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A Note on Weakly O-Minimal Structures
and Definable Completeness

Alfred Dolich

Abstract We consider the extent to which certain properties of definably com-
plete structures may persist in structures which are not definably complete, par-
ticularly in the weakly o-minimal structures.

1 Introduction

In this short note we study weakly o-minimal theories and how they relate to general
ordered theories which are not definably complete. First, we consider the degree to
which topological properties of definable sets in weakly o-minimal structures mir-
ror those in o-minimal structures. Second, we consider the degree to which weakly
o-minimal theories may be characterized as the “best-behaved,” densely ordered the-
ories among those theories which are not definably complete. Here we are motivated
by results characterizing o-minimal theories as those definably complete theories
bearing certain desirable properties.

For the problems we consider that our answers are negative. Recall the definition
of weak o-minimality.

Definition 1.1 A structure (M, <, . . . ) in a language L with a symbol < for a
dense linear order is called weakly o-minimal if any definable X ⊆ M is a finite
union of convex sets. A theory T is weakly o-minimal if all of its models are. (See,
for example, [8] and the references therein.)

Also recall the definition of definable completeness (for a discussion of this, see
[15]).

Definition 1.2 A structure (M, <, . . . ) in a language L with a symbol < for a
dense linear order is said to be definably complete if, for any definable subset X ⊆ M ,
if X is bounded above then there is a supremum a ∈ M of X . Similarly, we demand
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there be an infimum if X is bounded below. Note that if M is definably complete
and N ≡ M then N is definably complete. Hence we say a theory T is definably
complete if all (or equivalently one) of its models is definably complete.

Recall that any o-minimal theory is definably complete (see [15]). Also notice that
if M is weakly o-minimal but not o-minimal then definable completeness must fail
for M . Recall that, in analogy to o-minimal theories, weakly o-minimal structures
or theories satisfy many desirable properties (see [8]). Hence we are led to our
initial question, to what extent is weak o-minimality an appropriate analogue for
o-minimality in the class of theories which are not definably complete?

In Sections 2 and 3 we consider two questions. First, we consider a topolog-
ical property, namely, whether given M weakly o-minimal and X ⊆ Mn+1 de-
finable, closed, and bounded, it is necessarily the case that π(X) is closed where
π(Mn+1) → Mn is a coordinate projection. Note that it follows from facts in [11]
that this is true when M is o-minimal. Our work shows that the answer to this ques-
tion is negative, but in specific cases the desired property may still hold. Hence
from this point of view we may not characterize weakly o-minimal theories as those
theories which are not definably complete yet have desirable topological properties.
Second, we focus on results concerning theories expanding densely ordered groups
satisfying definable completeness which allow one to conclude that under various
conditions the theory is o-minimal or “close” to o-minimal. We ask whether we may
remove the assumption of definable completeness if we weaken the conclusion to the
analogous statement with “weakly o-minimal” in place of “o-minimal.” Our result is
negative and Section 3 is devoted to counterexamples.

2 Projections of Closed Bounded Sets

Throughout this section, given a structure M , we will call a function π a projection
if it is a coordinate projection between Cartesian powers of M . As mentioned in
Section 1, if T is o-minimal, M |H T , X ⊆ Mn is closed bounded and definable,
and π is a projection function from Mn , then π(X) is closed. In [11] it is shown that
this holds in any definably complete structure. We explore the extent to which the
converse of this result holds. We focus primarily on the case of weakly o-minimal
structures.

Proposition 2.1 Let M = 〈M,+, <, . . . 〉 be an Archimedean model of the theory
of densely ordered Abelian groups. Then the following are equivalent:

1. M is definably complete;
2. if X ⊆ Mn is a closed bounded definable set and π is any projection then
π(X) is closed.

Note that since properties (1) and (2) above are elementary, the condition that M is
Archimedean may be weakened to the assumption that M is elementarily equivalent
to N which is Archimedean.

Proof (1) implies (2) was proved in greater generality by C. Miller in [11].

(2) implies (1) To establish that M is definably complete it suffices via results from
[11] to show that if U ⊆ M is definable, open, closed, and nonempty then U = M .
Fix U open, closed, and nonempty. Without loss of generality, we may assume that
0 ∈ U . Let W be the convex component of U containing 0. Note that W is closed
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and definable; we show that W = M . Fix some element d > 0 so that −d ∈ W .
Consider the following set:

X := {(x, y) ∈ [0, d] × W : y ≥ −d & x + y /∈ W }

Let π(X) be the projection of X onto the first coordinate. Consider the following
facts about X and π(X):

1. X is closed;
2. 0 /∈ π(X);
3. (0, d] ⊆ π(X).

The first two are clear from the definition of X . For the third fact, fix ε ∈ (0, d]; if
ε /∈ π(X) then for any e ∈ W we must have that e + ε ∈ W , which is impossible
since M is Archimedean. Thus under our assumption we must have that X is not
bounded, and hence that W is not bounded above. We may argue symmetrically to
get that W is not bounded below. Hence W = M . �

The structure
〈
Q,+, <,

(
−

√
2,

√
2
)〉

is an example of a weakly o-minimal structure
(for the weak o-minimality, see [1]) of the type considered in Proposition 2.1, and
hence there are closed bounded definable sets X and projections π so that π(X) is
not closed.

The following two propositions give simple examples to show that several as-
sumptions in Proposition 2.1 are necessary. The following lemma is elementary;
we provide a statement and brief proof for completeness and to emphasize the exact
statement we need.

Lemma 2.2 Let T = Th(〈Q,+, <, 0, 1, λ〉λ∈Q. (here the λ are unary functions for
multiplication by λ). Let M |H T and X ⊆ Mn be a definable set. Then X can be
written as the union of definable sets X i where each X i is defined by a formula ϕ(x)
of the form,

(A1 ∧ · · · ∧ An).

Here each Ai is of the form t1 < t2 or t1 = t2 for t1, t2 terms. These terms may
contain the same parameters used to define X. Furthermore, the closure of X i is
definable via a formula obtained by replacing in ϕ each Ai of the from t1 < t2 by
t2 ≤ t2. An analogous result holds for 〈Q, <, 0〉.

Proof This is a simple exercise in cell decomposition using the fact that T has
quantifier elimination. �

We also need a simple topological fact.

Fact 2.3 Let X be a topological space. If A ⊆ X , U ⊆ X , and U is both closed
and open then cl(A ∩ U ) = cl(A) ∩ U .

We show that the assumption of M being Archimedean in Proposition 2.1 is neces-
sary. We begin by pointing out that, in Proposition 2.1, in order to establish that (2)
implies (1) we may replace the assumption that M is Archimedean by

There is a pair of open convex sets U and V such that U ∪ V = M ,
for all x, y if x ∈ U and y ∈ V then x < y, and there is no ε > 0
such that for all x ∈ U we also have that x + ε ∈ U .

In the terminology of [8], this condition is met if M is of nonvaluational type. We
show that this is necessary.
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Proposition 2.4 Let R = 〈R × Q, <,+, (0, 0), (0, 1),U, λ〉λ∈Q be a structure
for the language {<,+, 0, 1,U, λ}λ∈Q. In R, < is lexicographic ordering, + is
componentwise addition, U := {0} × Q, and λ is componentwise multiplication by
the rational number λ. If X ⊆ Rn is a closed set and π is any projection then π(X)
is closed.

Proof Throughout the proof we let L be the language {<,+, 0, 1, λ}λ∈Q and write
L(R) for the language L expanded by constants for the universe of R. We first
establish that the theory eliminates quantifiers. After some simple manipulation and
omitting easy cases this reduces to two main cases. First, we eliminate the existential
quantifier from a formula of the form,

ϕ := ∃y(t0 < y < t1 ∧

M∧
j=1

¬U (λ j y + r j )),

where t0, t1, and ri are all terms in which y does not appear. This formula is equiva-
lent to the conjunction of

U (t0 − t1) → t0 < t1 ∧

M∧
j=i

¬U (λ j t0 + r j )

and
¬U (t0 − t1) → t0 < t1.

The equivalence of ϕ and this conjunction follows from these two facts:
1. R |H ∀x∀y∀z(U (x − y) → (U (λx + z) ↔ (Uλy + z)) for all λ;
2. R |H ∀x∀y∀z1 . . . ∀zn((¬U (x − y) ∧ x < y) →

∃w(x < w < y ∧
∧n

i=1 ¬Uλiw + zi )) for all n and λ1 . . . λn .
The first fact is immediate; the second follows since the set U interpreted in R is
countable while if a, b ∈ R are such that R |H a < b ∧ ¬U (a − b) then the interval
(a, b) in R is uncountable.

In the second case, we must eliminate the quantifier from

∃y(t0 < y < t1 ∧

N∧
i=1

U (λi y + si ) ∧

M∧
j=1

¬U (λ j y + r j ),

where the ts, rs, and ss are terms in which y does not appear. This is equivalent to

∃y(t0 < y < t1 ∧ Uλ1 y + s1 ∧

N∧
i=2

U (λ−1
1 s1 − λ−1

i si ) ∧

M∧
j=1

¬U (λ−1
1 s1 − λ−1

j r j )).

This follows since

R |H ∀x∀y∀z((U (λ1x + z) ∧ U (λ2x + y))↔ (U (λ1x + z) ∧ U (λ−1
1 z − λ−1

2 y))).

So we are reduced to considering

∃y(t0 < y < t1 ∧ U (λ1 y + s1)).

This is readily seen to be equivalent to

t0 < t1 ∧ (U (λ1t0 + s1) ∨ U (λ1t1 + s1)∨

(λ1t0 + s1 < 0 < λ1t1 + s1) ∨ (λ1t1 + s1 < 0 < λ1t0 + s1)).
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Hence we have quantifier elimination. To verify the property on projections, we fix
X ⊆ Rn+1 closed and definable. We show that the projection of X onto the first n
coordinates is closed. By quantifier elimination, Lemma 2.2, and Fact 2.3, we may
assume X is defined by a formula ϕ(x) of the form,

ψ(x1, . . . , xn+1) ∧

∧
i∈I

U (ti ) ∧

∧
j∈J

¬U (t j ),

where the ti s and t j s are terms in L(R), I and J are disjoint finite sets of indices,
and ψ is a formula in L(R) of the form,

(A1 ∧ · · · ∧ Am),

with each Ai of the form r1 ≤ r2 or r1 = r2 for terms r1 and r2. After some simple
manipulation we are reduced to showing formulas of the form,

∃xn+1(t1 ≤ xn+1 ≤ t2 ∧

∧
i∈I

Usi ∧

∧
j∈J

¬Us j ),

define closed sets, where t1 and t2 are terms in L(R) not containing xn+1, the si s and
s j s are terms in L(R), and I and J are disjoint finite sets of indices. Assuming that
I is nonempty, we may argue as in the proof of quantifier elimination to reduce to
that case of showing that a formula of the form,

∃xn+1(t1 ≤ xn+1 ≤ t2 ∧ U (λxn+1 + s)),

where t1, t2, and s are L(R) terms, defines a closed set. But applying the quantifier
elimination outlined above this formula is equivalent to

t1 ≤ t2 ∧ (U (λt1 + s) ∨ U (λt2 + s)∨

(λt1 + s ≤ 0 ≤ λt2 + s) ∨ (λt2 + s ≤ 0 ≤ λt1 + s))

which is closed. The case when J is empty is similar. �

Note that by [1] the above structure is weakly o-minimal.
We now show that in Proposition 2.1 the assumption that the structure expands

that of an ordered group is, in essence, necessary. Notice that the structure being
“Archimedean” as normally understood does not apply in this context. Here we give
an example with universe Q which is Archimedean in the sense discussed in [9].

Proposition 2.5 Q = 〈Q, <, P, 0〉, the ordered rationals with a predicate P, for
the interval between −∞ and π , has the property that projections of closed definable
sets are closed.

Proof The proof is elementary and similar to that of the previous proposition; we
provide a sketch. We let L be the language {<, 0} and let L(Q) be L augmented by
constants for the rational numbers. First, notice that Th(Q) eliminates quantifiers.
(Given a formula of the form ∃xϕ(x, y) with ϕ quantifier-free, one can easily write
out an equivalent quantifier-free formula.) Let X ⊆ Qn+1 be a closed Q-definable
set. We show that the projection of X onto the first n coordinates is closed. By the
quantifier elimination for Th(Q), Lemma 2.2, and Fact 2.3, we may reduce to the
case where X is defined by a formula ϕ(x1, . . . , xn+1) of the form,

ψ(x1, . . . , xn+1) ∧

∧
i∈I

Pti ∧

∧
j∈J

¬Pt j ,
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where the ti s and t j s are L(Q)-terms, I and J are disjoint finite sets of indices, andψ
is a quantifier-free L(Q)-formula with no strict inequalities appearing. Furthermore,
ψ has the form,

(A1 ∧ · · · ∧ An),

where each Ai is of the form s1 ≤ s2, or s1 = s2 for some L(Q)-terms s1 and s2.
The fact that ∃xn+1ϕ(x) defines a closed set follows immediately from the quantifier
elimination as in Proposition 2.4. �

Note that by the main result in [1] the above structure is weakly o-minimal.
We end this section by pointing out that our results contrast oddly with results in

[8], where it is shown that if M is a weakly o-minimal structure of nonvaluational
type then it should be considered to behave very similarly to an o-minimal structure.
Here we show that having nonvaluational type is exactly a condition that allows us
to verify that the projection of a closed bounded definable set is not closed, in direct
contrast to the o-minimal case. On the other hand, we show that there are structures
of valuational type where the desired property of projections does hold.

3 Examples

In this section we wish to consider whether there are weakly o-minimal analogues
of two facts relating definable completeness and o-minimality. We begin with some
necessary definitions.

Definition 3.1 Given a theory T we say that T satisfies uniform finiteness if, for
any formula ϕ(x, y), there is a natural number N ∈ N so that if M |H T , a ∈ M , and
ϕ(M, a) is finite, then ϕ(M, a) has size at most N .

Definition 3.2 Given a topological space A, X ⊆ A is called constructible if it is
a finite Boolean combination of open sets.

Definition 3.3 Let M be a structure for a language including a symbol < so that
< is interpreted as a dense linear order in M . The open core of M , denoted M◦, is
the reduct of M generated by all of the definable open sets. (See, for example, [12].)

We consider the following two facts. The first follows easily from facts in Section 2
of [12] combined with results from [5]. The second is from [4].

Fact 3.4 If M is a model of some definably complete expansion of the theory of
densely ordered groups such that any definable X ⊆ M is constructible and there is
no definable X ⊆ M which is infinite and discrete, then M is o-minimal.

Fact 3.5 If T is some expansion of the theory of densely ordered groups which
satisfies uniform finiteness and is definably complete, then if M |H T , M◦ is o-
minimal.

The goal of this section is to consider analogues of the above statements with the
assumption of definable completeness dropped. In order to formulate reasonable
analogues of the above in the absence of definable completeness we have to replace
the assumption that M is an expansion of the theory of densely ordered groups with
the assumption that M is an expansion of divisible ordered Abelian groups (by results
in [11] if M is definably complete and a densely ordered group then it is also divisible
and Abelian). Given this we ask
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1. if M is a model of some expansion of the theory of divisible ordered Abelian
groups such that any definable X ⊆ M is constructible and there is no defin-
able X ⊆ M which is infinite and discrete, must M be weakly o-minimal?

2. if T is some expansion of the theory of divisible ordered Abelian groups
which satisfies uniform finiteness, then, if M |H T , must M◦ be weakly o-
minimal?

We construct a single example to refute both of the above statements. The example
shows that even if we add the condition that T satisfy the exchange property for
definable closure the conclusion does not follow. Also our example will be a model
of the theory of real closed fields, so assuming that we work with expansions of the
theory of real closed fields rather than of densely ordered groups still does not yield
a true statement.

We point out that the motivation for our example comes from [2], where the idea
of adding a new random set to a structure is introduced. In our case we desire, rather
than adding a truly random set, to add a new random open set. This should be made
clear in the ensuing construction.

Let TRCF be the theory of real closed fields formulated in language Ldf where
every definable function is given by a term in the language, so that TRCF eliminates
quantifiers and is universally axiomatizable. Fix R a sufficiently saturated model of
TRCF. Let V be a nontrivial convex subring of R, and let Lconv be Ldf augmented
with a unary predicate for V . Let (R, V ) be R formulated in Lconv in the obvious
way, so (R, V ) is a real closed valued field. Then we have the following fact.

Fact 3.6 (van den Dries and Lewenberg in [7], Cherlin and Dickmann in [3])
Tconv = Th((R, V )) eliminates quantifiers in Lconv and is weakly o-minimal. Tconv
may be axiomatized by stating that R is a real closed field and that V is a nontrivial
convex subring.

We need a fact about Tconv which can be found in [6].

Fact 3.7 Tconv satisfies the exchange property for definable closure.

Following Mellor (see [10]) we may also think of a Tconv structure formulated in a
three-sorted language L3 with sorts,

1. (R,+,−, ·, 0, 1, <),
2. (0,+,−, 0,∞, <),
3. (k,+,−, ·, 0, 1, <),

where 0 is the value group and k is the residue field.
We also need to add functions,
1. v : R → 0,
2. Res : R2

→ k.
We let T3 be the L3 theory stating

1. R is a real closed field,
2. 0 \ ∞ is a divisible ordered Abelian group,
3. k is a real closed field,
4. v is the valuation map,
5. Res is the map such that Res(x, y) = xy−1 if v(x) ≥ v(y) and 0 otherwise.

Any model M of Tconv may also be considered as a model of T3; we will denote the
associated L3-structure M3.
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Fact 3.8 (Mellor in [10]) T3 eliminates quantifiers in L3.

The above theorem implies the following corollary already noted in [7].

Corollary 3.9 If M |H T3, the induced structure on the group sort is just the di-
visible Abelian group structure, whereas that on the residue field sort is just the real
closed field structure.

Given M |H T3, let Mconv be the structure whose underlying set is the first sort in M
formulated in the language Lconv. Note that Mconv |H Tconv.

We need a simple fact about T3.

Lemma 3.10 T3 satisfies uniform finiteness.

Proof This is immediate from the fact that o-minimal and weakly o-minimal theo-
ries satisfy uniform finiteness. �

Given this we now may augment L3 with a new predicate G to form LG
3 . Fix

M̂ |H T3, sufficiently saturated, we augment M̂ to an LG
3 structure M̂G by adding a

“random” subset to the value group sort as in [2]. We let T G
3 be the theory of M̂G .

Working in M̂G , we let M̂G
conv be the valued field sort formulated in the language

LG
conv := Lconv ∪ {H} with a new unary predicate. In M̂G

conv set

H(M̂G
conv) := {x : M̂G

|H Gv(x)}.

Let T G
conv = Th

(
M̂G

conv
)
.

As above, given M |H T G
conv, we let M3 be the associated LG

3 -structure, setting

G(M3) := {x ∈ 0 : M |H Gy for any y such that v(y) = x}.

We note an easy fact.

Lemma 3.11 If M |H T G
conv, then M3 |H T G

3 .

Proof If M |H T G
conv, then M ≡ M̂G

conv by definition. Also Meq
≡ M̂G eq

conv . But then
we see that M3 ≡ M̂ , and hence M3 |H T G

3 . �

We can now list the relevant facts about T G
conv.

Theorem 3.12 Let M |H T G
conv; then

1. H(M) is open and has infinitely many convex components,
2. any definable X ⊆ M is constructible,
3. T G

conv satisfies the exchange property for dcl,
4. there are no definable X ⊆ M which are infinite and discrete,
5. T G

conv satisfies uniform finiteness.

Proof

1 For (1) simply note that, for any x in the value group of M3, v−1(x) is open. By
the genericity of G for any x, y ∈ G, v−1(x) and v−1(y) are disjoint sets.

2 Let X ⊆ M be any definable set. Note that X is also a definable set in M3; hence
it suffices to show that any definable subset of the first sort in M3 is constructible.
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By the quantifier elimination for T3 and properties of the generic extension (see [2])
a definable subset of the valued field sort is of the form,

ϕ(x) ∧

N∧
i=1

Gi f (x) ∧

M∧
j=1

¬Gg j (x),

where ϕ(x) is a formula in L3 and the f s and gs are T3-definable functions from
the valued field sort to the value group. For constructibility it thus suffices to show
that if f is a T3-definable function from the first sort to the value group then f −1(G)
is constructible (that f −1(¬G) is constructible will be identical). Hence suppose
we have a formula ψ(x, y, z) such that x is a variable in the value group sort and
that for parameters c and an element b in the valued field sort, ψ(M3, b, c) is finite.
Without loss of generality, we may assume this definable set has cardinality one. A
simple argument using quantifier elimination yields that if M3 |H ψ(a, b, c) then
there are finitely many definable functions g1, . . . , gn from 0N

→ 0 (for some N ),
and finitely many definable functions h1, . . . , hm from M to M N so that for any x in
the domain of f , f (x) = gi (v(h j (x))) for some i, j . Thus it suffices to show that, for
any h : M → M N definable and g : 0N

→ 0 definable, the set h−1(v−1(g−1(G)))
is constructible. But note that v−1(g−1(G)) is open. Then by the weak o-minimality
of Tconv and the T3-definability of h, h−1(v−1(g−1(G))) is constructible.

3 It suffices to show that if a ∈ dcl(b) in M then a ∈ dclTconv(b); that is, the de-
finable closure relation in M is the same as that in its restriction to Lconv. Exchange
then follows from Fact 3.7.

Suppose that a ∈ dcl(b) in M . Then working in M3 we also have that a ∈ dcl(b)
in M3, which is most easily seen by realizing that M3 is interdefinable with a finite
set of sorts from Meq. But by the genericity of the set G, a ∈ dclT3(b), that is,
thinking of M3 as an L3 structure. But then we see that a ∈ dclTconv(b) in M thought
of as an Lconv structure (once again since M3 is a fragment of Meq).

4 Assertion (4) follows easily from (3). Suppose that there were X ⊆ M infinite,
discrete, and definable with parameters a. Without loss of generality we may assume
that M is ω-saturated. Hence there is e ∈ X \ dcl(a). Since X is discrete there is
an open interval I so that I ∩ X = {e}. Now note that if d ∈ I and d < e then
e ∈ dcl(da) as witnessed by the formula ϕ(y),

d < y ∧ y ∈ X ∧ ∀z(z ∈ X ∧ d < z → y ≤ z).

But by the saturation of M there is d ∈ I with d < e so that d /∈ dcl(ea). Hence
exchange would fail.

5 Assertion (5) follows from (4) since if uniform finiteness were to fail there would
be an infinite discrete X definable in some model of T G

conv. �

To finish this section we briefly point out that a much simpler example of the above
behavior can be obtained if we do not demand an expansion of a real closed field.
Furthermore, we obtain an example without the independence property.

Let L = {+, <, c, λ}λ∈Q where the λ are unary function symbols. We let
L∗

= L ∪ {H, V } where H and V are unary predicates symbols. Let Q be the L∗

structure with universe R × Q where + is interpreted as componentwise addition
and < is interpreted as lexicographic order. Furthermore, we interpret each λ as
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componentwise multiplication by λ and c as (0, 0). Finally, we interpret H as the
set Q × Q and V as {0} × Q. Let T = Th(Q).

Proposition 3.13 T has quantifier elimination.

Proof This is essentially the same as the proof in Proposition 2.4. �

Proposition 3.14 Let M |H T ; then the analogues of (1) – (5) of Theorem 3.12
hold.

Proof (1) is obvious and (2) follows from quantifier elimination since any set defin-
able by an atomic formula is constructible. As in Theorem 3.12, (4) and (5) follow
from (3). For (3) we show that if X ⊂ M is finite and definable with parameters
from A ⊂ M , then X ⊆ θ(M) for some L-formula θ with parameters from A so
that θ(M) finite. Then the exchange property follows by the o-minimality of M �L

and the fact that o-minimal structures satisfy exchange (see [15]). Hence suppose
that ϕ(x) is a formula with parameters from A which defines a nonempty finite set.
Applying quantifier elimination and eliminating simple cases we are reduced to con-
sidering ϕ of the form,

ψ(x) ∧

N∧
i=1

Pi ti ∧

M∧
j=1

¬Q j s j ,

where Pi , Q j ∈ {H, V }, the si , t j s are terms, and ψ(x) is an L-formula with param-
eters from A. By o-minimality of M �L we may assume that ψ(M) is a point or an
interval. If ψ(M) is a single point then we are done; hence assume that ψ(M) is an
interval. Then ϕ(M) would have interior since H and V define sets which are both
open and closed and terms define global continuous functions. But this contradicts
that ϕ(M) is finite, and we have our desired result. �

Proposition 3.15 T does not have the independence property.

Proof Fix M |H T highly saturated and let {ai : i ∈ ω} be an indiscernible se-
quence. To verify that T does not have the independence property, it suffices to show
that if ϕ(x, b) is any formula with parameters b ⊆ M then

{i ∈ ω : M |H ϕ(ai , b)}

is either finite or cofinite (see [14]). By the fact that o-minimal theories do not have
the independence property (see [15]) and quantifier elimination, we are reduced to
considering formulas of the form H(λx + c) and V (λx + c). Here c is an arbitrary
element of M . We focus on the first of these; the second is similar. Suppose that for
some i < j ∈ ω we have that

M |H H(λai + c) ∧ H(λa j + c).

Note that this is equivalent to saying that ai , a j and −
c
λ are all in the same coset of

the subgroup H(M). Thus by indiscernibility we must have that for any k ∈ ω, ak
and ai are in the same coset of U (M). Thus ak must be in the same coset as −

c
λ and

hence
M |H H(λak + c).

Thus if the set
{i ∈ ω : M |H H(λai + c)}
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has at least two elements, it is the entirety of ω. �

Finally we point out that the bounded PRC fields provide another class of examples
of ordered structures with the exchange property (see [13]), although they do not
appear to have the desired constructibility properties of the examples given here.
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