Cellularity of Pseudo-Tree Algebras

Jennifer Brown

Abstract

Recall that for any Boolean algebra (BA) A, the cellularity of A is $c(A)=\sup \{|X|: X$ is a pairwise-disjoint subset of $A\}$. A pseudo-tree is a partially ordered set (T, \leq) such that for every t in T, the set $\{r \in T: r \leq t\}$ is a linear order. The pseudo-tree algebra on T, denoted $\operatorname{Treealg}(T)$, is the subalgebra of $\mathcal{P}(T)$ generated by the cones $\{r \in T: r \geq t\}$, for t in T. We characterize the cellularity of pseudo-tree algebras in terms of cardinal functions on the underlying pseudo-trees. For T a pseudo-tree, $c(\operatorname{Treealg}(T))$ is the maximum of four cardinals $c_{T}, \imath_{T}, \varphi_{T}$, and μ_{T} : roughly, c_{T} measures the "tallness" of the pseudo-tree $T ; \imath_{T}$ the "breadth"; φ_{T} the number of "finite branchings"; and μ_{T} the number of places where T "does not branch." We give examples to demonstrate that all four of these cardinals are needed.

1 Definitions and Introductions

We use standard notation for Boolean algebras; see Koppelberg [4]. For facts about pseudo-tree algebras, see Koppelberg and Monk [5] or Monk [7]. Note that a pseudotree is a generalization of a tree: for T a tree, the sets $(T \downarrow t)=\{r \in T: r \leq t\}$ are required to be well-ordered. Also, recall that if A is an infinite BA , then $c(A) \geq \omega$; see [4] for a proof. For any sets X and Y, " $X \subseteq Y$ " means that X is any subset of Y; " $X \subset Y$ " means that X is a proper subset of Y.

The cellularity of a tree algebra was characterized by Brenner and Monk; but since the characterization depends on enumerating the immediate successors of elements of the tree, it does not hold for pseudo-tree algebras (see [7]). Monk [7] posed the problem: Describe cellularity for pseudo-tree algebras. We do this by characterizing $c(\operatorname{Treealg}(T))$ in terms of four cardinal functions that reflect the structure of the underlying pseudo-tree.
Definition 1.1 Recall that the interval algebra $\operatorname{Intalg}(L)$ on a linear order L is defined as follows: if L does not have a first element, add one. Extend the linear

Received June 4, 2005; accepted February 6, 2006; printed November 14, 2006
2000 Mathematics Subject Classification: Primary, 06E05, 06E99
Keywords: cellularity, pseudo-tree, pseudo-tree algebra
© 2006 University of Notre Dame
order of L to $L \cup\{\infty\}$, where ∞ is an element not contained in L, by letting $x<\infty$ for $x \in L$. Intalg (L) is the algebra of sets over L consisting of finite unions of half-open intervals $[x, y)=\{z \in L: x \leq z<y\}$ (for $x, y \in L \cup \infty$).

We will make use of the following normal form lemma (see [4] and [5]). Here E and F denote two special types of products over the canonical generators of T :

$$
E=\left\{(T \uparrow t) \backslash \bigcup_{s \in S}(T \uparrow s): S \text { is a finite antichain in } T, \text { and } t<s \text { for } s \in S\right\}
$$

and

$$
F=\left\{T \backslash \bigcup_{s \in S}(T \uparrow s): S \text { is a finite antichain in } T\right\}
$$

(An antichain in T is a set of pairwise-incomparable elements of T.)

Lemma 1.2

1. The elements of E are nonzero.
2. If T has a single root, then every nonzero element of F is in E.
3. Every element b of A is a sum of pairwise-disjoint nonzero elements

$$
b=e_{0}+\cdots+e_{n-1}+f_{0}+\cdots+f_{m-1}
$$

where $e_{i} \in E(i<n)$ and $f_{j} \in F(j<m)$.
Definition 1.3 Let $e \in E$ and $b \in A$. A representation of e,

$$
e=(T \uparrow t) \backslash \bigcup_{s \in S}(T \uparrow s)
$$

is in normal form if S is a finite antichain in T and $t<s$ for all $s \in S$. A representation of b,

$$
b=e_{1}+\cdots+e_{n}
$$

is in normal form if the e_{i} are pairwise-disjoint elements of E, say

$$
e_{i}=\left(T \uparrow t_{i}\right) \backslash \bigcup_{s \in S(i)}(T \uparrow s)
$$

in normal form, and $t_{i} \notin S(j)$ for $i \neq j$.
It is convenient, and does no harm, to assume that all of our pseudo-trees have single roots (see [4] and [5]).
Lemma 1.4 Let T be a pseudo-tree with a single root. Then every $b \in A$ can be written in normal form.
Lemma 1.5 For every pseudo-tree T there is a pseudo-tree T^{*} with a single root such that $\operatorname{Treealg}(T)$ is isomorphic to Treealg $\left(T^{*}\right)$.

For what follows, let T be an infinite pseudo-tree with a single root and set $A=\operatorname{Treealg}(T)$. By a branch of T we mean a maximal chain in T, and we set $\mathcal{B}=\{B \subseteq T: B$ is a branch $\}$. We will write $t \perp s$ when t, s are incomparable elements of T.
Definition 1.6 A fan element of T is an $a \in T$ such that there exists a set $F=\operatorname{fan}(a)$ with the following properties:

1. F is a finite set of pairwise-incomparable elements each greater than a, and $|F| \geq 2 ;$
2. for every $c>a, c$ is comparable to a unique $b \in F$.

Definition 1.7 A pure chain in T is a chain $C \subseteq T$ such that the following conditions hold:

1. $|C| \geq 2$;
2. if $a, b \in C, a<b$, and $a<c \in T$, then c is comparable to b.
$C \subseteq T$ is a maximal pure chain if C is a pure chain and if whenever $C^{\prime} \supset C, C^{\prime}$ is not a pure chain.

Remark 1.8 The definition of a maximal pure chain is essentially contained in the discussion of "reduced trees" in Fraïssé [2].

We define four cardinal functions $c_{T}, l_{T}, \varphi_{T}, \mu_{T}$ on a pseudo-tree T.
Definition 1.9 For any pseudo-tree T,

1. the cellularity of T is

$$
c_{T}=\sup \{c(\operatorname{Intalg}(C)): C \text { is a chain in } T\}
$$

(note that we are using "cellularity" in a special sense here);
2. the incomparability of T is
$l_{T}=\sup \{|S|: S$ is an antichain in $T\}$
("incomparability" is also being used in a special sense);
3. the number of fan elements of T is
$\varphi_{T}=\mid\{a \in T: a$ is a fan element of $T\} \mid ;$ and
4. the number of maximal pure chains of T is
$\mu_{T}=\mid\{C \subseteq T: C$ is a maximal pure chain $\} \mid$.
Note that, by König's theorem, at least one of c_{T}, l_{T} is infinite if T is an infinite pseudo-tree. We prove that $c(A)$ is the maximum of the four cardinals $c_{T}, l_{T}, \varphi_{T}$, and μ_{T}, and that all four cardinals are necessary (that is, they are nonredundant).

2 Helpful Lemmas

Let $X \subseteq A$ be pairwise-disjoint, and suppose without loss of generality that $|X| \geq \omega$. We will show, in Theorem 3.5, that $|X| \leq \max \left\{c_{T}, l_{T}, \varphi_{T}, \mu_{T}\right\}$ (so that $c(A) \leq \max \left\{c_{T}, l_{T}, \varphi_{T}, \mu_{T}\right\}$). By Lemma 1.4, we may suppose that every $x \in X$ is of the form

$$
x=\left(T \uparrow t_{x}\right) \backslash \bigcup_{s \in F_{x}}(T \uparrow s)
$$

where F_{x} is a finite antichain of elements $s>t_{x}$.
Let $Y=\left\{t_{x}: x \in X\right\}$. Note that if $x, y \in X$ and $x \neq y$, then $t_{x} \neq t_{y}$ (otherwise both x and y would contain the element $t_{x}=t_{y}$, and so x and y would not be disjoint). Thus $|Y|=|X|$. Note also that for all $x, y \in X$ with $x \neq y$, either t_{x} and t_{y} are incomparable, or $s \leq t_{y}$ for some $s \in F_{x}$, or $s \leq t_{x}$ for some $s \in F_{y}$. Let

$$
c^{\prime}=\sup \{|S|: S \subseteq Y \text { is a chain }\}
$$

We will use, in proving that $|X| \leq \max \left\{c_{T}, l_{T}, \varphi_{T}, \mu_{T}\right\}$, the following inequality.
Lemma $2.1 \quad c^{\prime} \leq c_{T}$.
Proof Let $Y^{\prime} \subseteq Y$ be a chain. Then the elements of Y^{\prime} all lie on a single branch B of T. List the elements of Y^{\prime} as $Y^{\prime}=\left\{t_{x_{\alpha}}: \alpha<\gamma\right\}$, for some γ. Let $t_{x_{\alpha}}$, $t_{x_{\beta}} \in Y^{\prime}$ with $t_{x_{\alpha}} \neq t_{x_{\beta}}$. Then one of two things happens:
(i) $s \leq t_{x_{\beta}}$ for some $s \in F_{x_{\alpha}}$ (if $t_{x_{\alpha}}<t_{x_{\beta}}$), or
(ii) $s \leq t_{x_{\alpha}}$ for some $s \in F_{x_{\beta}}$ (if $t_{x_{\beta}}<t_{x_{\alpha}}$).

Let t^{*} be the maximum element of Y^{\prime}, if such an element exists; if not, define t^{*} to be any set not in T. Suppose $t_{x_{\alpha}} \in Y^{\prime} \backslash\left\{t^{*}\right\}$. The associated element of X is $x_{\alpha}=\left(T \uparrow t_{x_{\alpha}}\right) \backslash \bigcup_{s \in F_{x_{\alpha}}}(T \uparrow s)$, where $F_{x_{\alpha}}$ is a finite antichain of elements $s>t_{x_{\alpha}}$. As $F_{x_{\alpha}}$ is an antichain, no two elements of $F_{x_{\alpha}}$ lie on the same branch; by (i) above, at least one element of $F_{x_{\alpha}}$ lies on the branch B. So for every $t_{x_{\alpha}} \in Y^{\prime} \backslash\left\{t^{*}\right\}$, let $s_{x_{\alpha}}$ be the unique element of $F_{x_{\alpha}}$ on B. Consider the element $\left[t_{x_{\alpha}}, s_{x_{\alpha}}\right.$) of $\operatorname{Intalg}(B)$.

Claim 2.2 If $x_{\alpha}, x_{\beta} \in\left\{x \in X: t_{x} \in Y^{\prime} \backslash\left\{t^{*}\right\}\right\}$ and $x_{\alpha} \neq x_{\beta}$, then $\left[t_{x_{\alpha}}, s_{x_{\alpha}}\right)$ $\cap\left[t_{x_{\beta}}, s_{x_{\beta}}\right)=\varnothing$.

Proof of Claim Let $x_{\alpha}, x_{\beta} \in\left\{x \in X: t_{x} \in Y^{\prime} \backslash\left\{t^{*}\right\}\right\}$ and $x_{\alpha} \neq x_{\beta}$, and suppose without loss of generality that $t_{x_{\alpha}}<t_{x_{\beta}}$. We know that $s_{x_{\alpha}}>t_{x_{\alpha}}$ and $s_{x_{\alpha}} \in B$. Suppose $s_{x_{\alpha}}>t_{x_{\beta}}$. Then $t_{x_{\beta}} \in x_{\alpha} \cap x_{\beta}$, but this is a contradiction as x_{α} and x_{β} should be disjoint. Therefore $s_{x_{\alpha}} \leq t_{x_{\beta}}$, and so as elements of $\operatorname{Intalg}(B)$, $\left[t_{x_{\alpha}}, s_{x_{\alpha}}\right) \cap\left[t_{x_{\beta}}, s_{x_{\beta}}\right)=\varnothing$. Thus the claim is proved.

By this claim, we have found a pairwise-disjoint subset

$$
Z=\left\{\left[t_{x_{\alpha}}, s_{x_{\alpha}}\right): t_{x_{\alpha}} \in Y^{\prime}\right\}
$$

of $\operatorname{Intalg}(B)$ of the same size as Y^{\prime}. Then $\left|Y^{\prime}\right| \leq c_{T}$. Therefore $c^{\prime} \leq c_{T}$.
Lemma 2.3 In proving that $|X| \leq \max \left\{c_{T}, \iota_{T}, \varphi_{T}, \mu_{T}\right\}$, we may assume that for each $x \in X$ and for any two distinct $s, w \in F_{x}, t_{x}$ is the largest element of T such that $t_{x}<s$ and $t_{x}<w$.

Proof Let $x \in X$ and suppose $|X|=\mu$. Say that $x \in X$ satisfies property (\star) if for any two distinct $s, w \in F_{x}, t_{x}$ is the greatest element of T that is less than both s and w. If x already has the property (\star), do nothing to x. Assume that $2 \leq\left|F_{x}\right|<\omega$ and that x does not satisfy (\star). We define a sequence of antichains F_{0}, F_{1}, \ldots of T and a sequence of elements y_{0}, y_{1}, \ldots of A. Set $F_{0}=F_{x}$ and $y_{0}=x$. Suppose F_{k} and y_{k} have been defined, and suppose y_{k} does not have the property (\star). Then there are distinct $s, w \in F_{k}$ and a $u_{k} \in T$ such that $t_{x}<u_{k}<s, w$. Let $G=\left\{v \in F_{k}: u_{k} \nless v\right\}$. Set $F_{k+1}=G \cup\left\{u_{k}\right\}$, and set $y_{k+1}=\left(T \uparrow t_{x}\right) \backslash \bigcup_{r \in F_{k+1}}(T \uparrow r)$. Then $y_{k+1} \neq \varnothing$ and $y_{k+1} \subseteq y_{k}$, so replacing y_{k} with y_{k+1} in X, X will still be a pairwise-disjoint subset of A of size μ. Since $\left|F_{k+1}\right|<\left|F_{k}\right|$, and since $\left|F_{k}\right|=1$ implies that y_{k} has the property (\star), this process eventually stops. Thus, applying this process to each $x \in X$, we get the statement in the lemma.

The following fact, whose proof is left to the reader, is useful in proving that $c(A) \geq \mu_{T}$.

Lemma 2.4 If $C \subseteq T$ is a maximal pure chain, $a, c \in C$, and $a<b<c$, then $b \in C$.

$3 \boldsymbol{c}($ Treealg $(T))$ for T a Pseudo-tree

The reader may readily verify that $c(A) \geq c_{T}$ and that $c(A) \geq l_{T}$. We provide proofs that $c(A) \geq \theta_{T}$ and that $c(A) \geq \mu_{T}$, since these proofs are slightly technical.

Lemma $3.1 \quad c(A) \geq \varphi_{T}$.

Proof Let $a_{1}, a_{2} \in T$ be fan elements with $a_{1} \neq a_{2}$. Write the fans of a_{1} and a_{2}, respectively, as $\operatorname{fan}\left(a_{1}\right)=\left\{f_{i}^{1}: i<n\right\}$ and $\operatorname{fan}\left(a_{2}\right)=\left\{f_{j}^{2}: j<m\right\}$. Let $x=\left(T \uparrow a_{1}\right) \backslash \bigcup_{i<n}\left(T \uparrow f_{i}^{1}\right)$ and $y=\left(T \uparrow a_{2}\right) \backslash \bigcup_{j<m}\left(T \uparrow f_{j}^{2}\right)$. We claim that $x \cap y=\varnothing$. If a_{1} and a_{2} are incomparable, this is clear; so say $a_{1}<a_{2}$. Then as a_{1} is a fan element, a_{2} is comparable with a unique $f_{i}^{1} \in \operatorname{fan}\left(a_{1}\right)$.

Claim 3.2 It cannot be that $a_{2}<f_{i}^{1}$ for any $i<n$.

Proof of Claim Suppose otherwise; say $a_{2}<f_{0}^{1}$. As a_{2} is a fan element, f_{0}^{1} is comparable with a unique $f_{j}^{2} \in \operatorname{fan}\left(a_{2}\right)$; say f_{0}^{1} is comparable with f_{0}^{2}. Consider f_{1}^{2}. Now $a_{1}<a_{2}<f_{1}^{2}$, so as a_{1} is a fan element, f_{1}^{2} is comparable to a unique $f_{j}^{1} \in \operatorname{fan}\left(a_{1}\right)$. Then a_{2} is comparable to $f_{j}^{1}:$ if $f_{1}^{2} \leq f_{j}^{1}$, then $a_{2}<f_{j}^{1}$; if $f_{1}^{2}>f_{j}^{1}$ then $a_{2}, f_{j}^{1}<f_{1}^{2}$. Hence $j=0$. But then f_{0}^{1} is comparable to both f_{0}^{2} and f_{1}^{2}, which is a contradiction. Thus the claim is proved.

By the claim, it must be that $a_{2} \geq f_{i}^{1}$ for some $f_{i}^{1} \in \operatorname{fan}\left(a_{1}\right)$. Then $y \subseteq\left(T \uparrow f_{i}^{1}\right)$, so $x \cap y=\varnothing$.

Lemma 3.3 Any two distinct maximal pure chains are disjoint, and hence $c(A) \geq \mu_{T}$.

Proof Let C_{1} and C_{2} be distinct maximal pure chains; suppose there is an $a \in C_{1} \cap C_{2}$, and suppose (by way of contradiction) that $C_{1} \neq C_{2}$.

Claim 3.4 $C_{1} \cup C_{2}$ is a chain.
Proof of Claim Let $c \in C_{1}$ and $d \in C_{2}$; we show that c and d are comparable. If $c \leq a \leq d, d \leq a \leq c$, or $c, d \leq a$, this is clear. So suppose $a<c, d$. Then $a, c \in C_{1}, a<c$, and $d>a$, so c and d are comparable as C_{1} is a maximal pure chain. Thus the claim is proved.

Since $C_{1} \neq C_{2}$, it follows by the above claim that $C_{1} \cup C_{2}$ is not a pure chain. Hence there are $b, c \in C_{1} \cup C_{2}$ and $d \in T$ such that $b<c$ and $d>b$ but $c \perp d$. By the pureness of C_{1} and of C_{2}, it cannot be that both b and c are in C_{1} or that both b and c are in C_{2}. So say $b \in C_{1} \backslash C_{2}$ and $c \in C_{2} \backslash C_{1}$. Since a is comparable to both b and c, by Lemma 2.4 we must have $b<a<c$. Since $a, b \in C_{1}$ and $d>b$, d and a are comparable (since C_{1} is a pure chain). If $d \leq a$, then $d<c$, which is a contradiction since $d \perp c$. So $a<d$. Then since $a, c \in C_{2}$ and $d>a, d$ is comparable to c, and this is again a contradiction.

Theorem 3.5 $c(A) \leq \max \left\{c_{T}, l_{T}, \varphi_{T}, \mu_{T}\right\}$.

Proof Let $X \subseteq A$ be pairwise-disjoint. By Lemmas 1.4 and 2.3, we may suppose that each $x \in X$ is of the form $x=\left(T \uparrow t_{x}\right) \backslash \bigcup_{s \in F_{x}}(T \uparrow s)$ where F_{x} is a finite antichain of elements above t_{x} and where for any two distinct elements $s, w \in F_{x}, t_{x}$ is the greatest element of T that is less than both s and w. We may also suppose that if $F_{x} \neq \varnothing$, then for every $u \in T$, if $u>t_{x}$ then u is comparable to some element of F_{x}. (If there were a $u>t_{x}$ such that $u \perp s$ for every $s \in F_{x}$, then we could replace
x with $(T \uparrow u)$ in the antichain X.) Write $X=X_{0} \cup X_{1} \cup X_{2}$, where

$$
\begin{aligned}
X_{0} & =\left\{x \in X:\left|F_{x}\right|=0\right\} \\
X_{1} & =\left\{x \in X:\left|F_{x}\right|=1\right\}, \text { and } \\
X_{2} & =\left\{x \in X: 2 \leq\left|F_{x}\right|<\omega\right\}
\end{aligned}
$$

First consider X_{0}. If $x, y \in X_{0}$ and $x \neq y$, then clearly $t_{x} \perp t_{y}$, else X would not be pairwise-disjoint in A. Thus $\left|X_{0}\right| \leq l_{T}$.

Next, consider X_{1}. Each $x \in X_{1}$ is of the form $x=\left(T \uparrow t_{x}\right) \backslash\left(T \uparrow s_{x}\right)$ for some $s_{x}>t_{x}$. Since (by assumption) every $u>t_{x}$ is comparable with $s_{x},\left\{t_{x}, s_{x}\right\}$ is a pure chain. Let C be a maximal pure chain containing $\left\{t_{x}, s_{x}\right\}$. Then by Lemma 2.4, every element of x is contained in C. Then every $x \in X_{1}$ is a subset of a maximal pure chain C, and $x \subseteq C$ if and only if $t_{x} \in C$. Let $Y=\left\{t_{x}: x \in X_{1}\right\}$. For any maximal pure chain C, the set $\left\{t_{x} \in Y: t_{x} \in C\right\}$ is a chain in Y, and so, by Lemma 2.1, has size at most c_{T}. Thus $\left|X_{1}\right| \leq c_{T} \cdot \mu_{T}$.

Finally, consider X_{2}. If $x \in X_{2}$, then (by assumption) for every $u_{x}>t_{x}, u_{x}$ is comparable to s for some $s \in F_{x}$. Suppose u_{x} is comparable to distinct $s, s^{\prime} \in F_{x}$. Then necessarily $u_{x} \leq s, s^{\prime}$, since $s \perp s^{\prime}$; but this violates our assumption that t_{x} is the greatest element of T that is less than both s and s^{\prime}. Thus for any $u_{x}>t_{x}, u_{x}$ is comparable to a unique $s \in F_{x}$; as $2 \leq\left|F_{x}\right|<\omega$, this means that t_{x} is a fan element. Therefore $\left|X_{2}\right| \leq \varphi_{T}$, since if $x, y \in X_{2}$ and $x \neq y$ then $t_{x} \neq t_{y}$.

Therefore, recalling that at least one of the four cardinals is infinite since $|T| \geq \omega$, we have

$$
\begin{aligned}
|X| & =\left|X_{0} \cup X_{1} \cup X_{2}\right| \\
& \leq\left|X_{0}\right|+\left|X_{1}\right|+\left|X_{2}\right| \\
& \leq\left(l_{T}\right)+\left(c_{T} \cdot \mu_{T}\right)+\left(\varphi_{T}\right) \\
& =\max \left\{c_{T}, l_{T}, \varphi_{T}, \mu_{T}\right\}
\end{aligned}
$$

Thus we have a characterization of the cellularity of a pseudo-tree algebra.

Theorem 3.6 For any infinite pseudo-tree T,

$$
c(\operatorname{Treealg}(T))=\max \left\{c_{T}, l_{T}, \varphi_{T}, \mu_{T}\right\}
$$

4 The Four Cardinals Are All Necessary

The following examples demonstrate that the four cardinals $c_{T}, l_{T}, \varphi_{T}$, and μ_{T} are nonredundant. (Here the reader may wish to consult Chapter II, §5 of Kunen [6] for basic facts concerning trees.)

Example 4.1 Let S be a Suslin tree such that for every $s \in S$, s has ω-many immediate successors. (If there is a Suslin tree, then there is a Suslin tree in which every element has infinitely many immediate successors.) Let T be obtained from S as follows: for $r, s \in S$ with s the immediate successor of r, insert a "link" $C_{r, s}=\mathbb{Q}$ with $r<C_{r, s}<s$. Let T be the resulting pseudo-tree, with the induced order. Then

$$
\iota_{T}=\omega, \quad c_{T}=\omega, \quad \varphi_{T}=0, \quad \text { and } \mu_{T}=\omega_{1}
$$

Example 4.2 Let $T=\mathbb{R}$ with the usual order. Then

$$
l_{T}=1, \quad c_{T}=\omega, \quad \varphi_{T}=0, \text { and } \mu_{T}=1
$$

Example 4.3 Let T be the ω_{1}-branching tree of height ω. (That is, every element of T has exactly ω_{1}-many immediate successors, and height $(T)=\omega$.) Then

$$
\iota_{T}=\omega_{1}, \quad c_{T}=\omega, \quad \varphi_{T}=0, \quad \text { and } \mu_{T}=0
$$

Example 4.4 Let T be a Suslin tree in which every element has exactly two immediate successors. (If there is a Suslin tree, then there is a Suslin tree in which every element has exactly two immediate successors.) Then

$$
\imath_{T}=\omega, \quad c_{T}=\omega, \quad \varphi_{T}=\omega_{1}, \quad \text { and } \mu_{T}=0
$$

Noting that Examples 4.1 and 4.4 used a Suslin tree, one might ask whether there are examples in ZFC of pseudo-trees T for which either $\mu_{T}>\max \left\{c_{T}, l_{T}\right\}$ or $\varphi_{T}>\max \left\{c_{T}, l_{T}\right\}$. The short answer is no; this and related questions are addressed in Brown [1] or [3].

References

[1] Brown, J., "Cellularity and the structure of pseudo-trees," preprint available at http://www2.kenyon.edu/Depts/Math/BrownJ, 2005. 359
[2] Fraïssé, R., Theory of Relations, revised edition, vol. 145 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 2000. Zbl 0965.03059. MR 1808172. 355
[3] Horne, J., Cardinal Functions on Pseudo-tree Algebras and a Generalization of Homogeneous Weak Density, Ph.D. thesis, University of Colorado, Boulder, 2005. 359
[4] Koppelberg, S., General Theory of Boolean Algebras, vol. 1 of Handbook of Boolean Algebras, edited by J. D. Monk and R. Bonnet, North-Holland Publishing Co., Amsterdam, 1989. Zbl 0671.06001. MR 991565. 353, 354
[5] Koppelberg, S., and J. D. Monk, "Pseudo-trees and Boolean Algebras," Order, vol. 8 (1991/92), pp. 359-74. Zbl 0778.06011. MR 1173142. 353, 354
[6] Kunen, K., Set Theory. An Introduction to Independence Proofs, vol. 102, Elsevier, Amsterdam, 1980. Reprinted in 1983 as vol. 102 of Studies in Logic and the Foundations of Mathematics. Zbl 0443.03021. MR 756630. 358
[7] Monk, J. D., Cardinal Invariants on Boolean Algebras, vol. 142 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1996. Zbl 0849.03038. MR 1393943. 353

Department of Mathematics
Kenyon College
Gambier OH 43022-9623
brownja@kenyon.edu

