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Hyperimmunity in 2N

Stephen Binns

Abstract We investigate the notion of hyperimmunity with respect to how it
can be applied to 50

1 classes and their Muchnik degrees. We show that hyper-
immunity is a strong enough concept to prove the existence of 50

1 classes with
intermediate Muchnik degree—in contrast to Post’s attempts to construct inter-
mediate c.e. degrees.

1 Introduction

1.1 Motivation This work is an attempt to develop and explore a computability
theory on 50

1 classes of 2N in direct analogy to the study of c.e. Turing degrees. The
two primary concepts of that study are c.e. subsets of N and Turing reducibility—we
assume the reader to be very familiar with both.

The analogous concepts in 2N that we deal with are 50
1 subclasses of 2N and

Muchnik reducibility. We ask ourselves how concepts developed in the study of
c.e. Turing degrees can be profitably applied to our developing understanding of 50

1
Muchnik degrees. This paper is meant to be read as much as a suggestion of a course
of study as a record of results.

It could, of course, be argued that c.e. subsets of N are more properly analogous
to 60

1 rather than 50
1 subclasses of 2N. One response to this is that it is really a

historical artifact that c.e. (i.e., 60
1 ) subsets of N rather than co-c.e. (i.e., 50

1) were
studied. Indeed, most of the properties of c.e. sets that we are concerned with are
usually defined explicitly in terms of their complements. But really the analogy that
we draw here is not meant to be exact but rather a guide to research, and often it is
where the analogy fails that the real research interest lies.

50
1 subclasses of 2N are already an established and ongoing area of research in

computability theory (see, for example, [4]). One fruitful way to conceive of a 50
1

class is as the set of paths through some computable binary tree. Muchnik reducibil-
ity is a less studied but completely natural concept. Just as Turing reducibility is an
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idea that applies to arbitrary subsets of N, Muchnik reducibility can be applied to ar-
bitrary subsets of NN. A ⊆ NN is Muchnik reducible to B ⊆ NN (written A 6w B)
if, for all f ∈ B, there is a g ∈ A such that f >T g. The w here stands for weak
(as opposed to strong or Medvedev reducibility) and Muchnik reducibility is often
called weak reducibility. The idea is that A and B are the respective sets of solutions
to two mathematical (mass) problems and every solution to the problem represented
by B computes a solution to the problem represented by A. In our case, the problems
involved will simply be those of finding paths through given computable trees. Two
problems are Muchnik equivalent if any solution to either computes a solution to the
other. The resulting structure of 50

1 classes modulo Muchnik equivalence is called
the Muchnik lattice and is denoted Pw. A (50

1) Muchnik degree is the equivalence
class of some (50

1) subset of 2N. Just as for c.e. Turing degrees, the Muchnik lattice
has a maximum degree and a minimum degree. The standard representative of the
maximum degree is the set

DNR2 = { f ∈ 2N
: ∀n f (n) 6= {n}(n)};

however, one could also use the set PA of completions of Peano arithmetic. The
standard representative of the minimum degree is 2N. Following the terminology for
the c.e. degrees, any 50

1 class representing the maximum degree is called Muchnik
complete.

Our basic program is to study properties of 50
1 classes and to see how this in-

fluences their Muchnik degrees. However, we will not be concerned with arbitrary
properties of 50

1 classes but only those properties that have a strong computability
theoretic character, namely, those properties that are preserved by computable per-
mutations of 2N (any such property we refer to as being a computably topological
property because any computable permutation automatically respects the topology
on 2N). This is the same criterion we use when we define a computability theoretic
property of subsets of N. According to the characterization by Rogers of Klein’s
program in [11], Chapter 4, this specification of the class of objects studied and the
characterization of the type of properties studied specifies a mathematical subject.

In this paper we look at the analogy of Post’s problem in Pw. Post was the first
to ask if there existed a c.e. set of intermediate Turing degree. He tried to create
such a set by describing properties that he hoped would guarantee incompleteness
while not requiring computability. Properties such as immunity and hyperimmunity
were tried, along with various others. These properties focused on creating a c.e. set
with a sufficiently attenuated complement, but none of these attempts succeeded in
describing an intermediate Turing degree and Post’s problem was solved later by
other methods.

Here we revive Post’s method in another context—that of the Muchnik lattice,
and here his ideas are a lot more fruitful. We use Post’s idea of hyperimmunity and
use it to define computable topological properties of 50

1 classes. This we do in five
different ways to get five distinct properties. These properties are mainly concerned
with the nature of the set of branching nodes of P . That is the set of binary strings
σ with the property that σa

〈0〉 and σa
〈1〉 have extensions in P . The nature of this

set (and other similar sets) has implications for the Muchnik degree of a 50
1 class P .

The most straightforward result is that if P has no computable element and the set
of branching nodes of P is hyperimmune then P is of intermediate Muchnik degree.
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At the same time that we consider Muchnik reducibility, we also look at the
stronger idea of Medvedev reducibility. This is also applicable to arbitrary sub-
sets of NN, one class A being Medvedev reducible to another class B if there is
a computable functional from B into A. This is the uniform version of Muchnik
reducibility. Of the five properties defined, three imply Muchnik incompleteness.
The other two properties imply Medvedev incompleteness and, as it is known that
there are 50

1 classes that are Muchnik complete but not Medvedev complete, this is a
weaker result. We conjecture, however, that all five imply Muchnik incompleteness,
but this is not established. We also apply the stronger property of dense immunity
to 50

1 classes and try to show where measure and the previously studied property of
thinness fit into the scheme of things.

These ideas create a panoply of open questions—some of which should be reason-
ably easy to answer and some of which will probably require significantly different
methods than those used here. We end with a section on some directions for further
research.

1.2 Basics Most of the notation we use is standard. Novel notation for this paper
is introduced in this section. The other material in this section can be found in more
detail in [4], [3], [2], or [13].

2N is the class of infinite binary sequences equipped with the natural product
topology making it a totally disconnected Polish space. 2<N denotes the set of all
finite binary strings. If σ ∈ 2<N, we denote by Uσ the set { f ∈ 2N

: f ⊃ σ }. The
collection {Uσ : σ ∈ 2<N

} forms a basis for the topology on 2N. Any finite union of
basis elements is clopen. Elements of 2<N will usually be denoted by σ , or τ , and
infinite binary sequences by f or g, or X or Y . Subsets of N will be identified with
their characteristic function without further mention. στ and σa f will denote the
concatenation of σ with τ or f .

All unexplained computability theory terminology and notation is standard and
can be found in [14] or [11]. We review the concepts that will be particularly impor-
tant here.

1. If X = {x0 < x1 < x2 . . . } ⊆ N then the map i 7→ xi is called the principal
function of X and is denoted pX .

2. If f and g are two functions from N to N and for all n, f (n) > g(n) then
f is said to dominate g. We say f dominates X ⊆ N if f dominates the
principal function of X .

3. If X ⊆ N is infinite and pX is not dominated by any computable function
then X is called hyperimmune.

There is another useful characterization of hyperimmunity. Every finite subset
F = {x0 < x1 < x2 < · · · < xn} of N can be indexed canonically by

∏n
i=0 pxi

i ,
where pi is the i th prime number. Dn will denote the finite set canonically indexed
by n. A strong array is a sequence of finite sets whose canonical indices are given
by a computable function. A disjoint strong array is a strong array whose elements
are pairwise disjoint. 〈D f (n)〉 will denote a strong array with computable indexing
function f .

A well-known theorem (Kuznecov, Medvedev, Uspenski, [14], V.2.3) states that
X ⊆ N is hyperimmune if and only if there is no disjoint strong array 〈D f (n)〉
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such that, for all n, D f (n) ∩ X 6= ∅. This is actually used as the definition of
hyperimmunity and the equivalence to our text definition is the theorem.

A tree is a subset of 2<N that is closed under taking initial segments. The elements
of a tree are called nodes. A tree is computable precisely when its set of nodes is.
A path through a tree T is an element f of 2N such that, for all n, f |n ∈ T . A 50

1
class is the set of paths through some infinite computable tree. We will thus always
assume that 50

1 classes are nonempty. If T is a computable tree the associated 50
1

class will be denoted [T ]. If T is a tree and σ ∈ T has the property that there exists
f ∈ [T ] such that f ⊃ σ , then σ is called extendible. The set of extendible nodes of
T is denoted Ext(T ). Similarly, if P is a 50

1 class and T any tree such that P = [T ],
then by Ext(P) we mean Ext(T ) (it is not hard to check that this is well-defined).

In general, computable trees will have nonextendible nodes but in constructing a
50

1 class we can view it as a nested computable intersection of trees with no nonex-
tendible nodes. In other words, a 50

1 class is the set of paths through some co-c.e. tree
that has no nonextendible nodes.

It is also very useful to view 50
1 classes syntactically. P ⊆ 2N is a 50

1 class if and
only if for some computable predicate R ⊆ N × 2N,

P = { f : ∀n R(n, f )}.

The equivalence of these different ideas is set out in detail in [4].
We introduce some notation and definitions that will be useful. Throughout, P is

a 50
1 class, σ an element of 2<N, X an element of 2N, and T a tree.

Notation

1. P(σ ) = { f ∈ P : f ⊃ σ }.

2. If n 6 |σ |, σ [n] = σ |n = 〈σ(0), σ (1), . . . , σ (n − 1)〉 (with σ [0] = ∅),

f [n] = f |n = 〈 f (0), f (1), . . . f (n − 1)〉,

P[n] = { f [n] : f ∈ P} = {σ ∈ Ext(P) : |σ | = n}.

3. {e}X
[n] is the partial sequence 〈xi 〉

n−1
i=0 where xi = {e}X (i) whenever

the right-hand side is defined, and undefined otherwise. In particular,
{e}X

[n] ∈ T implies {e}X (m)↓ for all m 6 n − 1. As above, {e}X
[0] = ∅.

4. We will be particularly concerned with a subset of the extendible nodes of
P—namely, the branching nodes of P . σ is a branching node if σa

〈0〉

and σa
〈1〉 are both in Ext(P). The set of branching nodes of P is denoted

Br(P). If X ∈ P , then by BrX (P) we mean the set {n ∈ N : X |n ∈ Br(P)}.
The concept of a branching node can also be applied to any subset of 2N.

5. The set of branching levels of a 50
1 class P is the set

Brl(P) = {n : ∃σ ∈ Br(P), |σ | = n}.

6. An important type of 50
1 class is a separating class. If A, B ⊆ N are disjoint

c.e. sets, then the separating class of A and B, denoted S(A, B), is the set

{ f ∈ 2N
: ∀n[(n ∈ A ⇒ f (n) = 1) and (n ∈ B H⇒ f (n) = 0)]}.

It is straightforward to show using the syntactical viewpoint above that
S(A, B) is a 50

1 class.
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1.3 The Muchnik lattice of 50
1 classes If A, B ⊆ 2N, then A is Muchnik reducible

to B (sometimes called weakly reducible), written A 6w B if

∀y ∈ B∃x ∈ A
[
y >T x

]
.

If A 6w B and B 6w A, then we write A ≡w B and say A and B are Muchnik
equivalent. The relation 6w is a pre-order on 2N and it can be made into a partial
order in the familiar way.

The Muchnik degree of A ⊆ 2N is the set

degw(A) = {B ⊆ 2N
: B ≡w A}.

degw(A) 6 degw(B) if A 6w B. This relation is now a partial order on the collection
of Muchnik degrees.

If P is the collection of nonempty 50
1 subclasses of 2N, then the structure

Pw = 〈{degw(P) : P ∈ P}, 6〉

we call the Muchnik lattice. To show it is in fact a lattice it is necessary to demon-
strate that every two Muchnik degrees have an infimum and supremum. They are as
follows. If P, Q ∈ P then define

P ∨ Q = { f ⊕ g : f ∈ P and g ∈ Q},

P ∧ Q = {〈0〉
a f : f ∈ P} ∪ {〈1〉

ag : g ∈ Q},

and then

degw(P) ∨ degw(Q) = degw(P ∨ Q),

degw(P) ∧ degw(Q) = degw(P ∧ Q).

These operations in Pw are distributive over each other as can easily be confirmed.
Furthermore, Pw has maximum and minimum elements denoted 1w and 0w, respec-
tively. Any 50

1 class with a computable element is a representative of 0w. One
representative of the maximum Muchnik degree is

DNR2 = { f ∈ 2N
: ∀n [{n}(n) 6= f (n)]}.

This is not immediately obvious but it is proved in [13].
A similar reducibility relation on P is called Medvedev reducibility (some-

times strong reducibility). If P, Q ∈ P and if there is a computable functional
8 : P −→ Q, then Q is said to be Medvedev reducible to P , written P >M Q.
This gives rise in the same manner as above to the Medvedev lattice PM which is
also distributive. If P, Q ∈ P, then P ∨ Q and P ∧ Q are also representatives
of the supremum and infimum of their Medvedev degrees. Furthermore, DNR2 is
a representative of 1M . Any such representative is called Medvedev (respectively,
Muchnik) complete.

2 Five Computably Topological Properties

We now define the five properties mentioned in the introduction and prove that they
are invariant under computable homeomorphisms.

Definition 2.1 A 50
1 P class is small if Br(P) is hyperimmune.

Definition 2.2 A 50
1 class P is pathwise hyperimmune (p.h.i.) if, for some X ∈ P ,

BrX (P) is hyperimmune.
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Definition 2.3 A 50
1 class is everywhere pathwise hyperimmune (e.p.h.i.) if, for

all X ∈ P , BrX (P) is hyperimmune.

Definition 2.4 A 50
1 class is uniformly pathwise hyperimmune (u.p.h.i.) if there is

no computable function ϕ such that for all X ∈ P , ϕ dominates BrX (P).

There is a direct counterpart in 2N to the notion of disjoint strong array. If Dn is a
finite set of (the Gödel numbers of) finite binary strings, then we define

D∗
n = {g ∈ 2N

: ∃σ ∈ Dn g ⊃ σ }

=
⋃

{Uσ : σ ∈ Dn}.

n is then the canonical index of the clopen set D∗
n .

We now define a property most directly analogous to the property of hyperimmu-
nity of subsets of N.

Definition 2.5 A 50
1 class P is hyperimmune (h.i.) if there is no disjoint strong

array 〈D∗

f (n)〉 such that, for all n, P ∩ D∗

f (n) 6= ∅.

To further emphasize the relatedness of hyperimmunity in 2N and hyperimmunity
in N, we make the following observation. If f is a computable function, then we
call 〈D f (n)〉 an incomparable strong array if, for all n, D f (n) ⊆ 2<N and, for all
σ, τ ∈

⋃
n D f (n), if σ 6= τ , then σ and τ are incomparable.

We make the following definition now which will be useful later on.

Definition 2.6 If C ⊆ 2N is clopen, then the root set of C , rt(C), is the unique finite
subset of Br(C) of smallest cardinality such that C = { f ∈ 2N

: ∃σ ∈ rt(C) f ⊃ σ }

=
⋃

{Uσ : σ ∈ rt(C)}.

Theorem 2.7 P is an h.i. 50
1 class if and only if there is no incomparable strong

array 〈D f (n)〉 such that, for all n,

Ext(P) ∩ D f (n) 6= ∅.

Proof This is straightforward using the fact that two clopen subsets of 2N are dis-
joint if and only if their two root sets are pairwise incomparable. �

The property of smallness has other quite natural characterizations as shown in the
next theorem. The two following definitions will be useful.

Definition 2.8 If P is a perfect closed subset of 2N, then let 8P be the canonical,
order-preserving map from 2<N onto Br(P). That is,

8P (∅) = the unique element of Br(P) of minimum length,

8P (σa
〈0〉) = the unique element of Br(P) of minimum length extending 8P (σ )a〈0〉,

8P (σa
〈1〉) = the unique element of Br(P) of minimum length extending 8P (σ )a〈1〉.

Theorem 2.9 The following are equivalent:
1. P is small,
2. the function from N to N given by

n 7→ min{|8P (σ )| : |σ | = n}

is not dominated by any computable function,
3. Brl(P) is hyperimmune

(recall that, Brl(P) = {n : ∃σ ∈ Br(P) |σ | = n}),
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4. there is no computable function f such that ∀n ‖P[ f (n)]‖ > n,
5. there is no computable function f such that

∀n∃σ ∈ Br(P)
[

f (n) 6 |σ | < f (n + 1)
]
.

Proof The proofs of most of the above can be found in [1]. The remaining part is
straightforward. �

Uniform pathwise hyperimmunity also has the following alternative characteriza-
tions which emphasize its relationship to smallness.

Theorem 2.10 The following are equivalent:
1. P is u.p.h.i.,
2. the function from N to N given by

n 7→ max({|8P (σ )| : |σ | = n})

is not dominated by any computable function (compare 2.9(2)),
3. there is no computable function f such that

∀n∀σ ∈ P[ f (n)]∃τ ∈ Br(P)
[
τ ⊇ σ and |τ | < f (n + 1)

]
(compare 2.9(5)).

Proof The proofs are similar to the proofs of Theorem 2.9. �

It will also be useful to note the following characterization of e.p.h.i. and p.h.i. anal-
ogous to Theorem 2.9(5).

Theorem 2.11 A 50
1 class P is p.h.i. (e.p.h.i.) if and only if for some (all) X ∈ P

there is no strictly increasing computable function f such that for all n there is an m
such that f (n) 6 m < f (n + 1) and X |m ∈ Br(P).

Proof See [1], Theorem 2.27(⇐). �

We show in Section 4 that e.p.h.i. 50
1 classes are necessarily Muchnik incomplete,

and it follows immediately that small 50
1 classes are also Muchnik incomplete.

U.p.h.i., p.h.i., and h.i. classes will be shown to be Medvedev incomplete in the same
section. Actually Medvedev incompleteness is relatively straightforward to prove, as
Simpson has shown (see Lemma 4.2) that any two Medvedev complete 50

1 classes
are computably homeomorphic. We show in Section 3 that all five of the previous
properties are invariant under computable homeomorphisms, so to show, for exam-
ple, that all p.h.i. classes are Medvedev incomplete it is enough to show that some
representative of the maximum Medvedev degree is not p.h.i. This we do for DNR2.

2.1 Invariance under computable homeomorphisms Now that these properties
are defined, we will prove that they are all computable topological properties.

Theorem 2.12 Smallness is a computably topological property.

This was proved in [3]. In fact, the stronger result was proved that if P and Q are
50

1 classes and {e} : P −→ Q is surjective, then if P is small so is Q. This stronger
property is shared by h.i. 50

1 classes but for p.h.i., e.p.h.i., and u.p.h.i. 50
1 classes

injectivity seems to be needed. The necessity of injectivity in these cases has yet to
be established however.
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Theorem 2.13 Hyperimmunity is a computably topological property.

Proof Suppose P, Q ⊆ 2N are 50
1, {e} : P −→ Q is a computable surjection and

Q is not hyperimmune. Let 〈D∗

f (n)〉 witness this last fact. We will find a computable
function g so that 〈D∗

g(n)〉 witnesses the fact that P is not hyperimmune.
We first define two functions that will be useful later. Let n ∈ N and n 7→ ln = l

and n 7→ tn = t be two functions with the property that ∀τ ∈ Pt [l] {e}τt [n] ∈ Qt [n].
Such numbers l and t exist because P is compact. Thus l and t can be found by
a computable search, and the functions n 7→ ln and n 7→ tn can be taken to be
computable. We also assume for later purposes that ln is strictly increasing.

Now let m = m(n) = max{|σ | : σ ∈ D f (n)}; l = lm, t = tm , and let
Dg(n) = {τ ∈ Pt [l] : ∃σ ∈ D f (n) {e}τt [m] ⊇ σ }. g is computable and 〈D∗

g(n)〉

is pairwise disjoint as 〈D∗

f (n)〉 is. �

This next lemma is key to a lot of what follows.

Lemma 2.14 Suppose that P, Q ⊆ 2N are 50
1 classes and that 8 : P → Q is

a computable homeomorphism. Let X ∈ P and Y = 8(X). Suppose f ∈ NN is
strictly increasing and such that

∀n BrY [ f (n), f (n + 1)) 6= ∅.

Then there is a strictly increasing g 6T f such that

∀n BrX [g(n), g(n + 1)) 6= ∅.

Proof Let TP and TQ be two computable trees such that [TP ] = P and [TQ] = Q.
As 8 is a computable homeomorphism, there is a total computable function
ϕ : TP → 2<N such that

1. ∀σ ∈ Ext(P)
[
ϕ(σ) ∈ Ext(Q)

]
,

2. ∀σ, τ ∈ TP
[
σ ⊆ τ H⇒ ϕ(σ) ⊆ ϕ(τ)

]
,

3. ∀X ∈ P
[⋃

n ϕ(X [n]) = 8(X)
]
,

4. ∀X, Y ∈ P
[
X 6= Y H⇒ ∃n ∈ N [ϕ(X [n]) 6= ϕ(Y [n])]

]
,

5. ∀τ ∈ Ext(Q)∃σ ∈ Ext(P)
[
ϕ(σ) ⊇ τ

]
.

ϕ will not be unique, but if e is an index for 8, then ϕ can be taken to be the function
σ 7→ {e}σ , where {e}σ is the longest total string of the form

〈{e}σ
|σ |

(0), {e}σ
|σ |

(1), {e}σ
|σ |

(2), . . . , {e}σ
|σ |

(m)〉

with m < |σ |. There will be a computable function satisfying the first three prop-
erties for any computable functional from P to Q. Property 4 will be true if the
functional is one-to-one, and property 5 is true for surjections.

For any n ∈ N, let ln ∈ N have the property ∀σ ∈ TP [ln] |ϕ(σ)| > n. To see
that such an ln must exist, notice that by compactness there is a λn ∈ N such that
∀σ ∈ P[λn] |ϕ(σ)| > n. Now take ln > λn such that ∀σ ∈ TP [ln] σ [λn] ∈ P[λn].
That is, all nonextendable nodes of length less than or equal to λn have terminated
by level ln . As TP is computable, we can take the function n 7→ ln to be computable.

Now suppose f is given as in the statement of the theorem. We proceed by induc-
tion to compute a g from f with the required property. Let g(0) = l f (0). Suppose
now that we have computed g(k) for all k 6 n. For all k ∈ N, g(k) will be chosen
to be of the form l f (k′) for some k′

∈ N. In particular, let g(n) = l f (n′). We now
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use f to choose g(n + 1) of the form l f (m) for some m > n′. For any k ∈ N and
σ ∈ P[l f (k)], we define the set

Sk(σ ) = {τ ∈ P[l f (k)] : ϕ(τ)[ f (k)] = ϕ(σ)[ f (k)] ∈ Q[ f (k)]}.

It is immediate, of course, that σ ∈ Sk(σ ).
Fix X ∈ P and Y = 8(X) and consider the set Sn′(X [g(n)]). The argument

divides into three different cases, and it will be in general impossible to f -effectively
decide which case pertains. However, it will be shown that there is a uniformly
f -effective choice for g(n + 1) which will suffice for all three cases. That is, we can
choose g(n + 1) so that X has a branching node in the interval [g(n), g(n + 1)).

Case 1 Sn′(X [g(n)]) = {X [g(n)]}. Consider f (n′
+ 1). As there is a branching

node on Y in the interval [ f (n′), f (n′
+ 1)), there must be two distinct extensions

τ0 and τ1 of Y [ f (n′)] in Q[ f (n′
+ 1)]. By properties 2 and 5 of ϕ, there are two

incomparable elements in Ext(P) that get mapped via ϕ to extensions of τ0 and τ1.
Hence, by the definition of ln , there are two distinct elements of P[l f (n′+1)] that get
mapped via ϕ to extensions of τ0 and τ1. Call two such elements γ0 and γ1. As τ0
and τ1 both extend Y [ f (n′)] we must have that, for i ∈ {0, 1},

ϕ(γi [g(n)]) ⊇ Y [ f (n′)]

(as each ϕ(γi [g(n)]) must extend some element of Q[ f (n′)], and if it did not extend
Y [ f (n′)], then ϕ(γi ) would not extend Y [ f (n′)]).

But then γi [g(n)] ∈ Sn′(X [g(n)]) for each i ∈ {0, 1} (as ϕ(X [g(n)]) ⊇ Y [ f (n′)]).
As Sn′(X [g(n)]) has only one element, both γ0 and γ1 extend X [g(n)]. As
both are elements of P[l f (n′+1)], X must have a branching node in the interval
[g(n), l f (n′+1)). Hence g(n + 1) = l f (n′+1) suffices for this case.

Case 2 Sn′(X [g(n)]) ) {X [g(n)]}. We claim that there must exist an n′′ > n′

such that for all elements σ0, σ1 of TP [l f (n′′)] if σ0[g(n)] 6= σ1[g(n)], then
ϕ(σ0)[ f (n′′)] 6= ϕ(σ1)[ f (n′′)]. To see this, first notice that, because 8 is one-
to-one, for all distinct τ0, τ1 ∈ P[g(n)],

∀X0 ∈ P(τ0)∀X1 ∈ P(τ1)∃k
[
ϕ(X0[l f (k)])[ f (k)] 6= ϕ(X1[l f (k)])[ f (k)]

]
.

Using the compactness of P(τ0) and P(τ1) we get, for all distinct τ0, τ1 ∈ P[g(n)],

∃k∀X0 ∈ P(τ0)∀X1 ∈ P(τ1)
[
ϕ(X0[l f (k)])[ f (k)] 6= ϕ(X1[l f (k)])[ f (k)]

]
.

If we then let k′ be the maximum of such ks over all distinct pairs τ0, τ1 ∈ P[g(n)],
we have (for all such τ0, τ1)

∀X0 ∈ P(τ0)∀X1 ∈ P(τ1)
[
ϕ(X0[l f (k′)])[ f (k′)] 6= ϕ(X1[l f (k′)])[ f (k′)]

]
.

Finally, we take n′′ > k′ to be such that ∀σ ∈ TP [l f (n′′)] σ [l f (k′)] ∈ P[l f (k′)]. Then

∀σ0, σ1 ∈ TP [l f (n′′)]
[
σ0[g(n)] 6= σ1[g(n)] → ϕ(σ0)[ f (n′′)] 6= ϕ(σ1)[ f (n′′)]

]
as required. Furthermore, we can then find such an n′′ f -computably as TP is com-
putable.

Case 2 now divides into two separate cases.

Case 2a Sn′(X [l f (n′′)]) = {X [l f (n′′)]}. This is essentially Case 1 with l f (n′′) taking
the place of l f (n′) = g(n). As argued in Case 1 there must be a branching node on X
between l f (n′′) and l f (n′′+1) and hence between g(n) and l f (n′′+1). Thus we choose
g(n + 1) = l f (n′′+1).
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Case 2b Sn′(X [l f (n′′)]) ) {X [l f (n′′)]}. Let γ0 and γ1 be two distinct elements of
Sn′(X [l f (n′′)]) with γ0 = X [l f (n′′)]. Therefore, ϕ(γ0)[ f (n′′)] = ϕ(γ1)[ f (n′′)] =

ϕ(X [l f (n′′)])[ f (n′′)]. We choose n′′ so that this would imply that both γi extend
X [g(n)]. Thus X has a branching node above g(n) and below l f (n′′). Thus we can
choose g(n + 1) = l f (n′′).

As n′′ > n′, the choice of g(n + 1) = l f (n′′
+ 1) suffices for all three cases. �

We are particularly interested in the situation when f in the previous lemma is com-
putable. This gives immediately the following.

Theorem 2.15 E.p.h.i., p.h.i., and u.p.h.i. are all computably topological proper-
ties.

Proof Suppose P and Q are computably homeomorphic 50
1 classes. If Y ∈ Q and

f a computable function such that

∀n BrY (Q) ∩ [ f (n), f (n + 1)) 6= ∅.

Then Lemma 2.14 constructs a g, also computable, such that

∀n BrX (P) ∩ [g(n), g(n + 1)) 6= ∅,

where X is the pre-image of Y under the homeomorphism. This proves (using The-
orems 2.10 and 2.11) that if Q is not e.p.h.i., (p.h.i., u.p.h.i.) then neither is P . �

2.2 Lattice operations The final lemmas in this section will be useful later on for
constructing 50

1 classes with required properties.

Theorem 2.16 (see [1], Theorem 2.27) If P, Q ⊆ 2ω are 50
1, then P ∨ Q is small

if and only if P ∧ Q is small if and only if both P and Q are small.

Lemma 2.17 If X ⊆ ω and Y ⊆ ω are co-c.e., then X ⊕ Y = {2x : x ∈ X}

∪ {2x + 1 : x ∈ Y } is hyperimmune if and only if both X and Y are.

Proof If X or Y were not h.i., it would be straightforward to construct a dis-
joint strong array witnessing the fact that X ⊕ Y were not h.i. So suppose
that X ⊕ Y was not h.i. Let f be a computable function such that for all n
D f (n) ∩ (X ⊕ Y ) 6= ∅. Let

(
D f (n)

)
0 = {m/2 : m is even and m ∈ D f (n)},

and let
(
D f (n)

)
1 = {(m − 1)/2 : m is odd and m ∈ D f (n)}. For every n either(

D f (n)

)
0 ∩ X 6= ∅ or

(
D f (n)

)
1 ∩ Y 6= ∅. Therefore, if for infinitely many n,(

D f (n)

)
0 ∩ X = ∅, then for infinitely many n,

(
D f (n)

)
1 ∩ Y 6= ∅, and an infinite

sequence of such ns could be computed (because X is co-c.e.), contradicting the
hyperimmunity of Y . So for some N , and for all n > N ,

(
D f (n)

)
0 ∩ X 6= ∅,

contradicting the hyperimmunity of X . �

Theorem 2.18 If P and Q are 50
1 classes and both are e.p.h.i. (p.h.i., u.p.h.i., h.i.),

then so is P ∧ Q.

Proof The proofs for e.p.h.i., p.h.i., and u.p.h.i. are very straightforward. The proof
for h.i. is analogous to the proof of Lemma 2.17. �

Theorem 2.19 If P ∧ Q is e.p.h.i. (h.i.), then so are P and Q. This is not the case
for u.p.h.i. and p.h.i.
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Proof The first part is immediate. The second is done by noticing that S ∧ 2N is
both u.p.h.i. and p.h.i. if S is small. �

Theorem 2.20 If S is a small 50
1 class and P, a u.p.h.i. 50

1 class, then S ∨ P is
u.p.h.i.

Proof We show the contrapositive. Let f be a computable even-valued function
witnessing the fact that S∨ P is not u.p.h.i. Then for all n and σ ⊕τ ∈ (S∨ P)[ f (n)]
and for all X ⊕ Y ∈ (S ∨ P)(σ ⊕ τ) either BrX (S) ∩

[
f (n)/2, f (n + 1)/2

)
6= ∅

or BrY (P) ∩
[

f (n)/2, f (n + 1)/2
)

6= ∅. As S is a small 50
1 class, there must be

an infinite computable set {ni : i ∈ N} such that, for all i , Brl(S) ∩
[

f (n)/2,

f (n + 1)/2
)

= ∅. Therefore, for all i and for all σ ∈ P[ f (ni )], there is a τ ⊇ σ
such that τ ∈ Br(P) and |τ | 6 f (n + 1)/2. Hence f (ni )/2 witnesses the fact that
P is not u.p.h.i., contradiction. �

Theorem 2.21 If P and Q are 50
1, then P and Q are (e.)p.h.i. if and only if P ∨ Q

is.

Proof Straightforward using Lemma 2.17. �

Theorem 2.22 If P ∨ Q is h.i., then both P and Q are.

Proof Without losing generality, assume that P is not h.i. If f is computable and if
∀n D∗

f (n) ∩ P 6= ∅, then ∀n (D∗

f (n) ∨ 2N) ∩ P ∨ Q 6= ∅. �

The converse to the previous theorem has not been proved. It is analogous to the
theorem that the disjoint union of two co-c.e. and hyperimmune subsets of N is hy-
perimmune. We conjecture that it is false in this context. We also conjecture that the
join of two u.p.h.i. 50

1 classes is not necessarily u.p.h.i.

2.3 Comparisons to measure and each other In [3] it is shown that all small 50
1

classes have measure zero. Here we improve this result to show that it holds for all
e.p.h.i. classes.

Theorem 2.23 If P is an e.p.h.i. 50
1 class then µ(P) = 0.

Proof Suppose P is a 50
1 class and µ(P) > 0. We will describe an X ∈ P and

a computable function f with f dominating BrX (P). Let k be the least positive
integer such that 1/2k < µ(P). f will be the function n 7→ n · k.

There must be at least two extendible nodes on P[k] (or else 1/2k > µ(P)) and
so there must be a branching node of length strictly less than k. There also must exist
a σ ∈ P[k] such that 2k

· µ(P(σ )) > µ(P). Let this σ be σ1. Iterating the process,
there is a σ ∈ P[(n + 1) · k] extending σn such that 2k

· µ(P(σ )) > µ(P(σn)). Let
this σ be σn+1. As above, there must be a branching between σn and σn+1.

Then X =
⋃

∞

n=1 σn and f (n) = n · k are as required. �

However, u.p.h.i. 50
1 classes need not have measure zero. For example, if S is small

and µ(Q) > 0, then S ∧ Q is u.p.h.i. and µ(S ∧ Q) > 0. H.i. 50
1 classes are also

not necessarily of measure zero as the following shows.

Theorem 2.24 (Simpson) Every 50
1 class of positive measure contains an h.i. 50

1
class of positive measure.
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Proof Suppose P ⊆ 2N is 50
1 and µ(P) > m > 0 for some computable real

m. We will diagonalize against the class of disjoint strong arrays to create an
h.i. subclass. Let d be a partial computable function such that, for a given e ∈ N,
µ(D∗

{e}(d(e))) < m/2e+1. d(e) is defined if (but not only if) the range of {e} is
infinite. Let P ′

= P r
⋃

e∈N D∗

{e}(d(e)). P ′ is 50
1 as

⋃
e∈N D∗

{e}(d(e)) is 60
1 and it has

positive measure because

µ(
⋃
e∈N

D∗

{e}(d(e))) 6
∑
e∈N

m/2e+1 6 m/2 < m.

It is h.i. because for all e, D∗

{e}(d(e)) ∩ P ′
= ∅. �

Theorem 2.25 Small ⇒ e.p.h.i. ⇒ p.h.i. ⇒ u.p.h.i.

Proof From the definitions it is clear that e.p.h.i. ⇒ p.h.i. ⇒ u.p.h.i. For the first
implication suppose P were 50

1 and not e.p.h.i.—witnessed by X ∈ P and com-
putable function f dominating BrX (P). BrX (P) ⊆ Brl(P) and so f also dominates
Brl(P). Therefore, P is not small. �

Theorem 2.26 U.p.h.i. 6⇒ p.h.i.

Proof We denote by 1n and 0n the strings of n ones and zeroes, respectively,
with the understanding that 10

= 00
= ∅. Let f be the principal function

of some hyperimmune 50
1 subset of N. Let T be the tree generated by the set

{0i a1 f (i)+1a
γ : i ∈ N, γ ∈ 2<N

} and let P = [T ]. P is 50
1 by inspection. For ev-

ery X ∈ P , BrX (P) is cofinite, so P is clearly not p.h.i. However, if 8P is the func-
tion from Definition 2.8, then for every n > 0, max{|8P (σ )| : |σ | = n} > f (n − 1)
which is not dominated by any computable function. So P is u.p.h.i. �

The P constructed in the previous theorem has a computable path (namely, 0∞) and
so has trivial Muchnik degree. As we will be interested in the Muchnik degrees of
the 50

1 classes we create, this could be a problem; however, as the next theorem
shows, we needn’t worry.

Theorem 2.27 There exists a 50
1 class with no computable path (and hence perfect)

that is u.p.h.i. but not p.h.i.

Proof Let P be as constructed in the previous theorem, and let S be a small 50
1

class with no computable path. Then Lemma 2.20 says that P ∨ S will be u.p.h.i. and
Theorem 2.21 says that it will not be p.h.i. �

Theorem 2.28 P.h.i. 6⇒ e.p.h.i. and h.i. 6⇒ e.p.h.i.

Proof Any p.h.i. or h.i. class of positive measure illustrates this. �

The following is based on an unpublished construction by Lerman.

Theorem 2.29 E.p.h.i. 6⇒ h.i.

Proof We construct an e.p.h.i. class P which is not h.i. by describing a computable
sequence Ts of nested computable trees such that T =

⋂
s Ts and P = [T ]. P will be

countable with exactly one nonisolated path X . We will find a perfect 50
1 class with

the required properties in a corollary. We adopt the 0n notation from Theorem 2.26.
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To build Ts , we construct a sequence of natural numbers 0 = l0 6 l1 6 l2 · · · with
lims→∞ ls = ∞. At each stage s we have

(i) Ts[ls] = T [ls],
(ii) ∀σ ∈ Ts[ls], [τ ⊇ σ H⇒ τ ∈ Ts].

To ensure that T has the required properties, we construct, concurrently with Ts , two
double sequences of nonnegative integers,

e0,s < e1,s < · · · < ens ,s

and
u0,s, u1,s, . . . uns ,s,

with the following properties:

A1 lims ns = ∞.
A2 ∀i lims ui,s and lims ei,s exist and are denoted ui and ei .
A3 The unique nonisolated path of P is

X = 1e0a0u0a1e1a0u1a . . ..

A4 If we let τi,s denote the string

1e0,s a0u0,s a1e1,s a0u1,s a . . .a 0ui,s ,

then ∀s τns ,s ∈ Ts[ls]. τns ,s is to be considered an approximation to
the path X .

In what follows, ls will be defined independently and the values of the u j,s will be
induced by the requirement in A4 that ls =

∑ns
j=0 e j,s + u j,s .

If s is a stage at which Ts+1 6= Ts , then ls+1 > ls and

Ts+1[ls+1] = {σa0ls+1−ls : σ ∈ Ts[ls]} ∪

{τns ,s
a1p a0ls+1−ls−p

: 0 < p 6 ls+1 − ls}. (1)

Ts+1 is then any string extending or extended by an element of Ts+1[ls+1].
All that remains in the construction is to describe the sequences 〈ei,s〉, 〈ui,s〉, and

〈ls〉 and to determine the stages at which Ts+1 6= Ts . At stage s = 0, we set ns = 0
and ens ,s = uns ,s = 0. This gives l0 = 0 and τ0,0 = ∅ by definition. Now let s
be arbitrary and suppose ns and ls are defined. Also suppose that ei,s and ui,s are
defined for all i 6 ns . For convenience we begin indexing the partial computable
functions at 1. Let e be the least positive integer such that

B1 e 6= ei,s for any i 6 ns ,
B2 for some 0 < k 6 s, if j is the largest integer such that e j,s < e, then

|τ j,s | + e + k 6 {e}s(|τ j,s | + e + k)↓< {e}s(|τ j,s | + e + k + 1)↓ . (2)
Then we set

C1 ns+1 = j + 1,
C2 ens+1,s+1 = e,
C3 ei,s+1 = ei,s and ui,s+1 = ui,s for all i 6 j ,
C4 ls+1 = max{ls + 1, {e}(|τ j,s | + e + k + 1)},
C5 uns+1,s+1 = ls+1 − |τ j,s | − e

(this to ensure that |τns+1,s+1| = ls+1).
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If no such e exists then all values are unchanged. The point is that if {e} appears at
stage s to be a total increasing function, then we ensure that

BrX (P) ∩
[
{e}(|τ j,s | + e + k), {e}(|τ j,s | + e + k + 1)

)
= ∅.

As X is the only element of P that has infinitely many branching nodes on it, this
ensures that P is e.p.h.i. via Theorem 2.11.

It remains to show that P is e.p.h.i. and not h.i. This is done in the next few
lemmas.

Lemma 2.30 For all τ ∈ T , τa0∞
∈ P.

Proof If {e} is a total increasing function then there will be a stage s for which 2 is
satisfied and ls+1 > ls . Thus lims ls = ∞. Let τ ∈ T be arbitrary and s such that
ls 6 |τ | < ls+1. Then τ is of the form σa1na0m for some 0 6 n, m < ls+1 − ls ,
and σ ∈ P[ls]. An inspection of Equation (1) above taking p = n (if necessary) then
gives the result. �

Lemma 2.31 For all s, τns ,s ∈ T .

Proof By induction. First, τn0,0 = ∅ ∈ T . Now let s be arbitrary and suppose
τi,s ∈ T for all i 6 ns . We can assume Ts 6= Ts+1. There are two cases.

Case 1 τns+1,s+1 ) τns ,s . In this case, j from (2) is just ns and

τns+1,s+1 = τns ,s
a1ens+1,s+1a0uns+1,s+1 .

So using Equation (2) and the definition of ls+1 we have

0 < ens+1,s+1 6 ls+1 − ls .

Take p = ens+1,s+1 in (1). We can do this because ls+1−ls = ls+1−|τns ,s | > ens+1,s+1
by A4, C4, and (2) above.

Case 2 Let j < ns be the largest integer such that τns+1,s+1 ) τ j,s and

τns+1,s+1 = τ j,s
a1ens+1,s+1a0uns+1,s+1 .

By definition ens+1,s+1 < e j+1,s so

τ j,s
a1ens+1,s+1 ( τ j,s

a1e j+1,s ⊆ τns ,s ∈ T .

Therefore, τ j,s
a1ens+1,s+1 ∈ T , and so, by Lemma 2.30, τns+1,s+1 ∈ T . �

Lemma 2.32 For all s such that Ts 6= Ts+1, |τns+1,s+1| > |τns ,s |. Either
τns+1,s+1 ) τns ,s or τns+1,s+1 is less than τns ,s lexicographically.

Proof |τns ,s | = ls for all s and ls is increasing in s whenever Ts 6= Ts+1. Assume
that it is not the case that τns+1,s+1 ) τns ,s . If j is as (2), then

τns+1,s+1 ⊇ τ
a
j,s1ens+1,s+1a01 and τns ,s ⊇ τ

a
j,s1e j+1,s .

As ens+1,s+1 < e j+1,s , the result follows. �

Lemma 2.33 P is not h.i.
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Proof For convenience we (computably) re-index the sequence 〈Ts〉 so that
Ts+1 6= Ts for all s. Now consider the disjoint strong array given by D f (s) =

{τns ,s
a1ls+1−ls } for each s. First notice that τns ,s

a1ls+1−ls ∈ Ts+1 for all s (take
p = ls+1 − ls in (1)). We claim that the sequence is increasing in length and strictly
decreasing in lexicographical order. Hence it is pairwise incomparable. Lemma 2.30
then guarantees that D f (s) ∩ Ext(P) 6= ∅ for all s and, therefore, P is not h.i. by
Theorem 2.7.

To prove the claim consider two cases.

Case 1 τns+1,s+1 ) τns ,s . Then |τns+1,s+1| = ls+1 = |τns ,s
a1ls+1−ls | and

τns+1,s+1 = τns ,s
a1ens+1,s+1a0uns+1,s+1 . But

uns+1,s+1 = ls+1 − |τ j,s | − ens+1,s+1

> |τ j,s | + ens+1,s+1 + k − |τ j,s | − ens+1,s+1

from (2) and the definition of ls+1
> 0.

Therefore, τns+1,s+1 is lexicographically less than τns ,s
a1ls+1−ls .

Case 2 If it is not the case that τns+1,s+1 ) τns ,s , then, by Lemma 2.32, τns+1,s+1
is lexicographically less than τns ,s . As |τns+1,s+1| > |τns ,s |, the two strings must be
incomparable. Therefore, any extension of τns+1,s+1 must be lexicographically less
than any extension of τns ,s . The result follows a fortiori. �

Lemma 2.34 X is the only nonisolated path in P.

Proof It is immediate from the construction that ei,s+1 6 ei,s for all i and s. So ei
exists for all i . ui,s 6= ui,s+1 only when ei,s 6= ei,s+1 so ui exists as well. And for all
i , τi = lims τi,s = 1e0a0u0a1e1a0u1a . . .a 0ui exists. But for each s τi,s ∈ T and
so τi ∈ T . X =

⋃
i τi and so X ∈ P . Furthermore, τi is a branching node for all i

(as τ
a
i 01

∈ T by Lemma 2.30 and τ
a
i 11

∈ T as it is extended by τi+1). So there are
infinitely many branching nodes along X and X is not isolated.

Let i > 0 be arbitrary and let s be such that τi,s = τi and nt > i for all t > s.
Then if Y ∈ P such that Y 6⊃ τi then Y 6⊃ τnt ,t for all t > s. An inspection of (1)
shows that for all σ ) Y [ls], σ = Y [ls]a0|σ |−ls and hence Y is isolated. �

Lemma 2.35 If σ ∈ T and σ is of the form

1e0a0u0a . . . 1e1a0q

where 0 < q < ui , then σ 6∈ Br(P).

Proof By (1) above, if σ ∈ T then σa
〈1〉 ∈ T only if σ is of the form τ

a
ns ,s1q for

some s and 0 6 q < ls+1 −ls . This is inconsistent with being of the above form. �

Lemma 2.36 P is e.p.h.i.

Proof Let {e} be any strictly increasing total computable function—a candidate for
witnessing the fact that P is not e.p.h.i. Let s be a stage such that

(i) for all ei < e, ei,s = ei .
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For all stages t > s and for all ei < e, τi,t = τi . In particular, if j is as in (2) then
e j < e and |τ j,t | is constant for all t > s. We can also assume that s is so large that
it also satisfies

(ii) there exists a 0 < k 6 s such that

|τ j,s | + e + k 6 {e}s(|τ j,s | + e + k)↓< {e}s(|τ j,s | + e + k + 1)↓ .

The construction then ensures that X ⊃ τ j and the choice of uns+1,s+1 guarantees
that

BrX (P) ∩
[
{e}(|τi,s | + e + k), {e}(|τi,s | + e + k + 1)

)
= ∅,

and so {e} does not witness the fact that P is not e.p.h.i. As e was arbitrary, P is
e.p.h.i. �

Theorem 2.37 Small ⇒ h.i.

Proof If we assume that a 50
1 class P is not h.i. witnessed by 〈D∗

f (n)〉n , then the
computable function

n 7→ max{|σ | : σ ∈ D f (n)}

witnesses the fact that P is not small via the characterization 2.9(4), as there must be
at least n extendible nodes on P at the level given by max{|σ | : σ ∈ D f (n)}. �

Corollary 2.38 There is a 50
1 class with no computable elements that is e.p.h.i. but

not h.i.

Proof Let S be any small 50
1 class with no computable path and P as in Theo-

rem 2.29. By Lemma 2.21 P ∨ S is e.p.h.i. But P ∨ S is not h.i. by Lemma 2.22,
and it does not have computable elements. �

Corollary 2.39 There is a 50
1 class with no computable elements that is e.p.h.i. but

not small.

Proof P ∨ S from Corollary 2.38 is e.p.h.i. but not h.i. By Theorem 2.37 it cannot
be small. �

Theorem 2.40 h.i. 6⇒ u.p.h.i. In fact, any 50
1 class of positive measure contains

an h.i. 50
1 class of positive measure that is not u.p.h.i.

Proof Let P be any 50
1 class of measure m > 0. We will create the required Q ⊆ P

by adapting the construction of Theorem 2.24. Let k ∈ N be such that m > 2−k . We
will ensure that for all σ ∈ Ext(Q), µ(Q(σ )) > 2−2|σ |−k−2. The function defined
recursively by

f (0) = 0
f (n + 1) = 2 f (n) + k + 3

will then witness the fact that Q is not u.p.h.i. via the characterization 2.10(3). This
is straightforward to see because for any n and any σ ∈ Q[ f (n)], the measure of
Q(σ ) is no less than 2−2 f (n)−k−2. So there must be a branching node above σ of
length less than 2 f (n) + k + 3—if there were not, then the measure of Q(σ ) could
be no greater than 2−2 f (n)−k−3.
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Now we construct Q. As usual Q =
⋂

s Qs—a computable intersection of
clopen sets. Let P ′ be the h.i. 50

1 class of positive measure as constructed in Theo-
rem 2.24 and suppose P ′

=
⋂

∞

s=0 P ′
s—a computable intersection of clopen sets. Let

Q0 = 2N. Suppose Qs is defined; let

Qs+1 = (P ′
s ∩ Qs) r

⋃ {
Qs(σ ) : µ(Qs(σ )) < 2−2|σ |−k−2}.

Then Q is equal to

P ′ r
∞⋃

s=0

⋃ {
Qs(σ ) : µ(Qs(σ )) < 2−2|σ |−k−2}

and it is h.i. as it is a subset of P ′. To prove that µ(Q) > 0 first notice that

µ
( ∞⋃

s=0

⋃ {
Qs(σ ) : µ(Qs(σ )) < 2−2|σ |−k−2}) 6

∞∑
n=0

∑
|σ |=n

2−2|σ |−k−2

=

∞∑
n=0

2n2−2n−k−2

< m
∞∑

n=0

2−n−2

= m/2.

But µ(P ′) > m/2 from Theorem 2.24, so µ(Q) > m/2 − m/2 = 0.
Finally, assume for a contradiction that τ ∈ Ext(Q) and µ(Q(τ )) < 2−2|τ |−k−2.

Then there must exist a t such that µ(Qt (τ )) < 2−2|τ |−k−2. But then Qt (τ )∩Qt+1 =

∅ and τ 6∈ Ext(Qt+1) ⊇ Ext(Q). Contradiction. �

It will be useful later to note the following.

Theorem 2.41 If S = S(A, B) is a separating 50
1 class then S is u.p.h.i. if and

only if it is small. That is, small, e.p.h.i., p.h.i., and u.p.h.i. are equivalent in the case
of separating classes.

Proof All separating 50
1 classes S have the property

∀n ∈ Brl(S)∀σ ∈ S[n]
[
σ ∈ Br(S)

]
.

By an easy induction argument it can be seen that for all n ∈ N (recalling Defini-
tion 2.8)

min{|8S(σ )| : |σ | = n} = max{|8S(σ )| : |σ | = n}.

Then the characterizations 2.9(2) and 2.10(2) show that any separating u.p.h.i. class
is small. �

Figure 1 sums up the results in this section. The lack of an arrow between two
properties indicates that a 50

1 counterexample with no computable paths is known.
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zero measure
↗

small −→ e.p.h.i. −→ p.h.i. −→ u.p.h.i.
↘

h.i.

Figure 1

3 Thinness and Other Strengthenings

A similar analysis can be carried out using stronger notions than that of hyper-
immunity. In this section we briefly consider the notions of dense immunity and
(co-)maximality. For convenience I give their definitions here, but also see [14].

Definition 3.1 X ⊆ N is dense immune if pX dominates every computable func-
tion.

Theorem 3.2 X ⊆ N is dense immune if and only if for all strong arrays 〈D f (n)〉

there are at most finitely many n such that∥∥ n⋃
i=0

D f (i) ∩ X
∥∥ > n.

Notice that there is no requirement of disjointness in Theorem 3.2.

Definition 3.3 X ⊆ N is maximal if it is coinfinite and for every c.e. set Y ⊇ X
either Y is cofinite or Y r X is finite.

We use these well-established ideas to define analogous properties in 2N in the fash-
ion of Section 2. Dense immunity turns out to be the most similar. We define a 50

1
class to be very small (v.small) in the same way as we defined smallness—but with
“dense immunity” replacing “hyperimmunity.” This was done in [1] in detail. We
shall also define everywhere pathwise dense immunity (e.p.d.i.), pathwise dense im-
munity (p.d.i.), uniform pathwise dense immunity (u.p.d.i.) in the obvious way. We
will then show that these properties are distinct from the ones defined earlier.

In order to define dense immunity (d.i.) for subsets of 2N we will use the al-
ternative characterization in Theorem 3.2 and follow Theorem 2.7. We now recall
Definition 2.6.

Definition 3.4 A 50
1 class P is dense immune (d.i.) if it is infinite and there is no

strong array 〈D∗

f (n)〉 such that for infinitely many n

‖rt
( n⋃

i=0

D∗

f (i)

)
∩ Ext(P)‖ > n. (3)

It is necessary to establish that these are all invariant under computable homeomor-
phisms. This is straightforward. The proof for d.i. 50

1 classes is similar to 2.13, the
proof for v.small is in [1], and the rest of the proofs follow from Lemma 2.14.

To see how these new properties compare to the ones defined using hyperimmu-
nity we first notice that every dense immune subset of N is hyperimmune so the
following table is evident.
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small −→ e.p.h.i. −→ p.h.i. −→ u.p.h.i.
↑ ↑ ↑ ↑

v. small −→ e.p.d.i. −→ p.d.i. −→ u.p.d.i.

Figure 2

In fact we now show that all of these classes are distinct and that no further implica-
tions in the diagram are required. To do this it will be shown now that no diagonal
arrows exist on the diagram (apart from the immediately necessary ones) and hence
that the arrows on the bottom row are nonreversible, and the dense immune versions
are distinct from their hyperimmune analogues.

To see there are no unnecessary diagonal implications it is sufficient to establish
the following four lemmas.

Theorem 3.5 There is a small 50
1 class with no computable path that is not u.p.d.i.

Proof Let S be a small separating 50
1 class that is not v.small. Such an S exists by

Theorem 3.16 of [1]. If S were u.p.d.i. then it would be v.small (using an analogous
result to Theorem 2.41 and the fact that S is separating). �

Lemma 3.6 E.p.d.i. 6⇒ small.

Sketch of the proof The proof is similar to the proof of Theorem 2.29. A 50
1 class

is constructed with exactly one nonisolated path X which has a dense-immune set of
branching nodes on it. As before, every level of P is a branching level. �

Lemma 3.7 P.d.i. 6⇒ e.p.h.i.

Proof Take a v.small 50
1 class P . P ∧ 2N will be p.d.i. but not e.p.h.i. �

Lemma 3.8 U.p.d.i. 6⇒ p.h.i.

Proof This is the same as Theorem 2.26 with f taken as the characteristic function
of a dense immune 50

1 subset of N. �

Of course, other concepts of diminutiveness such as hyperhyperimmunity, r -
maximality, and so on (see [14], §X, for example) could be studied in a similar
way. We do not do this here and questions remain about whether the analogous
properties would be computably topological in 2N.

The collections of canonically indexed sets Dn and D∗
n form bases for the respec-

tive topologies on N and 2N. But whereas 2N is compact in this topology, N is not.
So some array definitions are possible in 2N that have no analogy (or rather no inter-
esting analogy) in N. For example, we can require of a 50

1 class that for any disjoint
strong array 〈D∗

f (n)〉 there are at most finitely many n such that 〈D∗

f (n)〉 ∩ P 6= ∅.
The analogous property for subsets of N is equivalent to a set’s being finite. How-
ever, for subsets of 2N this property is equivalent to being thin in the sense of [5], [7],
[8], and elsewhere. This is interesting to note because the usual definition of thinness
(to follow) suggests that the correct analogy in N is maximality.

Definition 3.9 A 50
1 class P is thin if its only 50

1 subclasses are its clopen sub-
classes (in the relative topology).
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It is not straightforward to see relationships between the previously defined proper-
ties and thinness but some have been established.

Theorem 3.10 Thin H⇒ d.i.

Proof Suppose P is not d.i. witnessed by the strong array D∗

f (n). Let D∗

g(0) = D∗

f (0)

and

D∗

g(n+1) =

n+1⋃
i=0

D∗

f (i) r
n⋃

i=0

D∗

f (i).

It is easy to see that 〈D∗

g(n)〉 is a disjoint strong array that also witnesses the fact that

P is not d.i. As ‖rt
(⋃n

i=0 D∗

g(i)

)
∩ Ext(P)‖ > n for infinitely many n, it must be

the case that D∗

g(n) ∩ P 6= ∅ for infinitely many n. As 〈D∗

g(n)〉 is disjoint, P cannot
be thin. �

Lemma 3.11 v.small H⇒ d.i.

Proof If 〈D f (n)〉 witnesses the fact that P is not d.i. then the function

m(n) = max
{
|σ | : σ ∈ rt

( n⋃
i=0

D f (i)

)}
witnesses the fact that Br(P) is not d.i. and hence that P is not v.small. �

Theorem 3.12 D.i. 6H⇒ thin.

Proof If P is v.small then so is P ∨ P (see [1]), and by Lemma 3.11 P ∨ P is d.i.
But P ∨ P is not thin as { f ⊕ f : f ∈ P} is a 50

1, nonclopen, proper subset of
P ∨ P . �

Theorem 3.13 Thin 6H⇒ v.small.

Proof This is Theorem 4.3 in [1] and is a consequence of results in [7]. �

Theorems 3.12 and 3.13 together with Lemma 3.11 show that thinness and
v.smallness are independent properties. That is, there are 50

1 classes that are
v.small but not thin and 50

1 classes that are thin but not v.small. In comparison, there
are 50

1 classes that are small but not thin (if P is small then so is P ∨ P) but then it
is unknown whether every thin class is small. We conjecture the negative.

Theorem 3.14 Thin H⇒ u.p.h.i.

Proof The proof is very similar to Simpson’s proof that all thin 50
1 classes have zero

measure. We prove the contrapositive. Suppose a 50
1 class P were not u.p.h.i. and

this witnessed by the computable function f . That is,

∀n∀τ ∈ P[ f (n)]∃σ ⊇ τ
[

f (n) 6 |σ | < f (n + 1) and σ ∈ Br(P)
]
.

Define a sequence of elements of Ext(P) as follows (“left” and “right” here refer to
the lexicographical ordering on 2N):

σ1 = the rightmost string on P[ f (1)];

σn+1 = the rightmost string on P[ f (n + 1)] to the left of σn .
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To prove that σn exists for all n, we use induction to prove that for all n > 0 there is
a τ ∈ P[ f (n)] such that τ is strictly to the left of σn . If τ is the rightmost such string
in P[ f (n)], then σn+1 will be the rightmost element of P[ f (n + 1)] extending τ .

Base case There is a branching node on P before level f (1) so there must be a
τ ∈ P[ f (1)] strictly to the left of σ1.

Induction Suppose that τ is the rightmost element of P[ f (n)] strictly to the left of
σn . There must be a branching node above τ before level f (n +1) as P is not u.p.h.i.
Therefore, there must be a τ ′ strictly to the left of σn+1 defined as above.

The set S =
⋃

n Uσn ∩ P is open in the relative topology of P , but it is not closed,
as the set {Uσn : n ∈ N} is pairwise disjoint and P is compact. Furthermore,

⋃
n Uσn

is 60
1 so P r S is a nonclopen 50

1 subclass of P , and P is not thin. �

4 Muchnik and Medvedev Degrees

As we do for Turing degrees, if C is any property of 50
1 classes and d is a Muchnik

degree, then we say d has property C if d has a representative with property C. The
questions arise now whether the properties defined in this paper describe different
classes of Muchnik degrees. Also it can be asked where these classes of Muchnik
degrees fit into the known structure of the Muchnik lattice. An analogous type of
theorem in the Turing degrees is one from Dekker that states that every c.e. Turing
degree has a hyperimmune representative [6].

Here not as much is known as would be liked, but we present some basic results.
Some conjectures and open questions are discussed in the following section.

The next two lemmas are very useful in this area. Recall that 6w refers to Much-
nik or weak reducibility and 6M to Medvedev or strong reducibility—the uniform
version of Muchnik reducibility.

Lemma 4.1 (Simpson; see [12] or [1]) For all 50
1 classes P and Q, if P >w Q,

then there exists a 50
1 subclass P ′

⊆ P such that P >M Q.

Lemma 4.2 (Simpson; see [13]) If P and Q are Medvedev complete 50
1 classes,

then P is recursively homeomorphic to Q.

Recall that DNR2 = { f ∈ 2N
: ∀n f (n) 6= {n}(n)} is Medvedev (and hence Much-

nik) complete.

Lemma 4.3 DNR2 is neither h.i. nor u.p.h.i.

Proof Let e0 < e1 < e2 · · · be a computable sequence of indices for the empty
function. For every i , define

Ei = { f ∈ 2N
: ∀ j < i f (e j ) = 0 and f (ei ) = 1}.

Each Ei intersects DNR2 as 0 6= {ei }(ei ) 6= 1 for all i . They are also pairwise
disjoint and so form a disjoint strong array. So DNR2 is not h.i.

To see it is not u.p.h.i. first notice that DNR2 = S(A, B) where A =

{e : {e}(e) ↓= 0} and B = {e : {e}(e) ↓= 1}. It is therefore a separating class
and if it were u.p.h.i. it would be small by Theorem 2.41. It is not small, how-
ever, because e0, e1, e2, . . . is a computable sequence of branching levels of DNR2
(Theorem 2.9(3)). �

Theorem 4.4 If P is an h.i. or e.p.h.i. 50
1 class, then it is Muchnik incomplete.
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Proof Suppose P were an h.i. 50
1 class and that P >w DNR2. Then by Lemma 4.1

there would be a 50
1 P ′

⊆ P such that P ′ >M DNR2. So P ′ is Medvedev com-
plete. Hyperimmunity is closed under taking subsets so P ′ is also h.i. But DNR2
is not h.i. by Lemma 4.3 and so no other Medvedev complete 50

1 class can be by
Lemma 4.2 and Theorem 2.13. The proof is identical for the e.p.h.i. case. �

It is now immediate that every small 50
1 class is Muchnik incomplete.

Theorem 4.5 If P is u.p.h.i., then it is Medvedev incomplete.

Proof If it were Medvedev complete then DNR2 would be u.p.h.i. by Lemma 4.2
and Theorem 2.13. �

It is currently an open question whether every u.p.h.i. or p.h.i. 50
1 class is Muchnik

incomplete. We conjecture that it is so.

Theorem 4.6 There is an h.i. Muchnik degree that is not less that any small Much-
nik degree.

Proof There is a 50
1 class R consisting entirely of 1-random reals with the property

that any 50
1 subclass of R has positive measure [10]. R also has the property that if

M is any 50
1 class of positive measure then R >w M (see [12] for an exposition).

Lemma 2.24 implies that R must have an h.i. 50
1 subclass R′ and the above im-

plies that R′
≡w R. So R has h.i. Muchnik degree. But if S were any small 50

1
class such that S >w R then by Lemma 4.1 there would be a 50

1 S′
⊆ S such that

S′ >M R. That is, there would be a computable functional 8 : S′
−→ R. S′ is

small as it is a subclass of S and its image under 8 is also small by Theorem 2.12.
But every subset of R is of positive measure so the image of 8 must be small and of
positive measure—contradicting Theorem 2.23. �

Corollary 4.7 The class of small Muchnik degrees is strictly contained in the class
of h.i. Muchnik degrees.

The problem of the density of the Muchnik lattice is still the outstanding problem
in the area. Partial results have been obtained, for example, Corollary 3.17 in [1].
The next lemma by Simpson in [12] (Corollary 7.5) gives upward density for a large
class of Muchnik degrees.

Lemma 4.8 (Simpson) Let P, Q, and S be 50
1 classes such that P is of positive

measure and S is a separating class. Then

P ∨ Q >w S H⇒ Q >w S.

Proof See [12]. Note that P 6>w S by Theorem 5.3 in [9]. The proof is a relativiza-
tion and generalization of Theorem 5.3. �

This gives the following theorem as a corollary.

Theorem 4.9 If P is a small 50
1 class, then there is a 50

1 class Q such that

P <w Q <w DNR2.

Proof By Lemma 2.37, P must be h.i. and therefore P <w DNR2 by Theorem 4.4.
In the proof of Theorem 4.6, R 66w P . Therefore, R ∨ P >w P . But Lemma 4.8
also implies that R ∨ P <w DNR2 as DNR2 is a separating class. �
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5 Open Questions and Further Directions

Question 5.1 Does there exist a u.p.h.i. (e.p.h.i., p.h.i.) Muchnik degree that is not
small (h.i.)?

These problems can be solved by constructing a u.p.h.i. (e.p.h.i., p.h.i.) 50
1 class that

has no small (h.i.) subclass. And then use an argument like the proof of Theorem 4.6.
It is not clear how to proceed in other questions of this type—for example, does there
exist a u.p.h.i. Muchnik degree that is not p.h.i.?

Question 5.2 Is every u.p.h.i. (p.h.i.) Muchnik degree Muchnik incomplete?

An essential property in showing that every small 50
1 class (for example) is Much-

nik incomplete is the property that every 50
1 subclass of a small 50

1 class is small.
This property is not shared by u.p.h.i. or p.h.i. classes. Another method of showing
incompleteness needs to be found.

There are many easily describable intermediate Muchnik degrees. For example, in
[12] Simpson defines a transfinite sequence of such degrees related to the diagonally
nonrecursive functions. It is unknown how the properties described in this paper
relate to such degrees. For example, the following is the obvious question.

Question 5.3 Is every small (thin) Muchnik degree thin (small)?

It is known that not every small 50
1 class is thin (see [1]) but it is not known if

every thin class is small. Whether or not their Muchnik degrees coincide could be
answered negatively if one were to construct a small (thin) 50

1 class with no thin
(small) subclass.
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