Set Theory With and Without Urelements and Categories of Interpretations

Benedikt Löwe
This paper is dedicated to Dick de Jongh on the occasion of his 65th birthday.

Abstract

We show that the theories ZF and ZFU are synonymous, answering a question of Visser.

1 Introduction

Visser introduced five different categories of interpretations between theories, namely, INT_{0} (the category of synonymy), INT_{1} (the category of homotopy), INT_{2} (the category of weak homotopy), INT_{3} (the category of equivalence), and INT_{4} (the category of mutual interpretability) [2]. The objects in these categories are firstorder theories, the morphisms are interpretations up to some level of identification between interpretations. The category of synonymy has the strictest criteria for two interpretations to be the same, the category of mutual interpretability the weakest. Visser proved that $\mathrm{INT}_{1} \neq \mathrm{INT}_{4}$ ([2], §4.8.4), but apart from that no separation results are known. One particular question is [2], Open Question 4.16:

$$
\mathrm{INT}_{0} \stackrel{?}{\neq} \mathrm{INT}_{1}
$$

Visser remarked that the theories ZF and ZFU are homotopic (i.e., isomorphic in INT_{1}) and asked whether we can show that they are not synonymous.

In this note we produce a synonymy between ZF and ZFU. The result of this note is mentioned in [2], p. 33ff.

2 Fixing the Notation I. Categories of Interpretations

We basically follow [2] in the definitions. Since only the categories INT_{0} and INT_{1} are relevant for our investigation, we shall only define those.

In both categories, the objects are first-order theories in a countable language. A signature Σ is a triple $\langle P$, ar, $\doteq\rangle$ where P is a finite set of predicates, ar : $P \rightarrow \mathbb{N}$ is the arity function, and \doteq is a binary predicate representing the identity. Let Σ and Θ be signatures and $\Theta=\left\langle P_{\Theta}\right.$, ar $\left._{\Theta}, \doteq\right\rangle$ with $P_{\Theta}:=\left\{p_{0}, \ldots, p_{n}\right\}$. We call τ a translation from Θ to Σ if τ is a sequence $\left\langle\delta,\left\langle p_{0}, \varphi_{0}\right\rangle, \ldots,\left\langle p_{n}, \varphi_{n}\right\rangle\right\rangle$ where δ is a unary Σ-formula and the φ_{i} are $\operatorname{ar}_{\Theta}\left(p_{i}\right)$-ary Σ-formulas. Using a relative translation τ, we can define translations of Θ-formulas into Σ-formulas by recursion. For a Θ-formula ψ, we denote its translation by τ with ψ^{τ}. If now S is a Σ-theory and T is a Θ-theory, we call $\langle T, \tau, S\rangle$ an interpretation of T in S if τ is a translation from Θ in Σ and for all Θ-formulas ψ, we have

$$
T \vdash \psi \text { implies } S \vdash \psi^{\tau} \text {. }
$$

Now we define the morphisms in INT_{0} as equivalence classes of interpretations with the equivalence relation \equiv_{0} defined as follows: Let Σ and Θ be signatures, $\Theta=\left\langle P_{\Theta}, \operatorname{ar}_{\Theta}, \doteq\right\rangle$ with $P_{\Theta}:=\left\{p_{0}, \ldots, p_{n}\right\}, \tau=\left\langle\delta,\left\langle p_{0}, \varphi_{0}\right\rangle, \ldots,\left\langle p_{n}, \varphi_{n}\right\rangle\right\rangle$ and $\tau^{\prime}=\left\langle\delta^{\prime},\left\langle p_{0}, \varphi_{0}^{\prime}\right\rangle, \ldots,\left\langle p_{n}, \varphi_{n}^{\prime}\right\rangle\right\rangle$ be two translations from Θ to Σ, T a Θ-theory, and S a Σ-theory. Then we define $\langle T, \tau, S\rangle \equiv_{0}\left\langle T, \tau^{\prime}, S\right\rangle$ to hold if and only if

$$
\begin{aligned}
\left(\mathrm{s}_{0}\right) & S
\end{aligned} \vdash \delta\left(\mathrm{v}_{0}\right) \leftrightarrow \delta^{\prime}\left(\mathrm{v}_{0}\right), \text { and }, ~\left(\mathrm{~s}_{1}\right) \quad S \quad \vdash \quad \delta\left(\mathrm{v}_{0}\right) \& \cdots \& \delta\left(\mathrm{v}_{\left.\operatorname{ar}_{\Theta}\left(p_{i}\right)-1\right)} \begin{array}{rl}
\\
& \rightarrow \varphi_{i}\left(\mathrm{v}_{0}, \ldots, \mathrm{var}_{\Theta}\left(p_{i}\right)-1\right) \leftrightarrow \varphi_{i}^{\prime}\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{ar}_{\Theta}\left(p_{i}\right)-1}\right) \\
& (\text { for } 0 \leq i \leq n) .
\end{array}\right.
$$

We define an equivalence relation \equiv_{1} on interpretations in terms of a morphism category $\mathrm{INT}{ }^{\text {morph }}$: two interpretations $\langle T, \tau, S\rangle$ and $\left\langle T, \tau^{\prime}, S\right\rangle$ are said to be \equiv_{1-} equivalent if they are isomorphic as objects in the category $\operatorname{INT}{ }^{\text {morph }}$ as defined in [2], §3.1. The morphisms in INT_{1} are now the \equiv_{1}-equivalence classes of interpretations.

We concatenate morphisms as follows: If $\langle T, \tau, S\rangle$ and $\left\langle S, \tau^{\prime}, R\right\rangle$ are two interpretations with

$$
\tau=\left\langle\delta,\left\langle p_{0}, \varphi_{0}\right\rangle, \ldots,\left\langle p_{n}, \varphi_{n}\right\rangle\right\rangle \text { and } \tau^{\prime}=\left\langle\delta^{\prime},\left\langle q_{0}, \varphi_{0}^{\prime}\right\rangle, \ldots,\left\langle q_{m}, \varphi_{m}^{\prime}\right\rangle\right\rangle
$$

we define the concatenation to be the (\equiv_{i}-equivalence class of the) interpretation induced by

$$
\hat{\tau}:=\left\langle\hat{\delta},\left\langle p_{0}, \hat{\varphi}_{0}\right\rangle, \ldots,\left\langle p_{n}, \hat{\varphi}_{n}\right\rangle\right\rangle
$$

where

$$
\begin{aligned}
& \hat{\delta}\left(\mathrm{v}_{0}\right) \bumpeq \delta^{\prime}\left(\mathrm{v}_{0}\right) \&\left(\delta\left(\mathrm{v}_{0}\right)\right)^{\tau^{\prime}}, \text { and } \\
& \hat{\varphi}_{i}(\overrightarrow{\mathrm{v}}) \bumpeq\left(\varphi_{i}(\overrightarrow{\mathrm{v}})\right)^{\tau^{\prime}}(\text { for } 0 \leq i \leq n)
\end{aligned}
$$

As usual in category theory, an isomorphism in a category is an invertible morphism, that is, a morphism $K: T \rightarrow S$ such that for some other morphism $L: S \rightarrow T$, we have $K \circ L=\mathrm{id}_{S}$ and $L \circ K=\mathrm{id}_{T}$.

For INT_{0}, this means that if T is a Θ-theory where

$$
\begin{gathered}
\Theta=\left\langle\left\{p_{0}, \ldots, p_{n}\right\}, \operatorname{ar}_{\Theta}, \doteq\right\rangle \\
K=\langle T, \tau, S\rangle, \text { and } \tau=\left\langle\delta,\left\langle p_{0}, \varphi_{0}\right\rangle, \ldots,\left\langle p_{n}, \varphi_{n}\right\rangle\right\rangle,
\end{gathered}
$$

then K is an NT_{0}-isomorphism (also called a synonymy) if there is another morphism

$$
L=\left\langle S, \tau^{\prime}, T\right\rangle \text { with } \tau^{\prime}=\left\langle\delta^{\prime},\left\langle q_{0}, \varphi_{0}^{\prime}\right\rangle, \ldots,\left\langle q_{m}, \varphi_{m}^{\prime}\right\rangle\right\rangle
$$

such that (for $0 \leq i \leq n$ and $0 \leq j \leq m)$

$$
\begin{array}{llll}
T \vdash & \delta^{\prime}\left(\mathrm{v}_{0}\right) \&\left(\delta\left(\mathrm{v}_{0}\right)\right)^{\tau^{\prime}}, & S \vdash & \delta\left(\mathrm{v}_{0}\right) \&\left(\delta^{\prime}\left(\mathrm{v}_{0}\right)\right)^{\tau}, \\
T \vdash & p_{i}(\overrightarrow{\mathrm{v}}) \leftrightarrow\left(\varphi_{i}(\overrightarrow{\mathrm{v}})\right)^{\tau^{\prime}}, & S \vdash & q_{j}(\overrightarrow{\mathrm{v}}) \leftrightarrow\left(\varphi_{j}^{\prime}(\overrightarrow{\mathrm{v}})\right)^{\tau}
\end{array}
$$

in particular, δ^{\prime} must be T-provably equivalent to the trivial condition and δ must be S-provably equivalent to the trivial condition.

3 Fixing the Notation II. ZF and ZFU

In the following, ZF will be the standard axiom system of Zermelo-Fraenkel set theory in a language with a binary predicate $\dot{\epsilon}$, that is, the Axioms (or Axiom Schemes) of Extensionality, Pairing, Union, Power Set, Aussonderung, Infinity, Foundation, and Ersetzung. We denote models of $Z F$ by $\mathbf{V}=\langle V, \in\rangle$. We shall use the variables x, y, and z for elements of a ZF-model. By the axiom of infinity, we have a set of natural numbers in each model of $Z F$ which we shall denote by $\mathbb{N}^{\mathbf{V}}$. For technical reasons, we choose the Zermelo natural numbers, that is,

$$
\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\{\{\varnothing\}\}\}, \ldots\}
$$

By the axiom scheme of Ersetzung, we have a well-defined transitive closure operator in each model of $Z F$, and we write $\operatorname{tcl}^{\mathbf{V}}(x)$ for the \subseteq-smallest transitive set containing x as an element.

The language of ZFU will be a language with two binary relations $\dot{\in}$ and \dot{F} and a unary relation \dot{U}. The unary relation describes the urelements (i.e., u is an urelement if and only if $\dot{U}(u)$ holds). We shall denote models of ZFU by $\mathbf{W}=\langle W, \hat{\epsilon}, \hat{F}, \hat{U}\rangle .{ }^{1}$

We shall use the variables u, v, and w for elements of a ZFU-model. The theory ZFU consists of the standard axioms of ZF with the usual changes to Extensionality and Foundation due to the existence of urelements plus axioms governing the character of the urelements (see below). Note that the axioms of ZF give the existence of the set of natural numbers which is abbreviated by \mathbb{N} in the formal language and denoted by $\mathbb{N}^{\mathbf{W}}$ in a given model \mathbf{W}. Again, we are using the set of Zermelo numbers. Now, using this notation, we can state the axioms governing the urelements:

$$
\forall u \forall v(\dot{U}(u) \rightarrow \neg(v \dot{\in} u)) \text {, and }
$$

$$
\forall u \forall v(\dot{F}(u, v) \rightarrow(u \in \mathbb{N} \& \dot{U}(v))) \&
$$

$$
\begin{aligned}
\forall v(\dot{U}(v) \rightarrow & \exists u(\dot{F}(u, v))) \& \\
& \forall u \forall v \forall w((\dot{F}(u, v) \& \dot{F}(u, w)) \rightarrow v=w) .
\end{aligned}
$$

(The latter states that \dot{F} describes a bijection between \mathbb{N} and the set of urelements.) We denote the (countable) set of urelements in \mathbf{W} by $\mathbb{U}^{\mathbf{W}}$ and the i th urelement (i.e., the value of i under the function described by \dot{F}) by \mathbb{U}_{i}.

Again, by the axiom scheme of Ersetzung, we have a well-defined transitive closure operator in each model of ZFU, and we write $\operatorname{tcl}^{\mathbf{W}}(u)$ for the \subseteq-smallest transitive set containing u as an element. Note that this allows the definition of a formula saying that a set is pure:

$$
\Psi_{\text {Pure }}(u) \bumpeq \forall v(v \in \operatorname{tcl}(u) \rightarrow \neg(\dot{U}(v))) .
$$

4 Homotopy of ZF and ZFU

We remind the reader of the standard embeddings of ZF in ZFU and vice versa:
4.1 Interpreting ZFU inside $\mathbf{V} \quad$ Given a model $\mathbf{V} \models$ ZF, we can build a model of ZFU in it: In the following, we work in \mathbf{V}, so all operations and sets (e.g., the ordered pair, the natural numbers, the ordinals) are the operations and sets in \mathbf{V}. Let $U:=\{\langle 0, n\rangle ; n \in \mathbb{N}\}$. Define a class W by transfinite recursion as follows:

$$
\begin{aligned}
W_{0} & :=U, \\
W_{\alpha+1} & :=\left\{\langle 1, x\rangle ; x \subseteq W_{\alpha}\right\} \cup W_{\alpha}, \\
W_{\lambda} & :=\bigcup_{\alpha<\lambda} W_{\alpha} \text { (for limit ordinals } \lambda \text {). }
\end{aligned}
$$

By the transfinite recursion theorem, there is a formula Φ_{W} defining the class $W:=\bigcup_{\alpha \in \text { Ord }} W_{\alpha}$. Now we define the following formulas:

$$
\begin{aligned}
& \Phi_{\dot{\epsilon}}(x, y) \bumpeq \exists z(\langle 1, z\rangle=y \& x \in z) \\
& \Phi_{\dot{U}}(x) \bumpeq \exists n(n \in \mathbb{N} \& x=\langle 0, n\rangle) \\
& \Phi_{\mathbb{N}}(x) \bumpeq \text { function }(x) \& \operatorname{dom}(x)=\mathbb{N} \& x(0)=\langle 1, \varnothing\rangle \\
& \& \forall n(n \in \mathbb{N} \rightarrow x(n+1)=\langle 1,\{x(n)\}\rangle), \\
& \Phi_{\dot{F}}(x, y) \bumpeq \exists z\left(\Phi_{\mathbb{N}}(z) \& \exists n(n \in \mathbb{N} \& z(n)=x \& y=\langle 0, n\rangle)\right) .
\end{aligned}
$$

Then if you use the formulas $\Phi_{\dot{\in}}, \Phi_{\dot{F}}$, and $\Phi_{\dot{U}}$ to define binary and unary relations $\hat{\epsilon}, \hat{F}$, and \hat{U}, respectively, then $\langle W, \hat{\epsilon}, \hat{F}, \hat{U}\rangle \models$ ZFU. Consequently,

$$
T_{\mathrm{ZFU}, \mathrm{ZF}}:=\left\langle\Phi_{W},\left\langle\dot{\in}, \Phi_{\dot{\epsilon}}\right\rangle,\left\langle\dot{F}, \Phi_{\dot{F}}\right\rangle,\left\langle\dot{U}, \Phi_{\dot{U}}\right\rangle\right\rangle
$$

is a translation that yields an interpretation of ZFU in ZF .
4.2 Interpreting $\mathbf{Z F}$ inside \mathbf{W} Now assume that $\mathbf{W}=\langle W, \hat{\epsilon}, \hat{F}, \hat{U}\rangle$ is a model of ZFU. As is well known, the class of pure sets in a ZFU-model is a model of ZF, so we take the formula $\Psi_{\text {Pure }}$ from above and the formula

$$
\Psi_{\dot{\epsilon}}(u, v) \bumpeq u \hat{\in} v
$$

and get that

$$
T_{\mathrm{ZF}, \mathrm{ZFU}}:=\left\langle\Psi_{\text {Pure }},\left\langle\dot{\epsilon}, \Psi_{\dot{\epsilon}}\right\rangle\right\rangle
$$

is a translation that yields an interpretation of ZF in ZFU. We denote the class of pure sets inside \mathbf{W} with $V^{\mathbf{W}}$.
4.3 Homotopy It is clear that neither $T_{\mathrm{ZFU}, \mathrm{ZF}}$ nor $T_{\mathrm{ZF}, \mathrm{ZFU}}$ can be $\mathrm{INT}_{0}-$ isomorphisms (synonymies) as neither $\Psi_{\text {Pure }}$ nor Φ_{W} are the trivial condition (in fact, ZFU-provably, there are sets u such that $\neg \Psi_{\text {Pure }}(u)$ and ZF-provably, there are sets x such that $\left.\neg \Phi_{W}(x)\right)$. However, it is easy to see that they are INT_{1}-isomorphisms. ${ }^{2}$

5 Graphs Representing Sets

5.1 Definitions A pointed graph is a triple $\langle G, E, v\rangle$ such that $\langle G, E\rangle$ is a directed graph, and $v \in G$; a labeled pointed graph is a quadrupel $\langle G, E, v, \ell\rangle$ such that $\langle G, E, v\rangle$ is a pointed graph and $\ell: \omega+1 \rightarrow G$ is a function.

We call a pointed graph $\langle G, E, v\rangle$ a ZF -graph if it has the following properties:

1. the set G contains a subset $N:=\left\{n_{i} ; i \in \omega\right\}$ such that n_{0} is the unique least element of $\langle G, E\rangle$ and for all $i \in \omega$, the following holds:

$$
\forall x \in G\left(x E n_{i+1} \leftrightarrow x=n_{i}\right)
$$

2. $\langle G, E\rangle$ is well-founded,
3. $\langle G, E\rangle$ is extensional, and
4. $G \backslash \operatorname{tcl}(v) \subseteq N$.

In analogy to the ZF-graphs, let's define the corresponding ZFU-graphs: Let $\langle G, E, v, \ell\rangle$ be a labeled pointed graph. We call it a ZFU-graph if it has the following properties:

1. the function ℓ is a bijection between $\omega+1$ and the minimal elements of $\langle G, E\rangle$ (let us denote the image of ℓ by A);
2. the set G contains a subset $N:=\left\{n_{i} ; i \in \omega\right\}$ such that $\ell(\omega)=n_{0}$, and for all $i \in \omega$, the following holds:

$$
\forall x \in G\left(x E n_{i+1} \leftrightarrow x=n_{i}\right)
$$

3. $\langle G, E\rangle$ is well-founded;
4. $\langle G \backslash A, E\rangle$ is extensional; and
5. $G \backslash \operatorname{tcl}(v) \subseteq N \cup A$.

If now $\mathbf{V}=\langle V, \in\rangle \vDash \mathrm{ZF}$, and $x \in V$, then let $G_{x}:=\operatorname{tcl}^{\mathbf{V}}(x) \cup \mathbb{N}^{\mathbf{V}}$ and $E_{x}:=\in \cap G_{x} \times G_{x}$. Then $\left\langle G_{x}, E_{x}, x\right\rangle$ is a ZF-graph. If $\mathbf{W}=\langle W, \hat{\epsilon}, \hat{F}, \hat{U}\rangle \models \mathrm{ZFU}$, and $u \in W$, then we define $H_{u}:=\operatorname{tcl}^{\mathbf{W}}(u) \cup \mathbb{N}^{\mathbf{W}} \cup \cup^{\mathbf{W}}, E_{u}:=\hat{\epsilon} \cap H_{u} \times H_{u}$ and the function ℓ by $\ell(\omega):=\varnothing^{\mathbf{W}}$ and $\ell(n):=\mathbb{U}_{n}^{\mathbf{W}}$. Then $\left\langle H_{u}, E_{u}, u, \ell\right\rangle$ is a ZFU-graph. Note that while we gave the definitions informally, they can be given within the models \mathbf{V} and \mathbf{W}, respectively, and we denote by $\mathbf{G}_{x}^{\mathbf{V}}$ and $\mathbf{H}_{u}^{\mathbf{W}}$ the elements of \mathbf{V} and \mathbf{W} that are the ZF-graph associated to x and the ZFU-graph associated to u, respectively.

Proposition 5.1 Let $\mathbf{M}=\left\langle M, \epsilon_{0}\right\rangle$ or $\mathbf{M}=\left\langle M, \in_{0}, F_{0}, U_{0}\right\rangle$ be a model of either ZF or ZFU, and let $V, \in, W, \hat{\in}, \hat{F}, \hat{U}$ be definable subclasses such that $\mathbf{V}:=\langle V, \in\rangle \models \mathrm{ZF}$ and $\mathbf{W}:=\langle W, \hat{\epsilon}, \hat{F}, \hat{U}\rangle \models$ ZFU. Let $\mathbf{G}=\langle G, E, v\rangle \in M$ be a ZF-graph and $\mathbf{H}=\langle H, E, \nu, \ell\rangle \in M$ be a ZFU-graph.

1. There are \mathbf{M}-definable operations $\operatorname{set}^{\mathbf{M}, \mathbf{V}}$ and $\mathrm{iset}^{\mathbf{M}, \mathbf{W}}$ such that $\operatorname{set}^{\mathbf{M}, \mathbf{V}}(\mathbf{G}) \in V$ and $\operatorname{iset}^{\mathbf{M}, \mathbf{W}}(\mathbf{H}) \in W, \mathbf{G}_{\operatorname{set}^{\mathbf{M}, \mathbf{V}}(\mathbf{G})}^{\mathbf{V}}$ is isomorphic to \mathbf{G} (as pointed graphs) and $\mathbf{H}_{\mathrm{iset}^{\mathbf{M}, \mathbf{W}}}^{(\mathbf{H})} \mathrm{W}$ is isomorphic to \mathbf{H} (as labeled pointed graphs).
2. The operations $\operatorname{set}^{\mathbf{M}, \mathbf{V}}$ and iset $^{\mathbf{M}, \mathbf{W}}$ are injective up to isomorphism, that is, if \mathbf{G}_{0} and \mathbf{G}_{1} are isomorphic as pointed graphs and \mathbf{H}_{0} and \mathbf{H}_{1} are isomorphic as labeled pointed graphs, then $\operatorname{set}^{\mathbf{M}, \mathbf{V}}\left(\mathbf{G}_{0}\right)=\operatorname{set}^{\mathbf{M}, \mathbf{V}}\left(\mathbf{G}_{1}\right)$ and iset $^{\mathbf{M}, \mathbf{W}}\left(\mathbf{H}_{0}\right)=$ iset $^{\mathbf{M}, \mathbf{W}}\left(\mathbf{H}_{1}\right)$.
3. If $x \in_{0} y$, then \mathbf{G}_{x} is a subgraph of \mathbf{G}_{y}, and if $\mathbf{G}=\langle G, E, v\rangle$ is a $Z F$-graph and a subgraph of $\mathbf{G}_{x}^{\mathbf{V}}$ for some $x \in \mathbf{V}$, then $\operatorname{set}^{\mathbf{M}, \mathbf{V}}(\mathbf{G}) \in x$.
4. Similarly, if $u \in_{0} v$, then \mathbf{H}_{u} is a subgraph of \mathbf{H}_{v}, and if $\mathbf{H}=\langle H, E, v, \ell\rangle$ is $a \mathbf{Z F U}$-graph and a subgraph of $\mathbf{H}_{u}^{\mathbf{W}}$ for some $u \in \mathbf{W}$, then $\operatorname{iset}^{\mathbf{M}, \mathbf{W}}(\mathbf{H}) \hat{\in} u$.

Proof The operations set ${ }^{\mathbf{M}, \mathbf{V}}$ and iset ${ }^{\mathbf{M}, \mathbf{W}}$ are defined by transfinite recursion along the well-founded relations \in and $\hat{\epsilon}$ in the models \mathbf{V} and \mathbf{W} in the obvious way by translating the elements of the graph into elements of V or W and finally reading off the value by looking at the value of v (in the ZFU-case, we are assigning $\mathbb{U}_{i}^{\mathbf{W}}$ to the node $n \in H$ with $\ell(i)=n$ and $\varnothing^{\mathbf{W}}$ to the node n with $\left.\ell(\omega)=n\right)$. The assignment function produced during this process serves as an isomorphism between
\mathbf{G} and $\mathbf{G}_{\operatorname{set}^{\mathbf{M}, \mathbf{V}}}^{\mathbf{V}} \mathbf{(\mathbf { G })}$, and \mathbf{H} and $\mathbf{H}_{\text {iset }}^{\mathbf{W}} \mathbf{M}_{\mathbf{M}, \mathbf{w}}^{(\mathbf{H})}$. The injectivity up to isomorphism follows immediately from the isomorphy of the original graph with the associated ZF- or ZFU-graph.
5.2 Transforming graphs Now we shall describe operations that link ZF- and ZFU-graphs. We work in a model \mathbf{M} of either ZF or ZFU.

Let $\mathbf{G}=\langle G, E, v\rangle$ be a ZF-graph with special subset $N=\left\{n_{i} ; i \in \mathbb{N}\right\} \subseteq G$. We split up the set N into an even part $N_{0}:=\left\{n_{2 i} ; i \in \mathbb{N}\right\}$ and an odd part $N_{1}:=\left\{n_{2 i+1} ; i \in \mathbb{N}\right\}$ and use N_{0} as the natural numbers and N_{1} as the urelements in the definition of a ZFU-graph.

Define

$$
\begin{gathered}
n E^{*} n^{\prime} \Longleftrightarrow\left(n=n_{2 i} \& n^{\prime}=n_{2 i+2}\right) \text { or }\left(n^{\prime} \notin N \& n E n^{\prime}\right), \\
\\
\ell(\omega)=n_{0}, \text { and } \ell(i)=n_{2 i+1} .
\end{gathered}
$$

The following is obvious.
Proposition 5.2 If $\langle G, E, v\rangle$ is a $Z F-g r a p h ~ a n d ~ E^{*}$ and ℓ are defined as above, then $\left\langle G, E^{*}, v, \ell\right\rangle$ is a ZFU-graph. We denote it by $\mathbf{z f u}(\mathbf{G})$.

In words, in a ZF-graph, n_{0} takes the role of $0=\varnothing$ and n_{i+1} takes the role of $i+1=\{i\}$. In order to make a ZFU-graph out of it, we have to designate nodes as the natural numbers and others as the urelements. The node $n_{2 i}$ will take the role of $\{i\}$ and $n_{2 i+1}$ will take the role of \mathbb{U}_{i}. All other edges stay the same, so, for instance, a node that was representing $\{1,2,7,\{3,10\}\}$ in a ZF-graph \mathbf{G}, will be representing $\left\{\mathbb{U}_{0}, 1, \mathbb{U}_{3},\left\{\mathbb{U}_{1}, 5\right\}\right\}$ in $\mathbf{z f u}(\mathbf{G})$.

For the other direction, let $\mathbf{H}=\langle H, E, v, \ell\rangle$ be a ZFU-graph with special subsets $A=\left\{a_{i} ; i \in \mathbb{N}\right\}$ and $N=\left\{n_{i} ; i \in \mathbb{N}\right\}$. If we define

$$
n E^{*} n^{\prime} \Longleftrightarrow \quad \begin{aligned}
& \left(n=a_{i} \& n^{\prime}=n_{i+1}\right) \text { or }\left(n=n_{i} \& n^{\prime}=a_{i}\right) \text { or } \\
& \left(n^{\prime} \notin N \& n E n^{\prime}\right),
\end{aligned}
$$

then again, the following is obvious.
Proposition 5.3 If $\langle H, E, v, \ell\rangle$ is a ZFU-graph and E^{*} is defined as above, then $\left\langle H, E^{*}, \nu\right\rangle$ is a ZF-graph. We denote it by $\mathbf{z f}(\mathbf{H})$.
Note that, clearly, the two operations are inverses of each other, so $\mathbf{G}=\mathbf{z f}(\mathbf{z f u}(\mathbf{G}))$ and $\mathbf{H}=\mathbf{z f u}(\mathbf{z f}(\mathbf{H}))$.
5.3 Graphs in submodels For the following, suppose that $\mathbf{V}=\langle V, \in\rangle$ is a model of $\mathbf{Z F}$, and that $\mathbf{W}^{\mathbf{V}}$ is the model of ZFU inside \mathbf{V} defined in Section 4.1. We shall be working with the usual Kuratowski pairing function, so

$$
\langle x, y\rangle=\{\{x\},\{x, y\}\},
$$

and, consequently, in $\mathbf{W}^{\mathbf{V}}$, we have

$$
\langle u, v\rangle^{\mathbf{W}^{\mathbf{V}}}=\langle 1,\{\langle 1,\{u\}\rangle,\langle 1,\{u, v\}\rangle\}\rangle .
$$

Suppose that $\mathbf{W}^{\mathbf{V}} \models$ " $\mathbf{H}=\langle H, E, v, \ell\rangle$ is a ZFU-graph". Then we can define an isomorphic ZFU-graph in \mathbf{V} as follows. Let $H=\langle 1, x\rangle$ and $E=\langle 1, y\rangle$. Since $\mathbf{W}^{\mathbf{V}}$ thinks that $\langle H, E\rangle^{\mathbf{W}^{\mathbf{V}}}$ is a graph, we know that the (ϵ-)elements of E are of the form

$$
\langle 1,\{\langle 1,\{u\}\rangle,\langle 1,\{u, v\}\rangle\}\rangle
$$

for some u and v such that $u \hat{\in} H$ and $v \hat{\epsilon} H$.

We work in \mathbf{V} and define a \mathbf{V}-graph \mathbf{H}^{\natural}. Let $H^{\natural}:=\{u ; u \hat{\in} H\}$ and for $u, v \in H^{\natural}$, we define

$$
u E^{\natural} v: \Longleftrightarrow\langle 1,\{\langle 1,\{u\}\rangle,\langle 1,\{u, v\}\rangle\}\rangle \hat{\in} E .
$$

For the definition of ℓ^{\natural}, let Z be the \mathbf{V}-function with $\operatorname{dom}(Z)=\omega+1$ such that $Z(x)$ is the unique element of $\mathbf{W}^{\mathbf{V}}$ representing x. Then

$$
\begin{aligned}
\ell^{\natural}(x)=u & : \Longleftrightarrow\langle 1,\{\langle 1,\{Z(x)\}\rangle,\langle 1,\{Z(x), u\}\rangle\}\rangle \hat{\in} \ell \\
& \Longleftrightarrow \mathbf{W}^{\mathbf{V}} \models \ell(Z(x))=u .
\end{aligned}
$$

Proposition 5.4 Work inside V. If $\mathbf{W}^{\mathbf{V}} \models$ " $\mathbf{H}=\langle H, E, \nu, \ell\rangle$ is a ZFU-graph" and $H^{\natural}, E^{\natural}$, and ℓ^{\natural} are defined as above, then $\mathbf{H}^{\natural}=\left\langle H^{\natural}, E^{\natural}, v, \ell^{\natural}\right\rangle$ is a ZFU-graph. Moreover, iset ${ }^{\mathbf{V}, \mathbf{W}^{\mathbf{V}}}\left(\mathbf{H}^{\natural}\right)=\operatorname{iset}^{\mathbf{W}^{\mathbf{V}}, \mathbf{W}^{\mathbf{V}}}(\mathbf{H})$.

Of course, there is no need for a similar retraction between \mathbf{W} and $\mathbf{V}^{\mathbf{W}}$, as the element relation stays the same when you move from \mathbf{W} to $\mathbf{V}^{\mathbf{W}}$; so if $\mathbf{V}^{\mathbf{W}} \models$ " \mathbf{G} is a ZFgraph", then G literally is a ZF-graph in W.

6 The Synonymy of ZF and ZFU

In the following, we shall use the operations $x \mapsto \mathbf{G}_{x}, u \mapsto \mathbf{H}_{u}$, $\operatorname{set}^{\mathbf{W}, \mathbf{V}^{\mathbf{W}}}$, iset $\mathbf{V}^{\mathbf{V}, \mathbf{W}^{\mathbf{V}}}$, $\mathbf{z f}$, and $\mathbf{z f u}$ to define an interpretation of ZFU in ZF which is a synonymy.
6.1 Interpreting ZFU inside \mathbf{V} (second version) We start with a model $\mathbf{V}=\langle V, \in\rangle$ of ZF. By the work from Section 4.1 and Proposition 5.2, the operation

$$
I: x \mapsto \mathbf{G}_{x} \mapsto \mathbf{z f u}\left(\mathbf{G}_{x}\right) \mapsto \operatorname{iset}^{\mathbf{V}, \mathbf{W}^{\mathbf{v}}}\left(\mathbf{z f u}\left(\mathbf{G}_{x}\right)\right)
$$

is definable in \mathbf{V}. We define a translation

$$
T_{\mathrm{ZFU}, \mathrm{ZF}}^{*}=\left\langle\delta,\left\langle\dot{\epsilon}, \Xi_{\dot{\epsilon}}\right\rangle,\left\langle\dot{F}, \Xi_{\dot{F}}\right\rangle,\left\langle\dot{U}, \Xi_{\dot{U}}\right\rangle\right\rangle
$$

with

$$
\begin{aligned}
\delta\left(\mathrm{v}_{0}\right) & \bumpeq \mathrm{v}_{0} \dot{=} \mathrm{v}_{0}, \\
\Xi_{\dot{\in}}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right) & \bumpeq \Phi_{\dot{\epsilon}}\left(I\left(\mathrm{v}_{0}\right), I\left(\mathrm{v}_{1}\right)\right), \\
\Xi_{\dot{F}}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right) & \bumpeq \Phi_{\dot{F}}\left(I\left(\mathrm{v}_{0}\right), I\left(\mathrm{v}_{1}\right)\right), \text { and } \\
\Xi_{\dot{U}}\left(\mathrm{v}_{0}\right) & \bumpeq \Phi_{\dot{U}}\left(I\left(\mathrm{v}_{0}\right)\right) .
\end{aligned}
$$

In order to show that this translation induces an interpretation, define relations \in^{*}, F^{*}, and U^{*} on \mathbf{V}, defined via the mentioned formulas: $x \in^{*} y: \Longleftrightarrow \Xi_{\dot{\in}}(x, y)$, $F^{*}(x, y): \Longleftrightarrow \Xi_{\dot{F}}(x, y)$, and $x \in U^{*}: \Longleftrightarrow \Xi_{\dot{U}}(x)$.

Proposition 6.1 The operation $I:\left\langle V, \epsilon^{*}, F^{*}, U^{*}\right\rangle \prec\left\langle W^{\mathbf{V}}, \hat{\epsilon}, \hat{F}, \hat{U}\right\rangle$ is an elementary embedding.

Proof This is proved by induction on the formula complexity. The only interesting step is the universal quantifier. Suppose that u witnesses that $\mathbf{W}^{\mathbf{V}} \models \neg \forall \mathrm{v}_{0} \psi$, that is, $\mathbf{W}^{\mathbf{V}} \models \neg \psi[u]$. Let $\mathbf{H}_{u}^{\mathbf{W}^{\mathbf{V}}}$ be the ZFU-graph of u as defined in $W^{\mathbf{V}}$. We use the দ-operation defined from Proposition 5.4 and get a graph $\mathbf{H}^{\natural}:=\left(\mathbf{H}_{u}^{\mathbf{W}^{\mathbf{V}}}\right)^{\natural}$ in \mathbf{V} such that

$$
\operatorname{iset}^{\mathbf{V}, \mathbf{W}^{\mathbf{v}}}\left(\mathbf{H}^{\natural}\right)=\operatorname{iset}^{\mathbf{W}^{\mathbf{V}}, \mathbf{W}^{\mathbf{v}}}\left(\mathbf{H}_{u}^{\mathbf{W}^{\mathbf{V}}}\right)=u
$$

Now let $x:=\operatorname{set}^{\mathbf{V}, \mathbf{v}}\left(\mathbf{z f}\left(\mathbf{H}^{\natural}\right)\right)$. Then $I(x)=u$, and thus by the induction hypothesis $\left\langle V, \in^{*}, F^{*}, U^{*}\right\rangle \models \neg \psi[x]$; whence $\left\langle V, \in^{*}, F^{*}, U^{*}\right\rangle \vDash \neg \forall \mathrm{v}_{0} \psi$.

Corollary 6.2 The translation $T_{\mathrm{ZFU}, \mathrm{ZF}}^{*}$ induces an interpretation from ZFU in ZF .
6.2 Interpreting $\mathbf{Z F}$ inside \mathbf{W} (second version) Using the ideas from Section 6.1, we do the same for a ZFU-model \mathbf{W} : We start with a model $\mathbf{W}=\langle W, \hat{\epsilon}, \hat{F}, \hat{U}\rangle$ of ZFU. By the work from Section 4.2 and Proposition 5.3, the operation

$$
J: u \mapsto \mathbf{H}_{u} \mapsto \mathbf{z f}\left(\mathbf{H}_{u}\right) \mapsto \operatorname{set}^{\mathbf{W}, \mathbf{V}^{\mathbf{W}}}\left(\mathbf{z f}\left(\mathbf{H}_{u}\right)\right)
$$

is definable in \mathbf{W}. We define a translation

$$
T_{\mathrm{ZF}, \mathrm{ZFU}}^{*}=\left\langle\delta^{\prime},\left\langle\dot{\epsilon}, \Upsilon_{\dot{\epsilon}}\right\rangle\right\rangle
$$

with

$$
\begin{aligned}
\delta^{\prime}\left(\mathrm{v}_{0}\right) & \bumpeq \mathrm{v}_{0} \dot{=} \mathrm{v}_{0}, \text { and } \\
\Upsilon_{\dot{\epsilon}}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right) & \bumpeq \Psi_{\dot{\epsilon}}\left(J\left(\mathrm{v}_{0}\right), J\left(\mathrm{v}_{1}\right)\right) .
\end{aligned}
$$

We define a relation E^{*} on W by $u E^{*} v: \Longleftrightarrow \Upsilon_{\dot{\epsilon}}(u, v)$ and prove an analogy to Proposition 6.1.

Proposition 6.3 The operation $I:\left\langle V, \epsilon^{*}, F^{*}, U^{*}\right\rangle \prec\left\langle W^{\mathbf{V}}, \hat{\epsilon}, \hat{F}, \hat{U}\right\rangle$ is an elementary embedding.

Corollary 6.4 The translation $T_{\mathrm{ZF}, \mathrm{ZFU}}^{*}$ induces an interpretation from ZF in ZFU .
6.3 Synonymy Everything is prepared to state the main result of this note.

Theorem 6.5 The theories ZF and ZFU are synonymous (i.e., isomorphic in INT_{0}).
Proof We claim that the interpretations $\left\langle\mathrm{ZFU}, T_{\mathrm{ZFU}, \mathrm{ZF}}^{*}, \mathrm{ZF}\right\rangle$ and $\left\langle\mathrm{ZF}, T_{\mathrm{ZF}, \mathrm{ZFU}}^{*}, \mathrm{ZFU}\right\rangle$ are inverses of each other. For this, let us look at their concatenations

$$
K:=\left\langle\mathrm{ZFU}, T_{\mathrm{ZFU}, \mathrm{ZF}}^{*}, \mathrm{ZF}\right\rangle \circ\left\langle\mathrm{ZF}, T_{\mathrm{ZF}, \mathrm{ZFU}}^{*}, \mathrm{ZFU}\right\rangle
$$

and

$$
L:=\left\langle\mathrm{ZF}, T_{\mathrm{ZF}, \mathrm{ZFU}}^{*}, \mathrm{ZFU}\right\rangle \circ\left\langle\mathrm{ZFU}, T_{\mathrm{ZFU}, \mathrm{ZF}}^{*}, \mathrm{ZF}\right\rangle
$$

Let $\tau_{K}=\left\langle\Delta^{L},\left\langle\dot{\in}, \Delta_{\dot{\epsilon}}^{K}\right\rangle,\left\langle\dot{F}, \Delta_{\dot{F}}^{K}\right\rangle,\left\langle\dot{U}, \Delta_{\dot{U}}^{K}\right\rangle\right\rangle$ and $\tau_{L}=\left\langle\Delta^{L},\left\langle\dot{\epsilon}, \Delta_{\dot{\oplus}}^{L}\right\rangle\right\rangle$ be the translations defining K and L. It is obvious that both Δ^{L} and Δ^{K} are the trivial condition, so we have to show the following:

$$
\begin{align*}
\mathrm{ZF} & \vdash \mathrm{v}_{0} \dot{\in} \mathrm{v}_{1} \leftrightarrow J\left(I\left(\mathrm{v}_{0}\right)\right) \dot{\in} J\left(I\left(\mathrm{v}_{1}\right)\right), \tag{1}\\
\mathrm{ZFU} & \vdash \mathrm{v}_{0} \dot{\in} \mathrm{v}_{1} \leftrightarrow I\left(J\left(\mathrm{v}_{0}\right)\right) \dot{\in} I\left(J\left(\mathrm{v}_{1}\right)\right), \tag{2}\\
\mathrm{ZFU} & \vdash \dot{F}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right) \leftrightarrow \dot{F}\left(I\left(J\left(\mathrm{v}_{0}\right)\right), I\left(J\left(\mathrm{v}_{1}\right)\right)\right), \text { and } \tag{3}\\
\mathrm{ZFU} & \vdash \dot{U}\left(\mathrm{v}_{0}\right) \leftrightarrow \dot{U}\left(I\left(J\left(\mathrm{v}_{0}\right)\right)\right) . \tag{4}
\end{align*}
$$

As all of these proofs are rather similar, let us focus on the proof of (1): Let us work in some model $\mathbf{V}=\langle V, \in\rangle$ of $Z F$. Then

$$
J(I(x))=\operatorname{set}^{\mathbf{W}^{\mathbf{V}}, \mathbf{V}^{\mathbf{W}^{\mathbf{V}}}}\left(\mathbf{z f}\left(\mathbf{H}_{\text {iset }^{\mathbf{V}}, \mathbf{W}^{\mathbf{V}}}^{\left.\left.\mathbf{W}_{\left(\mathrm{zfu}\left(\mathbf{G}_{x}\right)\right)}^{\mathbf{V}}\right)\right)}\right)\right.
$$

To reduce notation, let's write

$$
\overleftarrow{\psi}_{x}:=\mathbf{H}_{\text {iset }}^{\mathbf{W}^{\mathbf{V}}, \mathbf{w}^{\mathbf{V}}}{ }_{\left(\mathrm{zfu}\left(\mathbf{G}_{x}\right)\right)}
$$

(note that this is a labeled pointed graph in $\mathbf{W}^{\mathbf{V}}$). By Proposition 5.1, we have that ${\underset{\Psi}{x}}$ is isomorphic as a labeled pointed graph (in \mathbf{V}) to $\mathbf{z f u}\left(\mathbf{G}_{x}\right)$, so that $\mathbf{z f}({\underset{q}{x}})$ is isomorphic as a pointed graph to \mathbf{G}_{x} (again, in \mathbf{V}).

Now if $\mathbf{V} \models y \dot{\in} z$, then by iterated applications of Proposition 5.1 (3) and (4), $\mathbf{z f}\left(\forall_{y}\right)$ is a subgraph of $\mathbf{z f}\left(\forall_{z}\right)$, and thus

$$
\mathbf{V}^{\mathbf{W}^{\mathbf{V}}} \models J(I(y)) \dot{\in} J(I(z))
$$

For the other direction, we write

We assume that $\mathbf{V}^{\mathbf{W}^{\mathbf{V}}} \models J(I(y)) \dot{\in} J(I(z))$ and apply Proposition 5.1 (1) to see that (in \mathbf{V}), \hbar_{y} is isomorphic to $\mathbf{z f}\left(\Varangle_{y}\right)$ and thus (again by Proposition 5.1 (1)) isomorphic to \mathbf{G}_{y}. Similarly, \hbar_{z} is isomorphic to \mathbf{G}_{z}. But by our assumption, \hbar_{y} is a subgraph of \hbar_{z}, and so \mathbf{G}_{y} is isomorphic to a subgraph of \mathbf{G}_{z}. This yields that $y \in z$.

Notes

1. This version of ZFU is the one Visser uses in [2], p. 33. It is slightly nonstandard, as we demand that there are countably infinitely many urelements. Typically (cf. [1], §15), there would be no restraint on the structure of the set of urelements. It is important to note that the translations defined in Section 6.2 are only ZF or ZFU definable if it is guaranteed that the set of urelements is, so our additional assumption is essential here.
2. Cf. [2], p. 33.

References

[1] Jech, T., Set Theory, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Zbl 1007.03002. MR 2004g:03071. 91
[2] Visser, A., Categories of Theories and Interpretations, vol. 228 of Logic Group Preprint Series, Faculteit Wijsbegeerte, Universiteit Utrecht, 2004. 83, 84, 91

Acknowledgments

The author would like to thank Albert Visser for discussions.

