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A Quasi-Discursive System ND+

2

Janusz Ciuciura

Abstract Discursive (or discussive) logic, D2, introduced by Jaśkowski, is
widely recognized as a first formal approach to paraconsistency. Jaśkowski ap-
plied a quite extraordinary technique at that time to describe his logic. He nei-
ther gave a set of the axiom schemata nor presented a direct semantics for D2
but used a translation function to express his philosophical and logical intuitions.
Discursive logic was defined by an interpretation in the language of S5 of Lewis.
The aim of this paper is to present a modified system of the discursive logic that
allows some of the weaker versions of Duns Scotus’s thesis to be valid. The
initial idea is to consider a different characteristic of the connective of negation.
We introduce both a direct semantics and an axiomatization of the new system,
prove the key metatheorems, and describe labeled tableaux for the system.

1 Introduction

It is common in our daily life to encounter people who, discussing something, use
vague or ambiguous terms. This in turn can result in fights over words (logomachias)
and occasionally animate philosophical reflection on the source of apparent contra-
dictions. Luckily enough, most of us can easily face up to the problem, and consis-
tent interpretation of these terms or occurrences is not beyond the scope of modern
logic. Discursive logic is a good example of that. Jaśkowski introduced it as a logical
calculus in which contradictions do not entail triviality.

Definition 1.1 Let var denote a nonempty denumerable set of all propositional
variables {p1, p2, . . . }. ForD2 is defined to be the smallest set for which the follow-
ing holds:

(i) α ∈ var ⇒ α ∈ ForD2 ;
(ii) α ∈ ForD2 ⇒ ∼ α ∈ ForD2 ;

(iii) α ∈ ForD2 and β ∈ ForD2 ⇒ α • β ∈ ForD2 , where • ∈ {∨,∧d ,→d}.1
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Jaśkowski applied a quite exotic logical apparatus to express his philosophical intu-
itions. He defined a translation function of the language of D2 into the language of
S5 of Lewis, f : ForD2 ⇒ ForS5 , as follows:

(i) f (pi ) = pi if pi ∈ var and i ∈ N ,
(ii) f (∼ α) = ∼ f (α),

(iii) f (α ∨ β) = f (α) ∨ f (β),
(iv) f (α ∧d β) = f (α) ∧ ♦ f (β),
(v) f (α →d β) = ♦ f (α) → f (β),

and additionally,

(vi) ∀α ∈ ForD2 : α ∈ D2 ⇔ ♦ f (α) ∈ S5.2

Although it described how to transform any discursive formula into its modal coun-
terpart, it would be an easy, but slightly time-consuming, task to check which of the
formulas were valid in D2. Here an intriguing question arises: what would happen if
Jaśkowski had chosen the different definition of the discursive connectives and (vi)?
Naturally, the deciding factor was to remove Duns Scotus’s thesis from his calculus,
but the calculus should also enable practical inference. It explains why we need the
two-step translation process.

A small example to illustrate the point: assume that we check whether the formula
∼ ((p ∧d q) ∨ r) →d (q →d ∼ (p ∨ r)) is valid in D2. We must first eliminate
the discursive connectives, that is, ♦ ∼ ((p ∧ ♦q) ∨ r) → (♦q → ∼ (p ∨ r)) and
then use (vi) to obtain ♦{♦ ∼ ((p ∧ ♦q)∨ r) → (♦q → ∼ (p ∨ r))}. The formula
is valid in D2 since its modal counterpart is valid in S5. It is remarkable that we do
need the item (vi) if the calculus is to come true in practice. But for the item, the
calculus would be extremely poor and insufficient for inference. An attempt to get
rid of the discursive implication also fails. It becomes obvious when we take a closer
look at the detachment rule α, α → β/β being understood as ♦α,♦(α → β)/♦β.3

In [10], Perzanowski mentioned (as a comment of the translator) that we could
define a few additional discursive connectives, including discursive negation:

∼d α = ♦ ∼ α.

The idea to treat negation as ‘possibly-not’ is not quite new and was examined by
many authors,4 but hardly any of them studied it in relation to D2 and even so, they
neither axiomatized it nor gave a direct semantics for the resulting system.

Remark 1.2 ∼d α = ((p1∨ ∼ p1)∧d ∼ α).

Consequently, we define a new translation function of the language of the modified
calculus, ND+

2 for short, into the language of S5 of Lewis, g : ForND+

2
⇒ ForS5 , in

the following way:

(i)? g(pi ) = pi if pi ∈ var and i ∈ N ,
(ii)? g(∼d α) = ♦ ∼ g(α),

(iii)? g(α ∨ β) = g(α) ∨ g(β),
(iv)? g(α ∧d β) = g(α) ∧ ♦g(β),
(v)? g(α →d β) = ♦g(α) → g(β),

and introduce the key definition,

(vi)? ∀α ∈ ForND+

2
: α ∈ ND+

2 ⇔ ♦g(α) ∈ S5.
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From now on we will treat the connective of ∼d as a primitive symbol. We start by
eliminating the translation procedure. Instead, we introduce a direct semantics for
ND+

2 .

2 Semantics of ND+

2

A frame (ND+

2 -frame) is a pair 〈W, R〉, where W is a nonempty set of points and
R is the equivalence relation on W . By a model (ND+

2 -model) we mean a triple
〈W, R, v〉, where v is a function that each pair consisting of a formula and a point
assigns an element of {1, 0}, v : ForND+

2
× W ⇒ {1, 0}, defined as follows:

(∼d) v(∼d α, x) = 1 ⇔ ∃y ∈ W (x Ry and v(α, y) = 0);
(∨) v(α ∨ β, x) = 1 ⇔ v(α, x) = 1 or v(β, x) = 1;
(∧d) v(α ∧d β, x) = 1 ⇔ v(α, x) = 1 and ∃y ∈ W (x Ry and v(β, y) = 1);
(→d) v(α →d β, x) = 1 ⇔ ∀y ∈ W (x Ry ⇒ v(α, y) = 0) or v(β, x) = 1.

A formula α is valid in ND+

2 , |H α for short, if and only if for any model 〈W, R, v〉,
for every x ∈ W , there exists y ∈ W such that x Ry and v(α, y) = 1.

The nonstandard definition of validity is a direct result of (vi)?, more explicitly,
as follows.

Remark 2.1 ∀α ∈ ForND+

2
: |H α ⇔ α ∈ ND+

2 (⇔ ♦g(α) ∈ S5).

Proof By induction. �

The translation procedure became redundant. The accessibility relation defined on
ND+

2 -frames is reflexive, symmetric, and transitive. Any point is accessible from
any other. It finally results in the simplified notion of the ND+

2 -model: A model
(ND+

2 -model) is a pair 〈W, v〉, where W is a nonempty set (of points) and a function,
v : ForND+

2
× W ⇒ {1, 0}, is inductively defined:

(∼d) v(∼d α, x) = 1 ⇔ ∃y ∈ W (v(α, y) = 0);
(∨) v(α ∨ β, x) = 1 ⇔ v(α, x) = 1 or v(β, x) = 1;
(∧d) v(α ∧d β, x) = 1 ⇔ v(α, x) = 1 and ∃y ∈ W (v(β, y) = 1);
(→d) v(α →d β, x) = 1 ⇔ ∀y ∈ W (v(α, y) = 0) or v(β, x) = 1.

|H α if and only if for any model 〈W, v〉, there exists y ∈ W such that v(α, y) = 1.
The discursive equivalence is introduced as an abbreviation:

α ↔d β = (α →d β) ∧d (β →d α).

It is worth mentioning that some of the classically valid formulas are not valid in
ND+

2 , for example,
(1) p →d (∼d p →d q),
(2) p →d (∼d p →d∼ q),
(3) (p ∧d ∼d p) →d q ,
(4) ∼d (∼d p ∧d p),
(5) (p →d q) →d ((p →d∼d q) →d∼d p),
(6) (p →d q) →d∼d∼d (p →d q).

On the other hand, some ND+

2 -valid formulas are not permissible in many para-
consistent systems (after replacing →d with →,∧d with ∧, and ∼d with ∼), for
example,
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(7) ∼d p →d (∼d∼d p →d q),
(8) ∼d p →d (∼d∼d p →d ∼d q),
(9) ∼d (p ∧d ∼d p),

(10) ∼d (p →d ∼d∼d p) →d p,
(11) (∼d p →d ∼d q) →d ((∼d p →d ∼d∼d q) →d p),
(12) ∼d∼d p →d p.5

One can perceive the similarities between ND+

2 and P1 of Sette. Indeed, the formulas
(6), (10), and (11) (after replacing →d with →,∧d with ∧, and ∼d with ∼) constitute
the negational part of P1.6

3 Axiomatization of ND+

2

We present here an axiomatization of ND+

2 . It consists of the following axiom
schemata and rule of inference:
(A1) α →d (β →d α)
(A2) (α →d (β →d γ )) →d ((α →d β) →d (α →d γ ))
(A3) (α ∧d β) →d α
(A4) (α ∧d β) →d β
(A5) (α →d (β →d (α ∧d β))
(A6) α →d (α ∨ β)
(A7) β →d (α ∨ β)
(A8) (α →d γ ) →d ((β →d γ ) →d ((α ∨ β) →d γ ))
(A9) ∼d (α∧d ∼d β) →d ∼d∼d (∼d α ∨ β)
(A10) ∼d (α∧d ∼d α)
(A11) (α∨ ∼d β) →d ((α∨ ∼d∼d β) →d α)
(A12) ∼d∼d (α ∨ β) →d (α∨ ∼d∼d β)
(A13) ∼d∼d α →d α
(A14) ∼d∼d (α ∨ β) →d ∼d∼d (α ∨ β ∨ γ )
(A15) ∼d∼d (α ∨ β) →d ∼d∼d (β ∨ α)
(MP)∗ α, α →d β/β.

The consequence relation `ND+

2
is defined by the set of axioms and (MP)∗.

Remark 3.1 Each of the axiom schemata of ND+

2 becomes a schema of the
thesis of the classical propositional calculus CPC, after replacing in (Ai ), where
i ∈ {1, . . . , 15}, all the discursive connectives, ∼d ,∧d ,→d ,↔d , by their classical
counterparts. The rule (MP)∗ becomes an admissible rule of CPC after replacing
→d with →.

Let ` fc(ND+

2 )
denote the consequence relation of the system being received according

to Remark 3.1 and let `CPC stand for the classical consequence relation.

Remark 3.2 {α : ` fc(ND+

2 )
α} ⊂ {α : `CPC α}.

Observe that (A1), (A2) constitute the implicational fragment of ND+

2 and the system
is closed under the detachment rule, which is the sole rule of inference of ND+

2 . It
immediately follows that the proof of the deduction theorem is standard.

Theorem 3.3
8 `ND+

2
α →d β ⇔ 8 ∪ {α} `ND+

2
β,

where α, β ∈ ForND+

2
,8 ⊆ ForND+

2
.
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Remark 3.4 The formulas listed below are provable in ND+

2 :

(T1) (α ∨ α) ↔d α
(T2) (α ∨ β) ↔d (β ∨ α)
(T3) ((α ∨ β) ∨ γ ) ↔d (α ∨ (β ∨ γ ))
(T4) (α ∨ (β ∧d γ )) ↔d ((α ∨ β) ∧d (α ∨ γ ))
(T5) (α →d β) →d ((α ∨ γ ) →d (β ∨ γ ))
(T6) (β ∨ α ∨ β) →d (α ∨ β)
(T7) (α ∧d (α →d β)) →d β
(T8) α ∨ (α →d β)
(T9) ∼d∼d (α∨ ∼d α)
(T10) α∨ ∼d α

and the set of {α : `ND+

2
α} is closed under the rules:

(R1) α, β/α ∧d β
(R2) α ∧d β/α(β)
(R3) α(β)/α ∨ β.

Proof We prove (T1) – (T8) in much the same way as it is in the (positive) classical
case. (T9) is a direct result of (A9), (A10), (A15), and (MP)∗. In order to obtain (T10),
it is sufficient to apply (T9), (A13), and (MP)∗. (R1) – (R3) are obvious due to (A5),
(A3), (A4), (A6), (A7), and (MP)∗. �

4 Soundness and Completeness

Theorem 4.1 (Soundness) `ND+

2
α ⇒ |H α.

Proof By induction. �

Theorem 4.2 (Completeness) |H α ⇒ `ND+

2
α.

The initial idea of the proof we present below originates from [13]. The key point is
to define a canonical valuation that falsifies a nonthesis. However, by contrast to the
well-known method a la Henkin, we do not verify, but falsify, the sets of formulas
we construct.

Proof Assume that 6`ND+

2
α and |H α. Define a sequence of all the formulas of

ND+

2 as follows:
0 = γ1, γ2, γ3, . . . .

The sole restriction is that the first element of 0 is α (i.e., γ1 = α).

Next define a family of (finite) subsequences of 0.

11 = δ1 where δ1 = γ1 = α;
12 = δ1, δ2 where δ1 = γ1 = α and δ2 = γ2 if 6`ND+

2
δ1 ∨ δ2,

otherwise δ2 6= γ2 and 12 = 11;
...

1n = δ1, δ2, δ3, . . . , δn where δ1 = α, δ2 = γi , δ3 = γi+k, . . . , δn = γi+s ,
if 6`ND+

2
δ1 ∨ δ2 ∨ · · · ∨ δn ; otherwise δn 6= γi+s

and 1n = 1n−1;
...
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Now define
∇1 = 11,12,13 . . .
∇2 = 12,13,14 . . .
∇3 = 13,14,15 . . .
...

∇n = 1n,1n+1,1n+2 . . .
...

In what follows, some properties of ∇i will be of crucial importance.

Lemma 4.3

(i) 6`ND+

2
δ1 ∨ · · · ∨ δn , for any n ∈ N.

(ii) If β 6∈ ∇i , then `ND+

2
δ1 ∨ · · · ∨ δk ∨ β, for some k ∈ N.

Proof (i) By the definition of ∇i , where i ∈ {1, 2, 3, . . .}.

(ii) From the fact that the set of {α : `ND+

2
α} is closed under (R3). �

Let ∇ stand for {∇1,∇2, . . . ,∇i , . . . ,∇n, . . .}.

Lemma 4.4 For every β ∈ ForND+

2
, for any ∇i ∈ ∇,

β ∈ ∇i ⇔ ∃1k ⊂ ∇i (β ∈ 1k).

Proof Straightforward. �

Lemma 4.5 For every β, γ ∈ ForND+

2
, for any ∇i ,∇k ∈ ∇,

(i) β ∨ γ ∈ ∇i ⇔ β ∈ ∇i and γ ∈ ∇i ,
(ii) β ∧d γ ∈ ∇i ⇔ β ∈ ∇i or ∀∇k∈∇(γ ∈ ∇k),

(iii) β →d γ ∈ ∇i ⇔ ∃∇k∈∇(β 6∈ ∇k) and γ ∈ ∇i .

Proof We show (ii) as an example.

(ii) ⇐ Assume that (1) β ∈ ∇i or ∀∇k∈∇(γ ∈ ∇k), (2) β ∧d γ 6∈ ∇i .

Subcase (a) If (1a) β ∈ ∇i , (2a) β ∧d γ 6∈ ∇i , then for some m ∈ N : (3a)
`ND+

2
δ1 ∨ · · · ∨ δm ∨ (β ∧d γ ) by Lemma 4.3(ii) and (2a). Apply (T4) to de-

duce (4a) `ND+

2
(δ1 ∨ · · · ∨ δm ∨ β) ∧d (δ1 ∨ · · · ∨ δm ∨ γ ) and (R2) to obtain (5a)

`ND+

2
δ1 ∨ · · · ∨ δm ∨ β. Observe that δ1, . . . , δm, β ∈ ∇i . A contradiction due to

Lemma 4.3(i).

Subcase (b) If (1b) ∀∇k∈∇(γ ∈ ∇k), (2b) β ∧d γ 6∈ ∇i , then (3b) `ND+

2
δ1 ∨ · · · ∨ δm ∨ (β ∧d γ ), for some m ∈ N , and (4b) γ ∈ ∇i by (1b). Next
proceed analogously to Subcase (a).

(ii) ⇒ Suppose that (1) β ∧d γ ∈ ∇i , (2) β 6∈ ∇i and ∃∇k∈∇(γ 6∈ ∇k). Obviously,
i ≥ k or k > i .

Subcase (a) Let i ≥ k. Since ∇k = 1k, . . . ,

∇i︷ ︸︸ ︷
1i ,1i+1, . . . then ∇i ⊆ ∇k and (3a)

γ 6∈ ∇i . Now apply Lemma 4.3(ii), (R3), (T1), (T2), (T3), (R1), (T4), and (MP)∗ to
finally obtain `ND+

2
δ1 ∨ · · · ∨ δm ∨ (β ∧d γ ). But δ1, . . . , δm, (β ∧d γ ) ∈ ∇i . This

is in contradiction to Lemma 4.3(i).
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Subcase (b) Let k > i . Then ∇k ⊂ ∇i and (3b) β 6∈ ∇k . To show that β∧d γ ∈ ∇k ,
we use Lemma 4.4: (4b) ∃1n⊂∇i (β ∧d γ ∈ 1n). From above we have two possi-
bilities, either n ≥ k or k > n. If n ≥ k it immediately follows that β ∧d γ ∈ ∇k
as ∇k = 1k, . . . ,1n,1n+1, . . .. The second case is more interesting. If k > n
then 1n ⊂ 1k since 11 ⊂ · · · ⊂ 1n ⊂ · · · ⊂ 1k ⊂ · · · . Finally, we receive
β ∧d γ ∈ ∇k, β 6∈ ∇k, γ 6∈ ∇k and may proceed analogously to Subcase (a). �

Let ∇i be a sequence, i ∈ {1, 2, 3, . . .}. Define

∇
?
i = δ?1, . . . , δ

?
i , . . .

where

(a) δ?1 = δ1 = γ1 = α;
(b) (δn = δ?k) if 6`ND+

2
∼d∼d (δ

?
1 ∨ δ?2 ∨ · · · ∨ δn), for any δn ∈ ∇i and n ≥ k,

where i, k, n ∈ N ; otherwise δn 6= δ?k .

Definition 4.6 We call a formula β discursive if it contains at least one of the
following symbols: →d ,∧d ,↔d . A formula β is a discursive thesis if it is a thesis
and discursive.

Lemma 4.7

(i) ∇
?
i ⊆ ∇i , for every i ∈ {1, 2, 3, . . .},

(ii) 6`ND+

2
∼d∼d (δ

?
1 ∨ · · · ∨ δ?n), for every n ∈ N,

(iii) if β is not a discursive thesis, β 6∈ ∇i , then

`ND+

2
∼d∼d (δ

?
1 ∨ · · · ∨ δ?k ∨ β), for some k ∈ N .

Proof (i) – (ii) Straightforward.

(iii) By (T9), (A14), (A15), (MP)∗, and the fact that ∇
?
i ⊆ ∇i holds for every

i ∈ {1, 2, . . .}. �

Lemma 4.8 For every β ∈ ForND+

2
, for any ∇i ,∇k ∈ ∇,

(i) ∼d β ∈ ∇i ⇔ ∀∇k∈∇(β 6∈ ∇k).

Proof (i) ⇒ Assume that (1) ∼d β ∈ ∇i and (2) ∃∇k∈∇(β ∈ ∇k). As before,
either i ≥ k or k > i . Let i ≥ k. It results in ∇i ⊆ ∇k and ∼d β ∈ ∇k (if
k > i,∇k ⊂ ∇i , and β ∈ ∇i ). Now apply Lemma 4.3(i) to obtain 6`ND+

2
β∨ ∼d β.

A contradiction due to (T10).

(i) ⇐ Suppose (1) ∀∇k∈∇(β 6∈ ∇k) and (2) ∼d β 6∈ ∇i . In particular, (3) β 6∈ ∇i .
Apply Lemma 4.3(ii) to (2) and (3) to deduce (4) `ND+

2
δ1 ∨ · · · ∨ δm∨ ∼d β, for

some m ∈ N , (5) `ND+

2
δ1 ∨ · · · ∨ δp ∨ β, for some p ∈ N . Notice that m ≥ p

or m < p. Let m ≥ p (the case m < p is similar to m ≥ p). Now consider three
subcases:

(a) neither β nor ∼d β is a discursive thesis;
(b) β is a discursive thesis, but ∼d β is not a discursive thesis;
(c) ∼d β is a discursive thesis, but β is not a discursive thesis.

Note that the fourth subcase (β is a discursive thesis and ∼d β is a discursive thesis)
is impossible due to Soundness.
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Subcase (a) Apply Lemma 4.7(iii) to (3) to obtain (6a) `ND+

2
∼d∼d (δ?1 ∨ · · ·

∨ δ?j ∨ β), for some j ∈ N .7 Use (A12), (6a), and (MP)∗ to get (7a) `ND+

2
δ?1 ∨ · · ·

∨ δ?j∨ ∼d∼d β. Clearly, either m > j or m = j (if m > j apply (R3) to have
m = j). Now use (R3), (T2), (T3), and (MP)∗ to receive (8a) `ND+

2
δ?1 ∨ · · · ∨ δ?m∨

∼d∼d β (where δ?1 = δ1, δ
?
2 = δ2, . . . , δ

?
m = δm) and finally (9a) `ND+

2
δ1 ∨· · ·∨ δm

by (4), (8a), (A11), and (MP)∗. But δ1, . . . , δm ∈ ∇i . A contradiction due to
Lemma 4.3(i).

Subcases (b) and (c) Proofs are similar to Subcase (a). Notice, however, that you
are not allowed to apply Lemma 4.7(iii) to β 6∈ ∇i (in Subcase (b)) and to ∼d β 6∈ ∇i
(in Subcase (c)). �

Let 〈∇, vc〉 be a canonical model for `ND+

2
. Define the canonical valuation

vc : ForND+

2
× ∇ ⇒ {1, 0} as follows:

vc(β,∇i ) =

{
1, if β 6∈ ∇i
0, if β ∈ ∇i .

We must show that the conditions (∨), (∧d), (→d), and (∼d) hold for vc.

Case 1 β = ϕ ∨ ψ .
(a) vc(ϕ ∨ ψ,∇i ) = 1 ⇔ ϕ ∨ ψ 6∈ ∇i ⇔ ϕ 6∈ ∇i or ψ 6∈ ∇i ⇔ vc(ϕ,∇i ) = 1 or
vc(ψ,∇i ) = 1.
(b) vc(ϕ ∨ ψ,∇i ) = 0 ⇔ ϕ ∨ ψ ∈ ∇i ⇔ ϕ ∈ ∇i and ψ ∈ ∇i ⇔ vc(ϕ,∇i ) = 0
and vc(ψ,∇i ) = 0.

Case 2 β = ϕ ∧d ψ .
(a) vc(ϕ ∧d ψ,∇i ) = 1 ⇔ ϕ ∧d ψ 6∈ ∇i ⇔ ϕ 6∈ ∇i and ∃∇k∈∇(ψ 6∈ ∇k)
⇔ vc(ϕ,∇i ) = 1 and ∃∇k∈∇vc(ψ,∇k) = 1.
(b) vc(ϕ ∧d ψ,∇i ) = 0 ⇔ ϕ ∧d ψ ∈ ∇i ⇔ ϕ ∈ ∇i or ∀∇k∈∇(ψ ∈ ∇i )
⇔ vc(ϕ,∇i ) = 0 or ∀∇k∈∇vc(ψ,∇i ) = 0.

Case 3 β = ϕ →d ψ .
(a) vc(ϕ →d ψ,∇i ) = 1 ⇔ ϕ →d ψ 6∈ ∇i ⇔ ∀∇k∈∇(ϕ ∈ ∇k) or ψ 6∈ ∇i
⇔ ∀∇k∈∇vc(ϕ,∇k) = 0 or vc(ψ,∇i ) = 1.
(b) vc(ϕ →d ψ,∇i ) = 0 ⇔ ϕ →d ψ ∈ ∇i ⇔ ∃∇k∈∇(ϕ 6∈ ∇k) and
ψ ∈ ∇i ⇔ ∃∇k∈∇vc(ϕ,∇k) = 1 and vc(ψ,∇i ) = 0.

Case 4 β =∼d ϕ.
(a) vc(∼d ϕ,∇i ) = 1 ⇔ ∼d ϕ 6∈ ∇i ⇔ ∃∇k∈∇(ϕ ∈ ∇k) ⇔ ∃∇k∈∇vc(ϕ,∇k) = 0.
(b) vc(∼d ϕ,∇i ) = 0 ⇔ ∼d ϕ ∈ ∇i ⇔ ∀∇k∈∇(ϕ 6∈ ∇k) ⇔ ∀∇k∈∇vc(ϕ,∇k) = 1.

Suppose that 6`ND+

2
α and |H α. Note that the formula α is the very first element of

each i-sequence, where i ∈ {1, 2, 3, . . .}. Since α ∈ ∇i , then the formula α is not
valid in 〈∇, vc〉 and consequently 6|H α. A contradiction.

5 Labeled Tableaux for ND+

2

In Section 5, we depict a tableau-based proof technique that can be used for proving
theorems in ND+

2 .8 We will deal with signed labeled formulas such as σ :: T P (or
σ :: F P), where σ is a label and T P (or F P) is a signed formula (i.e., a formula
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prefixed with a T or an F). The phrase σ :: T P is read as “P is true at the world
σ” and σ :: F P as “P is false at the world σ .” By label, we understand a natural
number. We call ρ a root label and always assume that ρ = 1. A tableau for a
labeled formula P is a downward rooted tree, where each of the nodes contains a
signed labeled formula, constructed using the branch extension rules defined below.

Disjunction

σ :: T P ∨ Q
σ :: T P|σ :: T Q

(T∨)
σ :: F P ∨ Q
σ :: F P
σ :: F Q

(F∨)

The rule (F∨) is linear, but (T∨) is branching.

Discursive negation

σ :: T ∼d P
τ :: F P

(T∼d)
σ :: F ∼d P
σ ′

:: T P
(F∼d)

where, for (T ∼d), τ is a label that is new to the branch and, for (F ∼d), σ ′ is a label
that has been already used in the branch.

Discursive conjunction

σ :: T P ∧d Q
σ :: T P
τ :: T Q

(T∧d) σ :: F P ∧d Q
σ :: F P|σ ′

:: F Q
(F∧d)

where τ is a label that is new to the branch and σ ′ is a label that has been already
used in the branch.

Discursive implication

σ :: P →d Q
σ ′

:: F P | σ :: T Q
(T→d)

σ :: F P →d Q
τ :: T P
σ :: F Q

(F→d)

where σ ′ has been already used in the branch and τ is a label that is new to the
branch.

Closure rule

σ :: T P
σ :: F P
closed

(C)

A branch of a tableau is closed if we can apply (C). Otherwise the branch is open. A
tableau is closed if all of its branches are closed; otherwise the tableau is open.
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As was mentioned in Section 1, Jaśkowski had proposed regarding a discussion
as a set of opinions expressed by participants. Despite this fact, we do not know or
care who is who in the discussion. Our knowledge of the participants is narrowed
down to the following: someone said something or someone stated that. . . .9 The
idea found expression in the characteristic of the translation function (especially, the
item (vi)) and of the definition of ‘|H’. It is also reflected in our tableaux system.

Special rule

ρ :: F P
σ ′

:: F P
(S)

where ρ is a root label and σ ′ is a label that has been already used in the branch. The
application of the rule is always limited to root labels.

Let P be a formula. By a tableau proof of P (ND+

2 -tableau proof) we mean a
closed tableau with 1 :: F P .

Theorem 5.1 A formula P has an ND+

2 -tableau proof if and only if P is valid in
ND+

2 .

Now we give a few examples to illustrate how the rules we depicted work in practice.

Example 5.2 Closed tableau for ∼d P →d (∼d∼d P →d Q).

(a) 1 :: F ∼d P →d (∼d∼d P →d Q) (start)
(b) 2 :: T ∼d P (F→d), (a)
(c) 1 :: F ∼d∼d P →d Q (F→d), (a)
(d) 3 :: T ∼d∼d P (F→d), (c)
(e) 1 :: F Q (F→d), (c)
(f) 4 :: F P (T∼d), (b)
(g) 5 :: F ∼d P (T∼d), (d)
(h) 4 :: T P (F∼d), (g)

closed (C), (f), (h)

Although this might seem a rather trivial example, it clearly demonstrates the usage
of the discursive rules.

Example 5.3 Closed tableau for ∼d (P∧d ∼d P).

(a) 1 :: F ∼d (P∧d ∼d P) (start)
(b) 1 :: T P∧d ∼d P (F∼d), (a)
(c) 1 :: T P (T∧d), (b)
(d) 2 :: T ∼d P (T∧d), (b)
(e) 3 :: F P (T∼d), (d)
(f) 3 :: F ∼d (P∧d ∼d P) (S), (a)
(g) 3 :: T P∧d ∼d P (F∼d), (f)
(h) 3 :: T P (T∧d), (g)
(i) 4 :: T ∼d P (T∧d), (g)

closed (C), (e), (h)

Notice that we have applied the rule (S), the line (f), to close the tableau.
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In the next example, we will use one of the branching rules to produce a closed
tableau for (A11).

Example 5.4 Closed tableau for (P∨ ∼d Q) →d ((P∨ ∼d∼d Q) →d P).

(a) 1 :: F (P∨ ∼d Q) →d ((P∨ ∼d∼d Q) →d P) (start)
(b) 2 :: T P∨ ∼d Q (F→d), (a)
(c) 1 :: F(P∨ ∼d∼d Q) →d P (F→d), (a)
(d) 3 :: T P∨ ∼d∼d Q (F→d), (c)
(e) 1 :: F P (F→d), (c)

1st branch

(f.1) 2 :: T P (T∨), (b)
(f.2) 2 :: F (P∨ ∼d Q) →d ((P∨ ∼d∼d Q) →d P) (S), (a)
(f.3) 4 :: T P∨ ∼d Q (F→d), (f.2)
(f.4) 2 :: F(P∨ ∼d∼d Q) →d P (F→d), (f.2)
(f.5) 5 :: T P∨ ∼d∼d Q (F→d), (f.4)
(f.6) 2 :: F P (F→d), (f.4)

closed (C),(f.1), (f.6)

2nd branch

(g.1) 2 :: T ∼d Q (T∨), (b)
(g.2) 6 :: F Q (T∼d), (g.1)

1st subbranch

(g.3) 3 :: T P (T∨), (d)
(g.4) 3 :: F (P∨ ∼d Q) →d ((P∨ ∼d∼d Q) →d P) (S), (a)
(g.5) 7 :: T P∨ ∼d Q (F→d), (g.4)
(g.6) 3 :: F(P∨ ∼d∼d Q) →d P (F→d), (g.4)
(g.7) 8 :: T P∨ ∼d∼d Q (F→d), (g.6)
(g.8) 3 :: F P (F→d), (g.6)

closed (C), (g.3), (g.8)

2nd subbranch

(g.9) 4 :: T ∼d∼d Q (T∨), (d)
(g.10) 9 :: F ∼d Q (T∼d), (g.9)
(g.11) 6 :: T Q (F∼d), (g.10)

closed (C), (g.2), (g.11)

Now we will generate an infinite tableau for ∼d (∼d P ∧d P).

Example 5.5 Infinite tableau for ∼d (∼d P ∧d P).
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(a) 1 :: F ∼d (∼d P ∧d P) (start)
(b) 1 :: T ∼d P ∧d P (F∼d), (a)
(c) 1 :: T ∼d P (T∧d), (b)
(d) 2 :: T P (T∧d), (b)
(e) 3 :: F P (T∼d), (c)
(f) 2 :: F ∼d (∼d P ∧d P) (S), (a)
(g) 2 :: T ∼d P ∧d P (F∼d), (f)
(h) 3 :: T ∼d P ∧d P (F∼d), (f)
(i) 2 :: T ∼d P (T∧d), (g)
(j) 4 :: T P (T∧d), (g)
(k) 5 :: F P (T∼d), (i)
(l) 3 :: T ∼d P (T∧d), (h)
(m) 6 :: T P (T∧d), (h)
(n) 7 :: F P (T∼d), (l)

...

Observe that our attempts to close the tableau fail. The only gain we receive comes
in the form of new labels and just the same formulas that continuously occur in the
branch. The whole procedure goes ad infinitum. Here is the last example.

Example 5.6 Infinite tableau for (P∧d ∼d P) →d Q.

(a) 1 :: F(P∧d ∼d P) →d Q (start)
(b) 2 :: T P∧d ∼d P (F→d), (a)
(c) 1 :: T Q (T→d), (a)
(d) 2 :: T P (T∧d), (b)
(e) 3 :: T ∼d P (T∧d), (b)
(f) 4 :: F P (T∼d), (e)
(g) 2 :: F(P∧d ∼d P) →d Q (S), (a)
(b) 2 :: T P∧d ∼d P (F→d), (a)
(c) 1 :: T Q (T→d), (a)
(d) 2 :: T P (T∧d), (b)
(e) 3 :: T ∼d P (T∧d), (b)
(f) 4 :: F P (T∼d), (e)
(h) 3 :: F(P∧d ∼d P) →d Q (S), (a)
(i) 5 :: T P∧d ∼d P (F→d), (h)
(j) 3 :: T Q (T→d), (h)
(k) 5 :: T P (T∧d), (i)
(l) 6 :: T ∼d P (T∧d), (i)
(m) 7 :: F P (T∼d), (l)
(n) 4 :: F(P∧d ∼d P) →d Q (S), (a)
(o) 8 :: T P∧d ∼d P (F→d), (n)
(p) 4 :: T Q (T→d), (n)
(q) 8 :: T P (T∧d), (o)
(r) 9 :: T ∼d P (T∧d), (o)
(s) 10 :: F P (T∼d), (r)

...

Just as in the previous example, we will never manage to close the tree.
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Notes

1. The symbols ∼, ∨, ∧d , →d denote negation, disjunction, discursive conjunction, and
discursive implication, respectively.

2. Cf. [8], p. 44 and [7], p. 57. In what follows, we use the English translations of the
Jas̀kowski papers that appeared in Logic and Logical Philosophy. See References for
details.

3. In both cases, ‘→’ stands for the classical implication. It is a bare outline. For more
detailed description, see related publications, e.g., [2], [3], [8], [7], and [12].

4. See, e.g., [1], [6], and [15].

5. Cf. [5], [8], [7].

6. Cf. [14].

7. Since neither β nor ∼d β is a discursive thesis it is our choice to use Lemma 4.7(iii)
either to (2) or to (3).

8. Cf. [4].

9. Cf. [8], pp. 41–43.
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