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Cellularity of Pseudo-Tree Algebras

Jennifer Brown

Abstract Recall that for any Boolean algebra (BA) A, the cellularity of A is
c(A) = sup{|X | : X is a pairwise-disjoint subset of A}. A pseudo-tree is a par-
tially ordered set (T, ≤) such that for every t in T , the set {r ∈ T : r ≤ t} is a
linear order. The pseudo-tree algebra on T , denoted Treealg(T ), is the subalge-
bra of P(T ) generated by the cones {r ∈ T : r ≥ t}, for t in T . We characterize
the cellularity of pseudo-tree algebras in terms of cardinal functions on the un-
derlying pseudo-trees. For T a pseudo-tree, c(Treealg(T )) is the maximum of
four cardinals cT , ιT , ϕT , and µT : roughly, cT measures the “tallness” of the
pseudo-tree T ; ιT the “breadth”; ϕT the number of “finite branchings”; and µT
the number of places where T “does not branch.” We give examples to demon-
strate that all four of these cardinals are needed.

1 Definitions and Introductions

We use standard notation for Boolean algebras; see Koppelberg [4]. For facts about
pseudo-tree algebras, see Koppelberg and Monk [5] or Monk [7]. Note that a pseudo-
tree is a generalization of a tree: for T a tree, the sets (T ↓ t) = {r ∈ T : r ≤ t} are
required to be well-ordered. Also, recall that if A is an infinite BA, then c(A) ≥ ω;
see [4] for a proof. For any sets X and Y , “X ⊆ Y ” means that X is any subset of Y ;
“X ⊂ Y ” means that X is a proper subset of Y .

The cellularity of a tree algebra was characterized by Brenner and Monk; but since
the characterization depends on enumerating the immediate successors of elements
of the tree, it does not hold for pseudo-tree algebras (see [7]). Monk [7] posed the
problem: Describe cellularity for pseudo-tree algebras. We do this by characterizing
c(Treealg(T )) in terms of four cardinal functions that reflect the structure of the
underlying pseudo-tree.

Definition 1.1 Recall that the interval algebra Intalg(L) on a linear order L is
defined as follows: if L does not have a first element, add one. Extend the linear
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order of L to L ∪ {∞}, where ∞ is an element not contained in L , by letting x < ∞

for x ∈ L . Intalg(L) is the algebra of sets over L consisting of finite unions of
half-open intervals [x, y) = {z ∈ L : x ≤ z < y} (for x, y ∈ L ∪ ∞).

We will make use of the following normal form lemma (see [4] and [5]). Here E and
F denote two special types of products over the canonical generators of T :

E = {(T ↑ t) \

⋃
s∈S

(T ↑ s) : S is a finite antichain in T , and t < s for s ∈ S}

and
F = {T \

⋃
s∈S

(T ↑ s) : S is a finite antichain in T }.

(An antichain in T is a set of pairwise-incomparable elements of T .)

Lemma 1.2

1. The elements of E are nonzero.
2. If T has a single root, then every nonzero element of F is in E.
3. Every element b of A is a sum of pairwise-disjoint nonzero elements

b = e0 + · · · + en−1 + f0 + · · · + fm−1,

where ei ∈ E(i < n) and f j ∈ F( j < m).

Definition 1.3 Let e ∈ E and b ∈ A. A representation of e,

e = (T ↑ t) \

⋃
s∈S

(T ↑ s),

is in normal form if S is a finite antichain in T and t < s for all s ∈ S. A representa-
tion of b,

b = e1 + · · · + en,

is in normal form if the ei are pairwise-disjoint elements of E , say

ei = (T ↑ ti ) \

⋃
s∈S(i)

(T ↑ s)

in normal form, and ti 6∈ S( j) for i 6= j .

It is convenient, and does no harm, to assume that all of our pseudo-trees have single
roots (see [4] and [5]).

Lemma 1.4 Let T be a pseudo-tree with a single root. Then every b ∈ A can be
written in normal form.

Lemma 1.5 For every pseudo-tree T there is a pseudo-tree T ∗ with a single root
such that Treealg(T ) is isomorphic to Treealg(T ∗).

For what follows, let T be an infinite pseudo-tree with a single root and set
A = Treealg(T ). By a branch of T we mean a maximal chain in T , and we
set B = {B ⊆ T : B is a branch}. We will write t ⊥ s when t, s are incomparable
elements of T .

Definition 1.6 A fan element of T is an a ∈ T such that there exists a set
F = fan(a) with the following properties:

1. F is a finite set of pairwise-incomparable elements each greater than a, and
|F | ≥ 2;
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2. for every c > a, c is comparable to a unique b ∈ F .

Definition 1.7 A pure chain in T is a chain C ⊆ T such that the following condi-
tions hold:

1. |C | ≥ 2;
2. if a, b ∈ C , a < b, and a < c ∈ T , then c is comparable to b.

C ⊆ T is a maximal pure chain if C is a pure chain and if whenever C ′
⊃ C , C ′ is

not a pure chain.

Remark 1.8 The definition of a maximal pure chain is essentially contained in the
discussion of “reduced trees” in Fraïssé [2].

We define four cardinal functions cT , ιT , ϕT , µT on a pseudo-tree T .

Definition 1.9 For any pseudo-tree T ,
1. the cellularity of T is

cT = sup{c(Intalg(C)) : C is a chain in T }

(note that we are using “cellularity” in a special sense here);
2. the incomparability of T is

ιT = sup{|S| : S is an antichain in T }

(“incomparability” is also being used in a special sense);
3. the number of fan elements of T is

ϕT = |{a ∈ T : a is a fan element of T }|; and
4. the number of maximal pure chains of T is

µT = |{C ⊆ T : C is a maximal pure chain}|.

Note that, by König’s theorem, at least one of cT , ιT is infinite if T is an infinite
pseudo-tree. We prove that c(A) is the maximum of the four cardinals cT , ιT , ϕT ,
and µT , and that all four cardinals are necessary (that is, they are nonredundant).

2 Helpful Lemmas

Let X ⊆ A be pairwise-disjoint, and suppose without loss of generality that
|X | ≥ ω. We will show, in Theorem 3.5, that |X | ≤ max{cT , ιT , ϕT , µT } (so that
c(A) ≤ max{cT , ιT , ϕT , µT }). By Lemma 1.4, we may suppose that every x ∈ X is
of the form

x = (T ↑ tx ) \

⋃
s∈Fx

(T ↑ s)

where Fx is a finite antichain of elements s > tx .
Let Y = {tx : x ∈ X}. Note that if x, y ∈ X and x 6= y, then tx 6= ty (otherwise

both x and y would contain the element tx = ty , and so x and y would not be
disjoint). Thus |Y | = |X |. Note also that for all x, y ∈ X with x 6= y, either tx and
ty are incomparable, or s ≤ ty for some s ∈ Fx , or s ≤ tx for some s ∈ Fy . Let

c′
= sup{|S| : S ⊆ Y is a chain}.

We will use, in proving that |X | ≤ max{cT , ιT , ϕT , µT }, the following inequality.

Lemma 2.1 c′
≤ cT .

Proof Let Y ′
⊆ Y be a chain. Then the elements of Y ′ all lie on a single branch B

of T . List the elements of Y ′ as Y ′
= {txα : α < γ }, for some γ . Let txα , txβ ∈ Y ′

with txα 6= txβ . Then one of two things happens:
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(i) s ≤ txβ for some s ∈ Fxα (if txα < txβ ), or
(ii) s ≤ txα for some s ∈ Fxβ (if txβ < txα ).

Let t∗ be the maximum element of Y ′, if such an element exists; if not, define t∗

to be any set not in T . Suppose txα ∈ Y ′
\ {t∗}. The associated element of X is

xα = (T ↑ txα )\
⋃

s∈Fxα
(T ↑ s), where Fxα is a finite antichain of elements s > txα .

As Fxα is an antichain, no two elements of Fxα lie on the same branch; by (i) above,
at least one element of Fxα lies on the branch B. So for every txα ∈ Y ′

\ {t∗}, let sxα

be the unique element of Fxα on B. Consider the element [txα , sxα ) of Intalg(B).

Claim 2.2 If xα, xβ ∈ {x ∈ X : tx ∈ Y ′
\ {t∗}} and xα 6= xβ , then [txα , sxα )

∩ [txβ , sxβ ) = ∅.

Proof of Claim Let xα, xβ ∈ {x ∈ X : tx ∈ Y ′
\ {t∗}} and xα 6= xβ , and

suppose without loss of generality that txα < txβ . We know that sxα > txα and
sxα ∈ B. Suppose sxα > txβ . Then txβ ∈ xα ∩ xβ , but this is a contradiction as
xα and xβ should be disjoint. Therefore sxα ≤ txβ , and so as elements of Intalg(B),
[txα , sxα ) ∩ [txβ , sxβ ) = ∅. Thus the claim is proved.

By this claim, we have found a pairwise-disjoint subset

Z = {[txα , sxα ) : txα ∈ Y ′
}

of Intalg(B) of the same size as Y ′. Then |Y ′
| ≤ cT . Therefore c′

≤ cT . �

Lemma 2.3 In proving that |X | ≤ max{cT , ιT , ϕT , µT }, we may assume that for
each x ∈ X and for any two distinct s, w ∈ Fx , tx is the largest element of T such
that tx < s and tx < w.

Proof Let x ∈ X and suppose |X | = µ. Say that x ∈ X satisfies property (?) if for
any two distinct s, w ∈ Fx , tx is the greatest element of T that is less than both s and
w. If x already has the property (?), do nothing to x . Assume that 2 ≤ |Fx | < ω and
that x does not satisfy (?). We define a sequence of antichains F0, F1, . . . of T and a
sequence of elements y0, y1, . . . of A. Set F0 = Fx and y0 = x . Suppose Fk and yk
have been defined, and suppose yk does not have the property (?). Then there are dis-
tinct s, w ∈ Fk and a uk ∈ T such that tx < uk < s, w. Let G = {v ∈ Fk : uk 6< v}.
Set Fk+1 = G ∪ {uk}, and set yk+1 = (T ↑ tx ) \

⋃
r∈Fk+1

(T ↑ r). Then yk+1 6= ∅
and yk+1 ⊆ yk , so replacing yk with yk+1 in X , X will still be a pairwise-disjoint
subset of A of size µ. Since |Fk+1| < |Fk |, and since |Fk | = 1 implies that yk has
the property (?), this process eventually stops. Thus, applying this process to each
x ∈ X , we get the statement in the lemma. �

The following fact, whose proof is left to the reader, is useful in proving that
c(A) ≥ µT .

Lemma 2.4 If C ⊆ T is a maximal pure chain, a, c ∈ C, and a < b < c, then
b ∈ C. �

3 c(Treealg(T )) for T a Pseudo-tree

The reader may readily verify that c(A) ≥ cT and that c(A) ≥ ιT . We provide proofs
that c(A) ≥ θT and that c(A) ≥ µT , since these proofs are slightly technical.

Lemma 3.1 c(A) ≥ ϕT .
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Proof Let a1, a2 ∈ T be fan elements with a1 6= a2. Write the fans of a1 and
a2, respectively, as fan(a1) = { f 1

i : i < n} and fan(a2) = { f 2
j : j < m}. Let

x = (T ↑ a1) \
⋃

i<n(T ↑ f 1
i ) and y = (T ↑ a2) \

⋃
j<m(T ↑ f 2

j ). We claim that
x ∩ y = ∅. If a1 and a2 are incomparable, this is clear; so say a1 < a2. Then as a1
is a fan element, a2 is comparable with a unique f 1

i ∈ fan(a1).

Claim 3.2 It cannot be that a2 < f 1
i for any i < n.

Proof of Claim Suppose otherwise; say a2 < f 1
0 . As a2 is a fan element, f 1

0 is
comparable with a unique f 2

j ∈ fan(a2); say f 1
0 is comparable with f 2

0 . Consider
f 2
1 . Now a1 < a2 < f 2

1 , so as a1 is a fan element, f 2
1 is comparable to a unique

f 1
j ∈ fan(a1). Then a2 is comparable to f 1

j : if f 2
1 ≤ f 1

j , then a2 < f 1
j ; if f 2

1 > f 1
j

then a2, f 1
j < f 2

1 . Hence j = 0. But then f 1
0 is comparable to both f 2

0 and f 2
1 ,

which is a contradiction. Thus the claim is proved.
By the claim, it must be that a2 ≥ f 1

i for some f 1
i ∈ fan(a1). Then y ⊆ (T ↑ f 1

i ),
so x ∩ y = ∅. �

Lemma 3.3 Any two distinct maximal pure chains are disjoint, and hence
c(A) ≥ µT .

Proof Let C1 and C2 be distinct maximal pure chains; suppose there is an
a ∈ C1 ∩ C2, and suppose (by way of contradiction) that C1 6= C2.

Claim 3.4 C1 ∪ C2 is a chain.

Proof of Claim Let c ∈ C1 and d ∈ C2; we show that c and d are comparable. If
c ≤ a ≤ d, d ≤ a ≤ c, or c, d ≤ a, this is clear. So suppose a < c, d. Then
a, c ∈ C1, a < c, and d > a, so c and d are comparable as C1 is a maximal pure
chain. Thus the claim is proved.

Since C1 6= C2, it follows by the above claim that C1 ∪ C2 is not a pure chain.
Hence there are b, c ∈ C1 ∪ C2 and d ∈ T such that b < c and d > b but c ⊥ d .
By the pureness of C1 and of C2, it cannot be that both b and c are in C1 or that both
b and c are in C2. So say b ∈ C1 \ C2 and c ∈ C2 \ C1. Since a is comparable to
both b and c, by Lemma 2.4 we must have b < a < c. Since a, b ∈ C1 and d > b,
d and a are comparable (since C1 is a pure chain). If d ≤ a, then d < c, which
is a contradiction since d ⊥ c. So a < d . Then since a, c ∈ C2 and d > a, d is
comparable to c, and this is again a contradiction. �

Theorem 3.5 c(A) ≤ max{cT , ιT , ϕT , µT }.

Proof Let X ⊆ A be pairwise-disjoint. By Lemmas 1.4 and 2.3, we may suppose
that each x ∈ X is of the form x = (T ↑ tx ) \

⋃
s∈Fx

(T ↑ s) where Fx is a finite
antichain of elements above tx and where for any two distinct elements s, w ∈ Fx , tx
is the greatest element of T that is less than both s and w. We may also suppose that
if Fx 6= ∅, then for every u ∈ T , if u > tx then u is comparable to some element of
Fx . (If there were a u > tx such that u ⊥ s for every s ∈ Fx , then we could replace
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x with (T ↑ u) in the antichain X .) Write X = X0 ∪ X1 ∪ X2, where

X0 = {x ∈ X : |Fx | = 0},

X1 = {x ∈ X : |Fx | = 1}, and
X2 = {x ∈ X : 2 ≤ |Fx | < ω}.

First consider X0. If x, y ∈ X0 and x 6= y, then clearly tx ⊥ ty , else X would not be
pairwise-disjoint in A. Thus |X0| ≤ ιT .

Next, consider X1. Each x ∈ X1 is of the form x = (T ↑ tx ) \ (T ↑ sx ) for some
sx > tx . Since (by assumption) every u > tx is comparable with sx , {tx , sx } is a
pure chain. Let C be a maximal pure chain containing {tx , sx }. Then by Lemma 2.4,
every element of x is contained in C . Then every x ∈ X1 is a subset of a maximal
pure chain C , and x ⊆ C if and only if tx ∈ C . Let Y = {tx : x ∈ X1}. For any
maximal pure chain C , the set {tx ∈ Y : tx ∈ C} is a chain in Y , and so, by Lemma
2.1, has size at most cT . Thus |X1| ≤ cT · µT .

Finally, consider X2. If x ∈ X2, then (by assumption) for every ux > tx , ux is
comparable to s for some s ∈ Fx . Suppose ux is comparable to distinct s, s′

∈ Fx .
Then necessarily ux ≤ s, s′, since s ⊥ s′; but this violates our assumption that tx is
the greatest element of T that is less than both s and s′. Thus for any ux > tx , ux is
comparable to a unique s ∈ Fx ; as 2 ≤ |Fx | < ω, this means that tx is a fan element.
Therefore |X2| ≤ ϕT , since if x, y ∈ X2 and x 6= y then tx 6= ty .

Therefore, recalling that at least one of the four cardinals is infinite since |T | ≥ ω,
we have

|X | = |X0 ∪ X1 ∪ X2|

≤ |X0| + |X1| + |X2|

≤ (ιT ) + (cT · µT ) + (ϕT )

= max{cT , ιT , ϕT , µT }.

�

Thus we have a characterization of the cellularity of a pseudo-tree algebra.

Theorem 3.6 For any infinite pseudo-tree T ,

c(Treealg(T )) = max{cT , ιT , ϕT , µT }.

4 The Four Cardinals Are All Necessary

The following examples demonstrate that the four cardinals cT , ιT , ϕT , and µT are
nonredundant. (Here the reader may wish to consult Chapter II, §5 of Kunen [6] for
basic facts concerning trees.)

Example 4.1 Let S be a Suslin tree such that for every s ∈ S, s has ω-many
immediate successors. (If there is a Suslin tree, then there is a Suslin tree in which
every element has infinitely many immediate successors.) Let T be obtained from S
as follows: for r, s ∈ S with s the immediate successor of r , insert a “link” Cr,s = Q

with r < Cr,s < s. Let T be the resulting pseudo-tree, with the induced order. Then

ιT = ω, cT = ω, ϕT = 0, and µT = ω1.

Example 4.2 Let T = R with the usual order. Then

ιT = 1, cT = ω, ϕT = 0, and µT = 1.
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Example 4.3 Let T be the ω1-branching tree of height ω. (That is, every element
of T has exactly ω1-many immediate successors, and height(T ) = ω.) Then

ιT = ω1, cT = ω, ϕT = 0, and µT = 0.

Example 4.4 Let T be a Suslin tree in which every element has exactly two imme-
diate successors. (If there is a Suslin tree, then there is a Suslin tree in which every
element has exactly two immediate successors.) Then

ιT = ω, cT = ω, ϕT = ω1, and µT = 0.

Noting that Examples 4.1 and 4.4 used a Suslin tree, one might ask whether there
are examples in ZFC of pseudo-trees T for which either µT > max{cT , ιT } or
ϕT > max{cT , ιT }. The short answer is no; this and related questions are addressed
in Brown [1] or [3].
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