
a fixed point. For example, it is enough to express Yablo’s paradox in this context.
The function g that corresponds to the sentences ‘every subsequent sentence is false’
can be described as follows:

the nth component of g(a) is

{
1, if am = 0 for all m > n
0, otherwise.

A fixed point, that is, a solution of the equation g(a) = a, should be an element of
2N where every digit 1 is followed only by 0s, whereas every digit 0 is followed by
at least one 1. This is clearly impossible. It is important to note that the function g
is not continuous with respect to the topology on 2N. This can be proved using the
characterization of continuous functions given in Lemma 4.1, but we prefer to verify
that g does not preserve the limit of a sequence. Let ah be the element of 2N with all
components equal to 0 with the only exception of the hth component that equals 1.
It is easy to see that

1. the limit of the sequence (ah)h∈N is 0 (where 0 is the element of 2N with all
components 0),

2. g(ah) is the element 00 . . . 0111 . . . where the first h digits are 0,
3. also the limit of the sequence (g(ah))h∈N is 0.

However, g(0) = 1 (where 1 is the element of 2N with all components 1): the image
of the limit is different from the limit of images.

Lemma 4.1

(i) A function fn from 2N in 2 is continuous if and only if fn(a) depends only on
finitely many components of a. More precisely, fn is continuous if and only
if there exists a number m such that, for every element a, the value fn(a)
depends only on the initial segment a|m = (a j )| j<m .

(ii) A function f from 2N in 2N is continuous if and only if, for every n, the nth
component of f (a) depends only on finitely many components of a.

Proof (i) (⇒) The proof follows by contradiction. Assume that fn(a) does not
depend on finitely many components of a. Then we can find, for every m, two distinct
elements bm and cm of 2N which share the first m components (in the sense that
bm

|m = cm
|m) but are such that fn(bm) = 0 and fn(cm) = 1. Consider a convergent

subsequence of the sequence (bm)m∈N (remember that 2N is a compact space) and let
b be its limit. Note that b is also the limit of the corresponding sequence of cm . But
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this contradicts the continuity of fn , because this continuity would imply that fn(b)
equals both 0 and 1.

(⇐) Conversely, let us prove that, given a sequence (ah)h∈N, when (ah) → a
we have ( fn(ah)) → fn(a). Assume that fn(a) depends only on a|m . Since
(ah) → a, there is a k such that, for any h > k, we have ah

|m = a|m . There-
fore, under our hypotheses, fn(a) = fn(ah) for every h > k. So we conclude that
( fn(ah))h∈N → fn(a).

(ii) Obvious from part (i). �

Note that, if f is a continuous ordered function, then the nth component of f (a)
depends only on a finite family (ah/n < h < m) = (an+1, . . . , am−1).

Theorem 4.2 Every continuous ordered function f from 2N in 2N has a fixed point.

Proof Let us start with a remark. Any final segment a|N−{0,...,m} = (a j )| j>m can be
“completed” to an element of 2N by means of the function f . More precisely, since
f is ordered, the given segment allows us to compute the mth component of f (a); if
we put this element in front of the given segment, we obtain another final segment,
whose domain is { j ∈ N/j > m −1}. Iterating this procedure m times, we get a final
segment whose domain is the whole set N. Now, consider any element a of 2N. Let
bq be the element of 2N obtained with the procedure we have just described, starting
from the final segment a| j>q . Consider a convergent subsequence of the sequence
(bq)q∈N and let b be its limit. We claim that b is a fixed point for the function f .

Indeed, from Lemma 4.1, we know that the nth component of f (b) depends only
on an initial segment b|m of b. Considering a suitable index q0 (greater than m and
n), we have that b|m = bq

|m for all q > q0 in the considered subsequence. This
equality guarantees that bn is the nth component of f (bq) and, as a consequence, it
is also the nth component of f (b). In other words, f (b) = b. �

Corollary 4.3 Let f be an ordered function from 2N in 2N with only finitely many
discontinuous components fn . Then f has a fixed point.

Proof Let n0 be the maximum index such that the n0th component of f is discontin-
uous. Let us consider the function f ∗ restricted to the set {n/n > n0}: just applying
the theorem we have a final segment which is a fixed point for f ∗. By completing
this final segment as before, we have a fixed point for f . �

Combining the results of Lemma 4.1 and Theorem 4.2, we have the following ap-
plication. Consider any infinite sequence of sentences s0, s1, s2, . . . , where each
sentence sn refers to the truth values of sentences in the sequence. If each sentence
refers only to finitely many subsequent sentences, then one can assign truth values to
all sentences in a consistent way, and no paradox arises. (A similar result is quoted
in Schlenker [9, footnote 3] and is credited to Martin and Visser.) This result holds
also in case finitely many sentences refer to infinitely many subsequent sentences.

5 Some Examples

5.1 Examples of continuous functions We start from two trivial cases. Consider
the sequence of sentences where every sentence is ‘the next sentence is true’. The
corresponding function f is a translation: f (a)(n) = an+1. This function has two
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fixed points: the sequence constituted by all 1s and the sequence constituted by all 0s.
Likewise, there are just two fixed points when every sentence is ‘the next sentence is
false’. In this case, the fixed points are 010101 . . . and 101010 . . . .

In the next example there is only one fixed point. Consider the following sen-
tences:

s0 : the sentences s1 and s2 are false,
s1 : the sentence s2 is false;

similarly, for every n,

s2n : the sentences s2n+1 and s2n+2 are false,
s2n+1 : the sentence s2n+2 is false.

It is easy to see that every s2n must be false; therefore, every s2n+1 must be true. The
only fixed point is 010101 . . . . We get a similar situation considering the sentences,

s2n : the sentences s2n+1 and s2n+2 have the same truth value,
s2n+1 : the sentence s2n+2 is false.

The only fixed point is the same as in the previous example.
Now, for every n, consider the sentence sn : ‘the sentence sn+2 is true’. Since

sentences with even indices and sentences with odd indices are independent from
each other, there are 4 fixed points: 0000 . . . , 1111 . . . , 0101 . . . , 1010 . . . . In a
similar way, we can construct examples of continuous ordered functions from 2N

in 2N with 8 or more fixed points. Moreover, partition the set N in infinitely many
infinite sets (Ai )i∈N and list any Ai in increasing order: Ai = {xi,0, xi,1, xi,2, . . . }.
If, for every xi,n , the sentence with index xi,n is ‘the sentence with index xi,n+1 is
true’, the corresponding function f has infinitely many fixed points (more precisely,
nondenumerably many fixed points).

Remark 5.1 Let f be a continuous ordered function from 2N in 2N. Two distinct
fixed points of f cannot eventually coincide: indeed, if a is a fixed point, the final
segment {am/m > n} determines the initial segment a|m+1 of a in a unique way. The
set of fixed points of f is a closed set with empty interior. Indeed, the set of fixed
points is closed for every continuous function. If the set of all sequences sharing the
same initial segment would be included in the set of fixed points, then there would
be two distinct fixed points with the same final segment.

5.2 Examples of noncontinuous functions (variants of Yablo’s paradox) We have
a contradiction also in case we consider the sequence in which all sentences are ‘at
least one of the subsequent sentences is false’. Indeed, every 1 must be followed by at
least one 0, while every 0 must be followed only by 1s. Therefore, it is impossible to
make any consistent assignment of truth values to all sentences. Of course, continuity
is not a necessary condition for the existence of a fixed point. If all sentences are ‘at
least one of the subsequent sentences is true’, there are two fixed points (all sentences
may be true, and all sentences may be false). Similarly, there are the same two
solutions when all sentences are ‘all the subsequent sentences are true’.

Slightly modifying the original situation, we can construct another couple of para-
doxes. The first one is a “Curry-style” or “Löb-style” version, which can be regarded
as a negation-free paradox. Given any statement H , we can prove H by considering
the sequence where each sentence is ‘if at least one of the subsequent sentences is
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true, then H ’. The statement H can easily be deduced (assume ¬H : each sentence
becomes equivalent to the negation of ‘at least one of the subsequent sentences is
true’, and so we get a contraction as in Yablo’s paradox).

Finally, assume that each sentence is ‘among the subsequent sentences, only
finitely many are true’. Also in this case we quickly reach a paradox. Indeed, af-
ter a true sentence there are only finitely many true sentences, while after a false
sentence there are infinitely many true sentences, which is clearly impossible. One
could say that the last paradox is without self-reference, without negation, and with-
out implication, but I understand that somebody may disagree with this. . .
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