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Relative Vaught’s Conjecture
for Some Meager Groups

Ludomir Newelski

Abstract Assume G is a superstable locally modular group. We describe for
any countable model M of Th(G) the quotient group G(M)/Gm(M). Here
Gm is the modular part of G. Also, under some additional assumptions we
describe G(M)/Gm(M) relative to G−(M). We prove Vaught’s Conjecture for
Th(G) relative to Gm and a finite set provided that M(G) = 1 and the ring of
pseudoendomorphisms of G is finite.

1 Introduction

Throughout, we assume T is a superstable theory with few (that is, < 2ℵ0 ) countable
models. We work inside a fixed monster model C = Ceq of T . The paper continues
the work of [14] on Vaught’s Conjecture for groups with meager forking. We assume
that the reader is familiar with geometric stability theory ([3], [16]). Also some
knowledge of meager forking ([8], [9], [10]) and pseudotypes ([6], [7]) would be
helpful, although we shall present the main notions again in Section 2.

Assume G ⊆ C is a 0-definable regular group with meager forking on the set of
generic types (we call such groups meager, for short). A regular group is a group
where each generic type is regular (that is, forking dependence is a pregeometry
on this type). Such groups occur quite naturally in superstable structures (see [14],
preliminaries). The eventual goal is a proof of Vaught’s Conjecture for Th(G) if, for
example, U (G) = ω. Thus far the proofs in [14] and here follow the scheme from
[1] (and [15]). In [14] we proved Vaught’s Conjecture for Th(G) when G is meager,
U (G) = ω, M(G) = 1, and the ring of pseudoendomorphisms FG is a prime field.

Actually, we use the assumption that U (G) = ω there only to conclude by [2]
that Vaught’s Conjecture for Th(G−) is true and that the structure of G−(M) is clear
for countable M |H T . So it is reasonable to try to describe G(M) provided that we
know what G−(M) is, and then the assumption that U (G) = ω may be omitted.
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This leads to Vaught’s Conjecture for G relative to G−, which says that once we
know what G−(M) is for a countable model M of T , then up to isomorphism there
are countably many possibilities for M .

Actually, in [14] we prove Vaught’s Conjecture for G relative to G− and a finite
set provided that G is meager, M(G) = 1, and the ring FG is a prime field. In this
paper we try to generalize this result to the case when FG is finite. In Theorem 3.12
below we prove Vaught’s Conjecture for G relative to Gm (the modular part of G)
and a finite set, provided that G is meager, M(G) = 1, and FG is finite. The
main obstacle in the proof is the fact that the values of pseudoendomorphisms in G
are “fuzzy,” that is, defined up to G−. We overcome this trouble by introducing a
resolving group G ′.

Also we try to weaken the assumption that M(G) = 1. In Section 4 we deal with a
general setup, where G is a locally modular regular group definable in a superstable
theory T . We describe up to isomorphism the set of cosets of Gm realized in a
countable model M of T . In fact, the nontrivial case in this classification is the
meager one.

The proofs mostly generalize those in [14]. The important point is an analysis of
Aut(Q)-orbits of generic types of G when Q = G−(M) or Q = Gm(M).

2 Preliminaries

In this section we recall some notions and results from [5] – [10] used in this paper.
Throughout, 8 is a countable disjunction of formulas over ∅ and Q = 8(M) for
some countable model M of T . K Q is the class of models N such that 8(N ) = Q.
For a formula ϕ(x) (possibly with parameters), [ϕ(x)] denotes the class of all (par-
tial) types containing ϕ(x).

Vaught’s Conjecture relative to Q is an assertion that if T has few countable mod-
els then in K Q there are countably many of them (up to isomorphism). Vaught’s
Conjecture relative to 8 is the conjunction of Vaught’s Conjectures relative to Q,
where Q varies over countable sets of the form 8(N ).

Suppose A is a countable subset of some N ∈ K Q . We say that p ∈ S(Q A) is
good if p is realized in some model in K Q containing A; otherwise we say that p
is bad. Let Aut(Q/A) be the group of automorphisms of C fixing Q setwise and
A pointwise. We say that p ∈ S(Q A) is Q-isolated over A if the Aut(Q/A)-orbit
of p is not meager as a subset of the topological space S(Q A). We will say often
“Aut(Q)-orbit over A” instead of “Aut(Q/A)-orbit.” A model N ∈ K Q containing
A is called Q-atomic over A if for every finite tuple a ⊆ N , the type tp(a/Q A) is
Q-isolated over A. These notions are elaborated upon in [6] and [7]. For instance,
we have the following lemma, whose first part relies on the few models assumption.

Lemma 2.1 If A ⊆ M is finite then there is a countable model N ∈ K Q , which is
Q-atomic over A. Moreover, such an N is unique up to isomorphism.

To investigate isolation properties of types we use the notion of trace of a type. If A
is any set of parameters and s(x) is any type (possibly incomplete, or even a single
formula) over C, then the trace of s over A is the set

TrA(s) = {tp(a/acl(A)) : a realizes s(x)}.

TrA(a/B) abbreviates TrA(tp(a/b)), and we omit A if A = ∅.
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Suppose P ⊆ S(acl(A)) is closed. We say that forking is meager on P if for
every formula ϕ(x) forking over A, the set TrA(ϕ) ∩ P is nowhere dense in P .
Using this notion we can define meager types in an arbitrary stable theory. In the
case of a small superstable theory we can give an easier definition. We say that a
regular type p is meager if there is an isolated regular type q over some finite set A
such that q is nonorthogonal to p and forking is meager on TrA(q).

We say that X ⊆ S(acl(A)) is small if there are finitely many types r1, . . . , rk ∈ X
such that any r ∈ X is not almost orthogonal to some ri . If T has few countable
models, then meager types have the following property.

Theorem 2.2 ([8], [10]) Assume A ⊆ B are finite, p ∈ S(A) is meager, and
q ∈ S(B) is a nonforking extension of p. Then exactly one of the following condi-
tions holds.

(1) q is isolated (equivalently, TrA(q) is open in S(acl(A))).
(2) TrA(q) is small.

More information on meager types may be found in [8], [9], and [10]. From now
on usually we assume that p ∈ S(acl(∅)) is a meager stationary type. In this paper
we deal with meager types in S(acl(∅)) nonorthogonal to p. So “regular type” will
mean a meager regular type which is nonorthogonal to p.

For an arbitrary set A we define CL(A) as the set {r ∈ S(acl(∅)) : r |A is reg-
ular and modular}. For X ⊆ S(acl(∅)) we set CL(X) as CL(A), where A is any
independent set of realizations of types in X such that each type in X is realized in
A.

Suppose q ∈ S(∅) is regular and A is finite. Then CL(A) ∩ Tr(q) is closed and
small.

Occasionally we will also use the notions of a p-formula and M-rank; these may
be found in [6], [8], and [9]. M-rank measures the topological size of the sets of
stationarizations of complete types over finite sets. So it tells us how much such
types differ from stationary ones. If T has few countable models then M-rank of any
type is finite and ≤ U -rank.

Throughout, we assume that G is a 0-definable regular Abelian locally modular
group; the group law is written additively. G ⊆ S(acl(∅)) is the set of generic types
of G and G−

= clp(∅)∩ G (we assume that p is the generic type of G0). We define
Gm as the set of modular types in G; in particular, the generic type of G0 is modular.
By smallness, Gm is closed and G \ Gm is open in S(acl(∅)) [8]. We say that G is
meager if its generic types are meager. This is equivalent to saying that forking is
meager on the set of generic types G. In fact, we have the following characterization
of meager groups.

Remark 2.3 ([8]) Assume G is locally modular. Then G is meager if and only if Gm
is nowhere dense in G. Moreover, if G is meager then every pseudoendomorphism
of G0 is definable over acl(∅). In this case the ring of pseudoendomorphisms of G
(denoted by FG) is a locally finite field.

We can define a group law + on G induced by the group law on G: r+r ′
= stp(a+a′)

for any independent realizations a, a′ of r, r ′, respectively [5]. Then the generic type
of G0 is the neutral element of (G, +) and Gm is a subgroup of G. Given any set
of types X and M |H T , we denote by X M the set of types in X realized in M .
Similarly, (G/Gm)M denotes the set of Gm-cosets containing a type realized in M .
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We define M(G) and M(G) as the M-rank of any isolated generic type of G in
S(∅). Then M(G) = 0 if and only if G is connected-by-finite (i.e., G is finite), and
if G is meager then M(G) > 0 and M(G) = 1 if and only if Gm is finite (more
generally, for meager G, M(G) = M(Gm) + 1).

We denote by Gm the type-definable over ∅ subgroup of G generated by Gm, in
the sense of [5] (so Gm is the modular part of G). Clearly, Gm is the set of generic
types of Gm [5].

From now on in this paper we assume that G is meager. Then we usually assume
that p is the generic type of G0. In this case, for any finite A, CL(A) ∩ G is a closed
subgroup of G containing Gm as a subgroup of finite index.

3 A Relative Vaught’s Conjecture

In this section we prove Vaught’s Conjecture for G relative to Gm and a finite set,
provided that G is meager, of M-rank 1 (that is, Gm is finite), and the ring of pseu-
doendomorphisms FG is finite. p is the generic type of G0. Notice that, more gener-
ally, when G is locally modular and not meager, then Gm has finite index in G, so in
this case Vaught’s Conjecture for G relative to Gm and a finite set (of representatives
of Gm-cosets) is trivial. So the meager case is the nontrivial one.

In [14] we proved Vaught’s Conjecture for such G relative to G− and a finite set,
provided that FG is a prime field. The main obstacle in the proof when FG is not
a prime field is the fact that the values of pseudoendomorphisms in G are “fuzzy,”
that is defined only up to G−. By a result of Hrushovski [3], the linear dependence
over FG fully describes the forking dependence of generic elements in G0. So the
naïve approach to describe G0(M) would be to take a maximal Morley sequence
I in p(M) and then G0(M) should be the projective space over FG spanned by I .
However, since the values of pseudoendomorphisms are “fuzzy,” this is not enough
to determine G0(M). This trouble vanishes in [14] when FG is a prime field, since
we can choose representatives of elements of FG with firmly defined values in G.

Here in the case where FG is finite we deal with this trouble introducing a resolv-
ing group G ′ such that G is a homomorphic image of G ′ and the “fuzzy” forking
dependence in G is resolved to dcl-dependence with respect to pre-images in G ′.
The notion of resolving group seems to be of independent interest.

Now we recall some results from [3]. Again, G is a 0-definable locally modular
Abelian group and p is the generic type of G0. For a, b ∈ G we write a =

∗ b if
a − b ∈ G−.

Let H be the family of clp(∅)-definable subgroups H of G × G such that
G0

⊆ π1(H) and ({0} × G) ∩ H ⊆ G− (π1 is the projection to the first coordinate).
For H ∈ H let SH = ({0} × G) ∩ H and DH = π1(H). H is the graph of a group
homomorphism fH : DH → G/SH , which in turn induces f ′

H : DH → G/G− (as
SH ⊆ G−). Notice that f ′

H : G0
→ (G0

+ G−)/G−.
Let F = FG = { f ′

H dG0
: H ∈ H}. F is the division ring of clp(∅)-definable

pseudoendomorphisms of G0. If f ∈ F , H ∈ H , and f = f ′

H dG0, we say that fH
and H represent f .

Now we are able to introduce the notion of a resolving group for G. Suppose
f ∈ F . We say that G ′ is f -resolving for G (via g), if the following conditions
hold.

(r1) G ′ is a clp(∅)-definable locally modular Abelian group.
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(r2) g : G ′
→ G is a clp(∅)-definable group homomorphism with g[(G ′)−] ⊆ G−

and the induced mapping g : (G ′)0/(G ′)− → G0/G− is a group isomor-
phism.

(r3) Let f ′
= g−1 f g ∈ FG ′ . Then f ′ is represented by some H ′

⊆ G ′
× G ′ such

that for any a ∈ DH ′ , if (a, b) ∈ H ′ and (a, c) ∈ H ′ then g(b) = g(c).
We say that G ′ is resolving for G (via g) if G ′ is f -resolving for G (via g) for every
f ∈ F .

The idea behind this definition is as follows. By (r3), the rings FG and FG ′ are
isomorphic via the mapping f 7→ f ′. Suppose H and fH represent f . Then the
values of fH in G are defined only up to SH , so they are “fuzzy.” However, by (r3),
this fuzziness is resolved in G ′, via H ′, representing f . Namely, the values of f ′

H
are also fuzzy (up to SH ′ ); however, their images under g are firm (and they clearly
belong to the respective cosets of SH , that is, the fuzzy values of fH ).

Lemma 3.1 If f ∈ F then there is an f -resolving group G ′.

Proof Suppose f is represented by H ⊆ G×G. Take a generic a = (a1, a2) ∈ H0.
Clearly, a is p-simple and wp(a) = 1. So by [3] we can choose an a′

∈ acl(a) such
that wp(a′) = 0 and stp(a/a′) is regular nonorthogonal to p. By [3], stp(a/a′) is
a translate of the generic type of (G ′)0 for some a′-definable connected subgroup
G ′ of H . Let g : G ′

→ G be the projection to the first coordinate. We will show
that G ′ is f -resolving via g. Clearly, (r1) and (r2) are satisfied. To check (r3) let
f ′

= g−1 f g ∈ FG ′ and

H ′
= {(a, b) ∈ G ′

× G ′
: a = (a1, a2), b = (b1, b2), and a2 = b1}.

Clearly, H ′ is a subgroup of G ′
× G ′. We check that H ′ represents f ′. For this it

is enough to see that (g × g)(H ′) represents f . However, (g × g)(H ′) = G ′ and
clearly G ′ (as an element of H ) represents f , so we are done. It is immediate from
the definition of H ′ that (r3) holds. �

Lemma 3.2 Suppose f, f0 ∈ F , G ′ is f -resolving for G (via g : G ′
→ G) and

G ′′ is f ′

0-resolving for G ′ (via g′
: G ′′

→ G ′), where f ′

0 = g−1 f0g. Then G ′′ is both
f - and f0-resolving for G (via g ◦ g′).

Proof For instance, we check that G ′′ is f -resolving. Let f ′′
= (g′)−1 f ′g′. Sup-

pose H ′ represents f ′ and witnesses (r3) for G ′. Then H ′′
= (g′

× g′)−1(H ′)
represents f ′′ and witnesses (r3) for G ′′. �

Theorem 3.3 If X ⊆ F is finite then there is a group G ′ and g : G ′
→ G such

that G ′ is f -resolving via g for every f ∈ X.

Proof Follows by Lemmas 3.1 and 3.2. �

It would be nice to know if the f -resolving groups for G, f ∈ F , form an amalga-
mation class. To be more explicit, suppose F0, F1 are finite subsets of F and G ′, G ′′

are groups such that G ′ is f -resolving for G (via a g′) for every f ∈ F0 and G ′′ is
f -resolving for G (via a g′′) for every f ∈ F1. Does there exist a G∗ and homo-
morphisms h′

: G∗
→ G ′ and h′′

: G∗
→ G ′′ such that g′h′

= g′′h′′ and G ′′ is
f -resolving for G (via g′h′) for every f ∈ F0 ∪ F1?

Lemma 3.4 If G is meager and f ∈ F then there are acl(∅)-definable G ′ and g
such that G ′ is f -resolving for G via g.
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Proof We modify the proof of Lemma 3.1. As in Lemma 3.1 we find an a-definable
regular group Ha ⊆ G×G (for some a) which represents f . Assume that R∞(Ha) is
minimal possible under these restrictions. Let G ′

=
⋂

{Ha′ : a′
s
≡ a}. The proof of

[4], Proposition 3.3, shows that G ′ is definable over acl(∅) and represents f . Since
R∞(Ha) is minimal, G ′ is regular. One sees that G ′ is f -resolving via the projection
to the first coordinate. �

Theorem 3.5 Assume G is meager and F is finite. Then there are acl(∅)-definable
G ′ and g such that G ′ is a resolving group for G (via g).

Proof Follows from Lemmas 3.2 and 3.4. �

Now suppose G and p (the generic type of G0) are meager, M |H T is countable,
and Q = 8(M) for some (incomplete) type 8 over ∅. Also, from now on in this
section, “regular” means “meager nonorthogonal to p.”

In [14] we were classifying G(M) relative to G−(M) and then 8 was chosen so
that Q = G−(M) ∪ acl(∅). In this case p was orthogonal to 8. Here we want
to classify G(M) relative to Gm(M), so the natural choice for 8 will be such that
Q = Gm(M) ∪ acl(∅). Then p is not orthogonal to 8; however, 8 and Q are small
in some sense, which we make precise now.

We say that A = {aα, α < γ } is a neat construction if for every α < γ , either
stp(aα/a<α) is regular and modular or tp(aα/a<α) has p-weight 0. Here a<α denotes
the tuple {aβ , β < α}.

We say that a tuple a ⊆ C is neat if it is contained in a neat construction. We say
that A ⊆ C is neat if every element of A is neat. We say that 8 is neat if 8(C) is
neat.

Remark 3.6

(1) If A ⊆ C is neat then there is a neat construction B = {bα, α < γ } such that
acl(A) ⊆ B.

(2) If A is neat and stp(a) is regular nonmodular, then a ^ A.

Proof (1) Clearly, if B = {bα, α < γ } and C = {cα, α < δ} are neat constructions,
then B ∪ C is a neat construction of length γ + δ (with the elements of B going first,
and then the elements of C).

(2) Let q = stp(a). By (1) we may assume that A = {aα, α < γ } is a neat construc-
tion. We prove by induction on α < γ that

(a) b ^ aα(a<α) for every b realizing q .

By the inductive hypothesis we know that for every b realizing q, b ^ a<α . So
for every b, stp(b/a<α) is regular and nonmodular. Hence (a) follows both when
stp(aα/a<α) is modular and when it has p-weight 0. �

If, in Remark 3.6(2), A is finite and tp(a) is isolated, then we can prove that tp(a/A)
is isolated. This follows from Proposition 4.2 below. The proof of this proposition
relies on the few models assumption and on an analysis of some orbits over neat sets.
Specifically, from now on we assume that 8 and Q are neat with acl(∅) ⊆ Q.

Suppose q ∈ S(∅) is regular and isolated. By Remark 3.6(2) each type in Tr(q)
extends uniquely to a type over Q. Hence Aut(Q) acts naturally on Tr(q). We are
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interested in the orbits of this action. Below we restate some results from [14]. The
context in [14] is somewhat different, but the proofs go through.

Lemma 3.7 ([14], Orbit Lemma 2.5) Assume r∗
∈ Tr(q), X is the Aut(Q)-orbit of

r∗. Then either X is open in S(acl(∅)) or X is small. In the latter case X is nowhere
dense.

Lemma 3.8 ([14], Theorem 2.6; [1], Lemma 5.2; Basis Lemma) Let (*) be the
following condition.

(*) r ∈ S(acl(∅)) is regular and the Aut(Q)-orbit of r is small.
Then for every N ∈ K Q there is a finite set B ⊆ N of elements realizing types r with
(*) such that for any r with (*) realized in N, r has a forking extension over B.

Proofs of Lemmas 3.7 and 3.8 These are the same as in [14]. In [14] we assumed
additionally that p is orthogonal to 8. This enabled us to construct many models by
realizing quite freely various meager types orthogonal to 8 (including the modular
ones) without having to worry about bad types.

However, if we deal with nonmodular types (which is the case now), then in
the many-model constructions in [14] no modular types appear. By Remark 3.6
these constructions are good here, too; that is, they yield many countable models in
K Q . �

Notice that every generic type of G is regular in our sense. Applying Orbit
Lemma 3.7 we get the following characterization of Q-isolated generic types of
G.

Remark 3.9 Suppose A ⊆ M is finite and a ∈ G is generic over Q A. Then
tp(a/Q A) is Q-isolated over A if and only if the Aut(Q/A)-orbit of stp(a) is open
in S(acl(∅)) if and only if this orbit is not small.

Proof If tp(a) is nonisolated, then clearly tp(a/Q A) is not Q-isolated over A and
the orbit of stp(a) is small (by Theorem 2.2). Suppose q = tp(a) is isolated. Let
X be the Aut(Q/A)-orbit of stp(a). Working in T (A), by Lemma 3.7, we get that
either X is open or X is small and nowhere dense in S(acl(∅)). In the first case
tp(a/Q A) is Q-isolated over A; in the second it is not. �

The following remark generalizes [14], Remark 4.1.

Remark 3.10

(1) Suppose A ⊆ M and r∗
∈ CL(A) ∩ G \ Gm. Then the set

{r ∈ r∗
+ Gm : r is realized in M}

is dense in r∗
+ Gm and for some a ∈ M depending on A, stp(a) ∈ r∗

+ Gm
and tp(a/A) is isolated.

(2) If a modular type from G is realized in M , then also the set {r ∈ Gm : r is
realized in M} is dense in Gm.

Proof (1) By Section 2, CL(A)∩G is a subgroup of G containing Gm as a subgroup
of finite index. So r∗

+ Gm is a relatively open subset of CL(A) ∩ G. Suppose
U ⊆ r∗

+ Gm is relatively open. As in [8], Claim 2.14, there is a formula ϕ(x) over
A such that Tr(ϕ) = CL(A) ∩ (r∗

+ Gm). Refining ϕ (over A ∪ acl(∅)), we can
assume that Tr(ϕ) ⊆ U . Any element of ϕ(M) realizes a type in U . So some type
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in U is realized in M . For the last clause we can choose a ∈ M realizing ϕ with
tp(a/A) isolated. Clearly, a depends on A.

(2) A similar proof. �

From now on in this section we assume additionally that M(G) = 1 (that is, Gm is
finite) and 8(C) = Gm ∪acl(∅). Also in this section we say that a is strictly regular
if stp(a) is regular nonorthogonal to p and, moreover, a realizes some p-formula
ϕ(x) over acl(∅) with M(Pϕ) = 1 (for the definition of p-formulas, see [8] or [14]).

For instance, G(x) is a p-formula and PG(x) = G, so in our case every generic
element of G is strictly regular. By Lemma 3.7 (see also [14], Lemma 3.1) if a is
strictly regular and A ⊆ M is finite then the Aut(Q/A)-orbit of stp(a) is either open
or finite. In the second case we say that a is Q-finite over A.

The following generalizes, slightly, [14], Theorem 3.2 (the ground level lemma).

Lemma 3.11 Suppose Aa ⊆ M is a finite independent set of strictly regular ele-
ments, a is Q-finite over A but not Q-finite over ∅. Then either stp(a/A) is modular
or for some strictly regular Q-finite b independent from A, a /̂ b(A).

Proof As in Lemmas 3.7 and 3.8, the proof from [14] goes through. It is enough to
notice that in the many-model constructions there we never employ modular types.

�

Finally we can prove the main result of this section.

Theorem 3.12 Assume T has few countable models, G is a meager group with
M(G) = 1, FG is finite, and Q = Gm(M) ∪ acl(∅). Then there is a finite set
C ⊆ M such that G(M) is Q-atomic over C. In particular, if there are countably
many good pseudotypes over Q then Vaught’s Conjecture is true for K Q .

Proof The proof is similar to that of [14], Theorem 4.5. M(G) = 1 means that
G0 has finite index in Gm. So replacing G by a generic subgroup of finite index
(in which G is interpretable over some parameters) we can assume that Gm = G0

(hence Gm consists of the generic type p of G0 only). Also, we may choose acl(∅)-
definable representatives f0, . . . , fl of the elements of F = FG and assume they are
defined on all of G, and G is closed under every fi . We identify F with { f0, . . . , fl}.

First we choose a Q-finite basis A∗ of M : this is a finite independent set of
Q-finite strictly regular elements of M such that for every Q-finite strictly regular
b ∈ M , stp(b) is realized in clp(A∗), and A∗ is minimal under these requirements.
A∗ exists by Basis Lemma 3.8.

Next we choose a finite set E = {e0, . . . , ek} of generic elements of G(M) with
the following properties.

(a) tp(E) is isolated,
(b) e0, . . . , ek are pairwise dependent,
(c) stp(e0), . . . , stp(ek) are pairwise distinct and CL(e0) ∩ (G \ Gm) =

{stp(e0), . . . , stp(ek)} (that is, whenever e ∈ G \ Gm is generic and de-
pends on e0 then stp(e) = stp(ei ) for some i).

As in [14], Lemma 4.4, we have the following claim.
(d) There are open neighborhoods Vi of stp(ei ), i ≤ k, in S(acl(∅)) and

fi j ∈ F (with fi i = id) such that if e∗

i realizes a generic type in Vi and
e∗

j =
∗ e j + fi j (e∗

i − ei ), then e∗

j , j ≤ k, satisfy (b) and (c).
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Choose a finite set A of generic elements of G(M) such that A ⊆ clp(A∗) and if a
generic type of G is realized in clp(A∗) ∩ M then it is realized in A.

Since the fi s are defined on all of G we have that for every X ⊆ G and x ∈ G,
x ∈ clp(A∗ X) if and only if x ∈ clp(AX).

Next we choose a maximal set B ⊆ G(M) of generic elements such that e0 ∈ B,
the set A ∪ B is independent, B is Q-atomic over A, and the set {stp(b) : b ∈ B} is
dense in G. As in [14] we have

(e) every r ∈ GM is realized in clp(AB).
Using (d), as in [14] we get

(f) G(M) ⊆ F -span(AB E Q).
Now let G ′ be a resolving group for G (via g : G ′

→ G), and by Theorem 3.5 we
may assume that both G ′ and g are acl(∅)-definable. Also, without loss of generality,
g is onto. For every a ∈ A, b ∈ B, and e ∈ E , choose a′, b′, e′

∈ G ′ with g(a′) = a,
g(b′) = b, and g(e′) = e. Let

A′
= {a′

: a ∈ A}, E ′
= {e′

: e ∈ E}, B ′
= {b′

: b ∈ B}.

Because of the choice of G ′ we have
(g) G(M) ⊆ acl(A′ B ′E ′Q).

Indeed, let a ∈ G(M). (f) means that for some ai ∈ A, e j ∈ E, bk ∈ B, and
fi , f ′

j , f ′′

k ∈ F we have

a −
( ∑

i

fi ai +

∑
j

f ′

j e j +

∑
k

f ′′

k bk
)

∈ Gm.

Choose acl(∅)-definable subgroups Hi , H ′

j , H ′′

k ∈ G ′
× G ′ representing g−1 fi g,

g−1 f ′

j g, g−1 f ′′

k g, respectively, as in the definition of a resolving group. Choose
a0

i , e0
j , b0

k so that (a′

i , a0
i ) ∈ Hi , (e′

j , e0
j ) ∈ H ′

j , (b′

k, b0
k ) ∈ H ′′

k and let

a∗
=

∑
i

g
(
a0

i
)
+

∑
j

g
(
e0

j
)
+

∑
k

g
(
b0

k
)
.

Clearly, a∗
∈ acl({a′

i , e′

j , b′

k}i, j,k)∩ M and a −a∗
∈ Gm. Hence a ∈ acl(A′E ′ B ′Q),

proving (g).
To finish the proof it is enough to show that
(h) B ′ is Q-atomic over C = A′E ′ B ′

0 for some finite B ′

0 ⊆ B ′.
We know that B is Q-atomic over A∗. As in the proof of [14], Theorem 4.5, we have
the following claim.

Claim 3.13 If a ∈ clp(A∗) ∩ M, then for some finite B0 ⊆ B, B is Q-atomic over
A∗aB ′

0, where B ′

0 = {b′
: b ∈ B0}.

Proof The proof of the corresponding claim in [14] used the ground level lemma.
We generalized it suitably in Lemma 3.11. �

By the claim, there is a finite set B0 ⊆ B such that B is Q-atomic over C = A′E ′ B ′

0,
where B ′

0 = {b′
: b ∈ B0}. To finish, we prove that for any finite set C and any

a′
∈ G ′ generic over C ,

a′ is Q-atomic over C iff g(a′) is Q-atomic over C.
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⇒ is clear. For the other direction, suppose a′ is not Q-atomic over C . By
Lemma 3.7 and Remark 3.9 this means that the Aut(Q/C)-orbit X ′ of stp(a′) is
small; that is, there are finitely many types r ′

i ∈ X ′ such that any type r ′
∈ X ′ is not

almost orthogonal to some r ′

i .
Let X be the Aut(Q/C)-orbit of stp(g(a′)). Clearly, every type r ∈ X is not

almost orthogonal to some g(r ′

i ). Hence g(a′) is not Q-atomic over C . �

Corollary 3.14 Assume G is a superstable meager group of U-rank ω and M-
rank 1, with FG finite, and T = Th(G) has few countable models. Then there are
countably many countable models M of T with G0(M) finite dimensional.

Proof Without loss of generality, G0
= Gm. Let n < ω. It suffices to show that

there are countably many countable models M of T with G0(M) n-dimensional. We
can assume that every such model contains a Morley sequence A = {a0, . . . , an−1}

in the generic type p of G0, and we work in T (A). So in this new signature we
must show that there are countably many countable models of T (A) with G0(M)
0-dimensional. However, G0(M) is 0-dimensional if and only if G0(M) = G−(M).

Let Q = G−(M) ∪ acl(∅). Then Th(Q) is a many-sorted superstable theory
of finite rank (since U (G) = ω), and by [2] Vaught’s Conjecture holds for Th(Q)
and Q is atomic over a Morley sequence contained in Qeq. By [6] and [7], every
Aut(Q)-orbit (called pseudotype there) is τ -stable; hence there are countably many
of them. We see that the assumptions of Theorem 3.12 are satisfied; hence we are
done. �

I did not manage to remove the assumption that M(G) = 1 and FG is finite from
Theorem 3.12 and Corollary 3.14. In general, when G is meager and T has few mod-
els, then M(G) is finite and FG is a locally finite field. However, when M(G) > 1
then I could not prove the ground level lemma over Q = Gm(M) (this lemma, to-
gether with the basis lemma, is the heart of the description of (G/Gm)M ). Also, if
FG is infinite then possibly there is no resolving group G ′ (the existence of G ′ helps
us to describe G(M) once we know (G/Gm)M ); maybe one should use an inverse
limit of a system of f -resolving groups, f ∈ F ?

4 On Generic Types of a Meager Group

In this section we assume that G is a meager group and p is the generic type of G0.
Our goal is to describe (G/Gm)M , that is, the set of Gm-cosets in G containing a type
realized in M , where M is a countable model of T .

Notice that (G/Gm)M determines (G/Gm)(M). Also, when G is a locally mod-
ular group which is not meager, then G/Gm is finite, so there are finitely many pos-
sibilities for (G/Gm)M . Hence again the meager case is the nontrivial one.

When G is meager, G/Gm is a profinite group of power 2ℵ0 and (G/Gm)M differs
from a subgroup of G/Gm at most by 0. (0 ∈ (G/Gm)M if and only if some modular
generic type of G is realized in M .)

Our results fall short of characterizing GM , the set of generic types of G realized
in M . But it is not known yet how to describe even (Gm)M . I did not manage to
describe the set (G/Gm)M relative to Gm(M). The best I could do was a description
of (G/Gm)M over G−(M) (or over ∅). Again we assume that Q = 8(M) where 8
is a countable disjunction of formulas over ∅ and M is countable.
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In order to describe (G/Gm)M relative to Q we must generalize the ground level
lemma ([14], Theorem 3.4) again, this time considering regular types of M-rank
possibly > 0. I managed to do this assuming that 8 is orthogonal to p, meaning that
p is orthogonal to any complete type extending 8 (in Lemma 3.11 this assumption
is weakened, but we deal with M-rank 0 types there).

So in this section we assume that 8 is orthogonal to p and acl(∅) ⊆ Q. The
main examples of 8 and Q one should have in mind are Q = G−(M) ∪ acl(∅) and
Q = acl(∅) (we add acl(∅) to Q for convenience). Here we say that a is regular
if r = stp(a) is regular nonorthogonal to p. We say that a is Q-small over A if the
Aut(Q)-orbit of r over A is small. Since 8 is orthogonal to p, each type in Tr(tp(a))
extends uniquely to a type in S(Q); hence Aut(Q) acts naturally on Tr(tp(a)). By
Orbit Lemma 3.7 and Section 2, if a is regular, then the Aut(Q)-orbit of r = stp(a)
is either open or small and in the latter case it is nowhere dense in S(acl(∅)). By
Remark 3.9 this orbit is open if and only if r |Q is Q-isolated.

We need some additional facts about Aut(Q)-orbits. Assume a is regular and X
is the Aut(Q)-orbit of stp(a). For any r ∈ X we have r ` r |Q, so we can identify X
with a subset of S(Q) (which is the Aut(Q)-orbit of tp(a/Q), or a pseudotype in the
sense of [6]).

We say that q ∈ S(Q) is τ -stable (and τ -based on c ⊆ Q) if the Aut(Q/c)-orbit
of q is co-meager in its closure [7]. Also, q ∈ S(Q) is called good if q is realized in
some model in K Q . In [7] I formulated the τ -stability conjecture saying that under
the few models assumption every good type q ∈ S(Q) is τ -stable. I proved this
conjecture in several cases [13].1

Lemma 4.1 Assume N ∈ K Q , X is the Aut(Q) orbit of stp(a) for some regular a,
and A ⊆ N is finite.

(1) For every r ∈ cl(X) there is a model M ∈ K Q containing A and realizing r .
(2) cl(X) is Aut(Q)-invariant.
(3) There is an Aut(Q)-orbit X ′

⊆ cl(X) such that X ′ is co-meager in cl(X).
(4) If X is open, then the open Aut(Q/A)-orbits are dense in X.

Proof (1) Clearly, every r ∈ cl(X) is regular, nonorthogonal to p, hence orthogonal
to 8. It follows that for any b |H r |Q A, the type 8(x) ∪ {x 6= c : c ∈ Q} is
nonisolated over Q Ab. Hence there is a model M ∈ K Q containing A and b.

(2) is obvious.

(3) We can identify X with a subset of S(Q). So we are done by (1) and [7], Lemma
2.1.

(4) T has few countable models, so by (1), cl(X) is a union of < 2ℵ0 -many
Aut(Q/A)-orbits, and they are either open or small. If Y ⊆ X is a small Aut(Q/A)-
orbit, then Y ′

= cl(Y ) is closed nowhere dense and Aut(Q/A)-invariant. By (3),
Y ′ contains a co-meager Aut(Q/A)-orbit Y ′′, and by [7], Corollary 2.5, there are
countably many such orbits Y ′′ (since they correspond to good τ -stable pseudotypes,
whose Scott height is ≤ SH(Q) + 1).

So there are also countably many nowhere dense sets of the form cl(Y ), where
Y ⊆ X is a small Aut(Q/A)-orbit. Hence the union of such orbits forms a meager
subset of X . It follows that the open Aut(Q/A)-orbits are dense in X . �
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When all the orbits in question are finite, the next proposition is trivial and holds also
for Q = Gm(M). Without this we need the assumption that 8 is orthogonal to p
and we must use the few models assumption.

Proposition 4.2 Assume that every good type in S(Q) is τ -stable. Assume a, b, c
are regular.

(1) If b is Q-small and a is Q-small over b, then a is Q-small.
(2) If a is Q-small over b and b is Q-small over c, then a is Q-small over c.

Proof (1) Suppose a is not Q-small. Let X and Y be the Aut(Q)-orbits of stp(a)
and stp(b), respectively, and let Xb be the Aut(Q/b)-orbit of stp(a). So X is open
and Xb, Y are small (hence, nowhere dense). By assumption tp(b/Q) is τ -stable,
τ -based on some finite c ⊆ Q. Clearly, the Aut(Q/c)-orbit of stp(a) is open and
contained in X , so without loss of generality, we can absorb c into the signature and
assume additionally that Y is co-meager in cl(Y ).

For b′ realizing a type in Y let Xb′ be the Aut(Q)-conjugate of Xb over b′ (that is,
Xb′ = h(Xb) for any h ∈ Aut(Q) with h(b) = b′; the choice of h does not matter).

We can assume (extending the signature by an element of acl(∅)) that all types in
Y are not almost orthogonal. Hence also, all types in cl(Y ) are such. Hence,

(a) for any r ∈ cl(Y ), r |b is modular.

Clearly, X =
⋃

{Xb′ : b′ realizes a type in Y } and if b′
s
≡ b then Xb′ = Xb (since

then we can choose h ∈ Aut(Q) with h(b) = b′ and hdQ = idQ).
Let b∗ realize a type in Y . By Lemma 4.1(4) there is an open Aut(Q/b∗)-orbit

X ′
⊆ X . Similarly, there is a (relatively) nonmeager Aut(Q/b∗)-orbit Y ′

⊆ Y (here
we use the fact that Y is co-meager in cl(Y )). Without loss of generality, stp(b) ∈ Y ′

and stp(a) ∈ X ′. Naming b∗, by (a) we may assume that Y = Y ′, X = X ′, and every
type in cl(Y ) is modular.

The main point of the proof will be construction of a model in K Q admitting many
automorphisms. In this construction we use ideas from [12], particularly that of a flat
Morley sequence.

Choose a countable set B = {bn, n < ω} of independent elements realizing types
in Y such that for every n, the Aut(Q/b<n)-orbit of stp(bn) is not meager in Y and
the set {stp(bn) : n < ω} is dense in Y (here b<n = {bk : k < n}). In other words, B
is a flat Morley sequence in Y (more precisely, we identify Y with a subset of S(Q);
then Y becomes (in the notation from [12]) the Aut(Q)-orbit o(q) of the τ -stable
type q = tp(b/Q) and B is a flat Morley sequence in o(q)).

By [12], Proposition 4.5, the choice of B is unique up to Aut(Q); in particular,
by [12], Lemma 4.4, we have

(b) for all k, l < ω there is an f ∈ Aut(Q) with f [B] = B and f (bk) = bl ,
(c) if B ′ is another countable flat Morley sequence in o(q), then some f ∈ Aut(Q)

maps B onto B ′.

Now we prove that

(d)
⋃

n<ω Xbn is dense in X .

Indeed, for every E ∈ F E(∅) and an E-class α meeting X , the set {r ∈ Y :

for b′
|H r , α meets Xb′} has nonempty interior in Y ; hence, by denseness of

{stp(bn) : n < ω}, Xbn meets α for some n.
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Let A = Q ∪ B. Aut(C/{A}) acts on S(A) and for r ∈ S(A) let o(r) denote the
orbit of r under this action. We say that r ∈ S(A) is τ -isolated if o(r) is not mea-
ger (this is simply a generalization of the notion of Q-isolation, introduced in [6]).
Similarly as in [12], Proposition 3.4, we shall prove that

(e) the τ -isolated types are dense in S(A).

So let ϕ(x, c) ∈ L(A), where c ⊆ A, and we may assume that ϕ has no forking
extension over A and that c ⊆ Q ∪ b<k for some k < ω. Also, we may assume that
S(Qb<k) ∩ [ϕ(x, c)] meets just one nonmeager Aut(Q/b<k)-orbit. Let

S = {r ∈ S(A) ∩ [ϕ(x, c)] : for every n ≥ k, rdQb<n is Q-isolated over b<n}.

To prove (e) it is enough to show that S is co-meager in S(A) ∩ [ϕ(x, c)] and that all
types in S are conjugate over {A}.

For every n ≥ k let fn : S(A) ∩ [ϕ(x, c)] → S(Qb<n) ∩ [ϕ(x, c)] be restriction
and let Sn = {r ∈ S(Qb<n) ∩ [ϕ(x, c)] : r is Q-isolated over b<n}. By our assump-
tions on ϕ, fn is open and continuous and Sn is co-meager in S(Qb<n) ∩ [ϕ(x, c)].
It follows that the set S =

⋂
n f −1

n (Sn) is co-meager in S(A) ∩ [ϕ(x, c)].
Now let tp(d/A), tp(d ′/A) ∈ S. We want to find f ∈ Aut(C/{A}) with

f (d) = d ′.
Let B≥k = {bn : n ≥ k} and let Z = {r |Qb<kd : r ∈ Y }. Clearly, Z is co-meager

in cl(Z) and Z is a union of some Aut(Q/b<kd)-orbits; say Zl , l < ω, are all the
orbits over b<kd contained in Z that are nonmeager in Z . Clearly,

⋃
l<ω Zl is dense

in Z and by [12], B≥k is a flat Morley sequence in
⋃

l Zl (over b<kd).
Defining analogously Z ′ and Z ′

l for d ′ in place of d we get that B≥k is a flat Morley
sequence in

⋃
l Z ′

l over b<kd ′. Now S(Qb<k) ∩ [ϕ(x, c)] meets just one nonmeager
pseudotype over b<k ; hence, for some g ∈ Aut(Q/b<k), we have g(d ′) = d . Hence,
g({Z ′

l , l < ω}) = {Zl , l < ω} and g(B≥k) is a flat Morley sequence in
⋃

l Zl over
b<kd . By [12], Proposition 4.5, there is h ∈ Aut(Q/b<kd) mapping g(B≥k) onto
B≥k . We see that f = h ◦ g ∈ Aut(C/{A}) and f (d ′) = d . This proves (e).

By (e) and [12], there is a countable model N containing A, which is τ -atomic
over A, and such an N is unique up to Aut(C/{A}). In particular, N ∈ K Q and N
has the following property:

(f) for all n, k < ω there is an automorphism of N mapping bn to bk .

Indeed, N is τ -atomic over A also in the expanded language L(bn) and L(bk). By
(b) there is an h0 ∈ Aut(C) mapping bn to bk and A onto A. h0(N ) is also τ -
atomic over A, in L(bk). By uniqueness of countable τ -atomic models, for some
h1 ∈ Aut(C) preserving A setwise, with h1(bk) = bk , h1 maps h0(N ) onto N . We
see that h1 ◦ h0 is an automorphism of N mapping bn to bk .

Choose a type 8′ so that 8′(C) = 8(C) ∪ cl(Y )(C) and let Q′
= 8′(N ). Q′

is a neat set, because p is orthogonal to 8 and every type in cl(Y ) is modular. Let
C = { f (b0) : f ∈ Aut(Q′)} and X N =

⋃
{Xb′ : b′

∈ C}. We see that B ⊆ C and
by (d) and (f) we have

(g) X N is Aut(Q′)-invariant and dense in X and every Aut(Q′)-orbit contained
in X N meets Xb′ for every b′

∈ C .

X N is meager (as a countable union of nowhere dense sets Xb′ ), so every Aut(Q′)-
orbit contained in X N is small (by Lemma 3.7). Choose b′

∈ C and r0, . . . , r l
∈ Xb′

(for some l < ω) such that for every r ∈ Xb′ , r 6
a
⊥r i for some i . Let X i be the
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Aut(Q′)-orbit of r i . For every i ≤ l choose r i
j ∈ X i , j ≤ li such that for every

r ∈ X i , r 6
a
⊥r i

j for some j .
Let R = {r i

j : i ≤ l, j ≤ li } and for r ∈ R let Xr = CL(r) ∩ X N . By the meager
forking assumption (see Section 2), CL(r) ∩ X is nowhere dense; hence, also Xr is
nowhere dense. We see that X N =

⋃
r∈R Xr is nowhere dense, contradicting (g).

(2) follows from (1). �

The next corollary improves Remark 3.6(2).

Corollary 4.3 Under the assumptions of Remark 3.6, if A is finite and tp(a) is
isolated, then tp(a/A) is isolated.

Proof In Proposition 4.2, set 8(x) so that 8(C) = acl(∅). In particular, by [8],
for Q = acl(∅) every type in S(Q) is τ -stable, so the assumption of Proposition 4.2
is satisfied (in fact, for Q = acl(∅) the proof of Proposition 4.2 is easier and we
do not need there the τ -stability assumption). By Remark 3.6(1), A is a subset of
a neat construction. By superstability we may assume that A = {ak, k < n} is a
neat construction. We know that a ^ A. So it suffices to prove by induction on
k ≤ n that tp(b/a<k) is isolated for every b realizing tp(a). This follows from
Proposition 4.2. �

Our next goal is the following generalization of the ground level lemma ([14], The-
orem 3.2).

Lemma 4.4 Assume every good type in S(Q) is τ -stable. Suppose Aa is a finite
independent set of regular elements, a is Q-small over A but not Q-small over ∅.
Then either stp(a/A) is modular or for some Q-small regular b independent from A,
we have that a /̂ b(A).

Proof The proof follows that of [14], Theorem 3.2. By Proposition 4.2, if b ∈ A
and b is Q-small over A \ {b}, then a is Q-small over A \ {b}. So minimizing A we
can assume that no b ∈ A is Q-small over A \ {b} and that a is not Q-small over any
proper subset of A.

Let c ∈ A and B = A \ {c}. Let X be the Aut(Q/B)-orbit of stp(c), Y the
Aut(Q/B)-orbit of stp(a), and Yc the Aut(Q/Bc)-orbit of stp(a). X and Y are open,
while Yc is small, so expanding the signature by an element of acl(∅) we can assume
that all types in Yc are not almost orthogonal and X and Y are clopen.

For any c′ realizing a type in X the set sc′ = CL(c′) ∩ X is closed nowhere dense;
hence it may be regarded as a nonisolated type over acl(∅). Let X = {sc′ : c′ realizes
a type in X}. X is a partition of X into closed Aut(Q)-conjugate nowhere dense sets;
hence the topology on X induces a compact Hausdorff topology on X. Notice that c′

realizes sc′ . Also, by the meager forking assumption, for any set D, sc′ has a forking
extension over D if and only if sc′ is isolated over D.

If C is a finite B-independent set of realizations of types in X , then X splits into
< 2ℵ0 -many Aut(Q/BC)-orbits; some of them are open (the Q-isolated ones), the
others being small. Hence also X splits into Aut(Q/BC)-orbits. The orbits in X
corresponding to small orbits in X are finite; the orbits in X corresponding to open
orbits in X are open. Similarly as in [11], Lemma 2.1, we have the following claim.

Claim 4.5 There are finitely many finite Aut(Q/BC)-orbits in X.
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Similarly, for a′ realizing a type in Y we define sa′ as CL(a′) ∩ Y and regard it as a
nonisolated type over acl(∅). We define Y as the set {sa′ : a′ realizes a type in Y }

and endow it with the induced topology. As above, Y splits into Aut(Q/BC)-orbits,
finitely many of which are finite, the rest being open.

In particular, for some open U ⊆ Y, sa is the only element of the (finite!)
Aut(Q/Bc)-orbit of sa lying in U and no other finite Aut(Q/Bc)-orbit meets U .
Thus extending the signature by an element of acl(∅), we can replace Y by this
neighborhood and assume that there is a unique finite Aut(Q/Bc)-orbit in Y, having
moreover size 1.

The same is true for any c′ realizing a type in X (since X is an Aut(Q/B)-orbit).
So we can define for such c′ the nonisolated type rc′ ∈ Y as the only element of
the only finite Aut(Q/Bc′)-orbit in Y. Notice that for c′, c′′ realizing types in X , if
sc′ = sc′′ then rc′ = rc′′ .

Indeed, by Proposition 4.2(2), the union of the small Aut(Q/Bc′)-orbits in Y
equals the union of the small Aut(Q/Bc′′)-orbits in Y ; hence the finite Aut(Q/Bc′)-
orbit in Y is the same as the finite Aut(Q/Bc′′)-orbit in Y.

A similar argument yields the following “exchange property” of Q-smallness.
(a) If d, d ′ are regular and not Q-small and d ′ is Q-small over d, then d is Q-

small over d ′.
X splits into infinitely, but < 2ℵ0 -many Aut(Q)-orbits over Bc. Since by Lemma 3.7
they are small or open (and the corresponding orbits in X are finite or open), the
open ones are dense in X . So we can choose open Aut(Q/Bc)-orbits Xn ⊆ X ,
n < ω, so that they converge (topologically) to stp(c). Hence, the corresponding
open Aut(Q/Bc)-orbits Xn ⊆ X converge to sc. cl(Xn) \ Xn is a nowhere dense
union of some Aut(Q/Bc)-orbits, hence is finite (by the claim). Since by the claim
there are finitely many finite orbits in X, discarding some Xns we can assume that all
the Xns and Xns are clopen.

Using (a) as in [14], we can assume that whenever I ⊆ ω is finite, j ∈ ω \ I , and
ci realizes a type in X i , i ∈ I , then there is no finite Aut(Q)-orbit over Bc{ci , i ∈ I }
in X j . As in [14] for some n < ω we find

(b) c1, . . . , cn realizing types in X , ai realizing rci , i ≤ n with {ai , ci , i ≤ n}

being Bc-independent, and cn+1 realizing a type in X with an open Aut(Q)-
orbit over Bc{ai ci , i ≤ n} and rcn+1 isolated over acl(∅)∪Bc{ai ci , i ≤ n}cn+1
(equivalently: rcn+1 has a forking extension over this set).

From this point on the proof is the same as in [14], Theorem 3.2, but easier, since we
do not have to find a p-formula true of b. Essentially, by (b), for some an+1 realizing
rcn+1 ,

cn+1 ^ Bcc≤na≤n and an+1cn+1 /̂ Bcc≤na≤n .

We can assume that Bcn+1an+1 and Aa are Aut(Q)-conjugate, so it suffices to find
b satisfying our demands with respect to the set A′

= Bcn+1 and a′
= an+1. After

some minimization, essentially b = Cb(an+1cn+1/Bcc≤na≤n) is good. �

Using Lemma 4.4 we can classify the sets (G/Gm)N , N ∈ K Q , as follows. We say
that A ⊆ M is a Q-small basis of M if

(b1) A is an independent set of regular Q-small elements,
(b2) for every Q-small regular a ∈ N , stp(a) is realized in clp(A), and
(b3) A is minimal under these restrictions.
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Notice that, in a Q-small basis, at most one element realizes a modular type over
acl(∅). By Lemma 3.8 we have the following.

Remark 4.6 M contains a finite Q-small basis. All Q-small bases of M have the
same size.

Theorem 4.7 Assume every good type in S(Q) is τ -stable, N ∈ K Q is countable,
and A is a Q-small basis of N . Then there is a countable N ′

∈ K Q Q-atomic over
A such that (G/Gm)N

= (G/Gm)N ′

. Moreover, up to Aut(Q) there are countably
many possibilities for (G/Gm)N .

Proof Similar to that of [14], Theorem 4.3. By Remark 4.6, A is finite. So by
Lemma 2.1 we can find a countable N ′′

∈ K Q which is Q-atomic over A. Clearly,
A is a Q-small basis of N ′′. We choose B ⊆ G(N ) (B ′′

⊆ G(N ′′), respectively) as
a maximal set of regular elements such that

(a) A ∪ B (A ∪ B ′′, respectively) is independent,
(b) B (B ′′, respectively) is Q-atomic over A, and
(c) the set {stp(b) : b ∈ B} ({stp(b) : b ∈ B ′′

}, respectively) is dense in G.
Using Ground Level Lemma 4.4, we prove as in [14] that for every r ∈ G,

(d) (r + Gm) contains a type realized in N (N ′′, respectively) iff r is realized in
clp(AB) (clp(AB ′′), respectively).

As in the proof of uniqueness of a countable Q-atomic model [6] we find an
f ∈ Aut(Q/A) with f (B ′′) = B. Let N ′

= f (N ′′). So (G/Gm)N
= (G/Gm)N ′

and
N ′ is Q-atomic over A.

For the last clause notice that if A = {ak, k < n} and A∗
= {a∗

k , k < n} is
a Q-small basis of some countable N∗

∈ K Q such that for every k < n we have
stp(ak) 6

a
⊥stp(a∗

k ), then (G/Gm)N and (G/Gm)N∗

are Aut(Q)-conjugate.
Indeed, we can assume that N ^ N∗(Q). Suppose B∗

⊆ N∗ is chosen in
the same way as B ⊆ N above. Then by Proposition 4.2, B is Q-atomic over
AA∗ and B∗ is Q-atomic over AA∗. Hence there is an f ′

∈ Aut(Q/AA∗) map-
ping B∗ onto B ( f ′ is found in the same way as f above). By (d) we get that
(G/Gm)N

= (G/Gm) f ′(N∗).
So up to Aut(Q), (G/Gm)N depends only on the set of 6

a
⊥-classes of stp(ak),

k < n. Since p is meager, the division ring FG is countable. Hence in the set of Q-
small regular types in S(acl(∅)) there are at most countably many 6

a
⊥-classes (since

by Lemma 3.8 these classes can be embedded into a finite-dimensional projective
space over FG). So we see that up to Aut(Q), there are at most countably many
possibilities for (G/Gm)N . �

Corollary 4.8 Assume G is a 0-definable locally modular Abelian group. Then up
to isomorphism there are countably many sets (G/Gm)N , where N is a countable
model of T .

Proof By [8], for Q = acl(∅), every type over Q is τ -stable, so we can apply the
previous theorem. In fact, we need the τ -stability assumption only in Proposition 4.2,
and, as indicated in the proof of Corollary 4.3 in case of Q = acl(∅), this assumption
may be waived. �

The results of this paper indicate that the description of Gm(M) relative to G−(M)
may be the crucial part for a proof of Vaught’s Conjecture for a meager or (more



Vaught’s Conjecture for Some Meager Groups 131

generally) locally modular group G. Indeed, in Section 3 we described G(M) rela-
tive to Gm(M) provided that M(G) = 1 and FG is finite; the proof was similar as in
the weakly minimal case. We finish by stating some problems. We always assume T
has few countable models.

Problem 4.9 Describe Gm(M), or even G0(M), relative to G−(M).

Problem 4.10 Describe GmM relative to G−(M) (this is weaker than the previous
item).

Problem 4.11 Describe G(M) relative to Gm(M) when M(G) > 1 or FG is
infinite.

Note

1. In general, however, the conjecture is false. Hjorth pointed out a counterexample to me.
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