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Set Theory With and Without Urelements and
Categories of Interpretations

Benedikt Löwe

This paper is dedicated to Dick de Jongh on the occasion of his 65th birthday.

Abstract We show that the theories ZF and ZFU are synonymous, answering a
question of Visser.

1 Introduction

Visser introduced five different categories of interpretations between theories,
namely, INT0 (the category of synonymy), INT1 (the category of homotopy), INT2
(the category of weak homotopy), INT3 (the category of equivalence), and INT4 (the
category of mutual interpretability) [2]. The objects in these categories are first-
order theories, the morphisms are interpretations up to some level of identification
between interpretations. The category of synonymy has the strictest criteria for two
interpretations to be the same, the category of mutual interpretability the weakest.
Visser proved that INT1 6= INT4 ([2], §4.8.4), but apart from that no separation
results are known. One particular question is [2], Open Question 4.16:

INT0
?
6= INT1.

Visser remarked that the theories ZF and ZFU are homotopic (i.e., isomorphic in
INT1) and asked whether we can show that they are not synonymous.

In this note we produce a synonymy between ZF and ZFU. The result of this note
is mentioned in [2], p. 33ff.

2 Fixing the Notation I. Categories of Interpretations

We basically follow [2] in the definitions. Since only the categories INT0 and INT1
are relevant for our investigation, we shall only define those.
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In both categories, the objects are first-order theories in a countable language. A
signature 6 is a triple 〈P, ar, =̇〉 where P is a finite set of predicates, ar : P → N

is the arity function, and =̇ is a binary predicate representing the identity. Let 6
and 2 be signatures and 2 = 〈P2, ar2, =̇〉 with P2 := {p0, . . . , pn}. We call τ a
translation from 2 to 6 if τ is a sequence 〈δ, 〈p0, ϕ0〉, . . . , 〈pn, ϕn〉〉 where δ is a
unary6-formula and the ϕi are ar2(pi )-ary6-formulas. Using a relative translation
τ , we can define translations of 2-formulas into 6-formulas by recursion. For a
2-formula ψ , we denote its translation by τ with ψτ . If now S is a 6-theory and T
is a 2-theory, we call 〈T, τ, S〉 an interpretation of T in S if τ is a translation from
2 in 6 and for all 2-formulas ψ , we have

T ` ψ implies S ` ψτ .

Now we define the morphisms in INT0 as equivalence classes of interpretations
with the equivalence relation ≡0 defined as follows: Let 6 and 2 be signatures,
2 = 〈P2, ar2, =̇〉 with P2 := {p0, . . . , pn}, τ = 〈δ, 〈p0, ϕ0〉, . . . , 〈pn, ϕn〉〉 and
τ ′

= 〈δ′, 〈p0, ϕ
′

0〉, . . . , 〈pn, ϕ
′
n〉〉 be two translations from2 to6, T a2-theory, and

S a 6-theory. Then we define 〈T, τ, S〉 ≡0 〈T, τ ′, S〉 to hold if and only if

(s0) S ` δ(v0) ↔ δ′(v0), and
(s1) S ` δ(v0) & · · · & δ(var2(pi )−1)

→ ϕi (v0, . . . , var2(pi )−1) ↔ ϕ′

i (v0, . . . , var2(pi )−1)
(for 0 ≤ i ≤ n).

We define an equivalence relation ≡1 on interpretations in terms of a morphism
category INTmorph: two interpretations 〈T, τ, S〉 and 〈T, τ ′, S〉 are said to be ≡1-
equivalent if they are isomorphic as objects in the category INTmorph as defined in
[2], §3.1. The morphisms in INT1 are now the ≡1-equivalence classes of interpreta-
tions.

We concatenate morphisms as follows: If 〈T, τ, S〉 and 〈S, τ ′, R〉 are two inter-
pretations with

τ = 〈δ, 〈p0, ϕ0〉, . . . , 〈pn, ϕn〉〉 and τ ′
= 〈δ′, 〈q0, ϕ

′

0〉, . . . , 〈qm, ϕ
′
m〉〉,

we define the concatenation to be the (≡i -equivalence class of the) interpretation
induced by

τ̂ := 〈δ̂, 〈p0, ϕ̂0〉, . . . , 〈pn, ϕ̂n〉〉

where

δ̂(v0) l δ′(v0) & (δ(v0))
τ ′

, and

ϕ̂i (Ev) l (ϕi (Ev))τ
′

(for 0 ≤ i ≤ n).

As usual in category theory, an isomorphism in a category is an invertible morphism,
that is, a morphism K : T → S such that for some other morphism L : S → T , we
have K ◦ L = idS and L ◦ K = idT .

For INT0, this means that if T is a 2-theory where

2 = 〈{p0, . . . , pn}, ar2, =̇〉,

K = 〈T, τ, S〉, and τ = 〈δ, 〈p0, ϕ0〉, . . . , 〈pn, ϕn〉〉,

then K is an INT0-isomorphism (also called a synonymy) if there is another morphism

L = 〈S, τ ′, T 〉 with τ ′
= 〈δ′, 〈q0, ϕ

′

0〉, . . . , 〈qm, ϕ
′
m〉〉
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such that (for 0 ≤ i ≤ n and 0 ≤ j ≤ m)

T ` δ′(v0) & (δ(v0))
τ ′

, S ` δ(v0) & (δ′(v0))
τ ,

T ` pi (Ev) ↔ (ϕi (Ev))τ
′

, S ` q j (Ev) ↔ (ϕ′

j (Ev))
τ ;

in particular, δ′ must be T -provably equivalent to the trivial condition and δ must be
S-provably equivalent to the trivial condition.

3 Fixing the Notation II. ZF and ZFU

In the following, ZF will be the standard axiom system of Zermelo-Fraenkel set the-
ory in a language with a binary predicate ∈̇, that is, the Axioms (or Axiom Schemes)
of Extensionality, Pairing, Union, Power Set, Aussonderung, Infinity, Foundation,
and Ersetzung. We denote models of ZF by V = 〈V,∈〉. We shall use the variables
x , y, and z for elements of a ZF-model. By the axiom of infinity, we have a set of
natural numbers in each model of ZF which we shall denote by NV. For technical
reasons, we choose the Zermelo natural numbers, that is,

{∅, {∅}, {{∅}}, {{{∅}}}, . . .}.

By the axiom scheme of Ersetzung, we have a well-defined transitive closure op-
erator in each model of ZF, and we write tclV(x) for the ⊆-smallest transitive set
containing x as an element.

The language of ZFU will be a language with two binary relations ∈̇ and Ḟ and a
unary relation U̇ . The unary relation describes the urelements (i.e., u is an urelement
if and only if U̇ (u) holds). We shall denote models of ZFU by W = 〈W, ∈̂, F̂, Û 〉.1

We shall use the variables u, v, and w for elements of a ZFU-model. The theory
ZFU consists of the standard axioms of ZF with the usual changes to Extensionality
and Foundation due to the existence of urelements plus axioms governing the char-
acter of the urelements (see below). Note that the axioms of ZF give the existence of
the set of natural numbers which is abbreviated by N in the formal language and de-
noted by NW in a given model W. Again, we are using the set of Zermelo numbers.
Now, using this notation, we can state the axioms governing the urelements:

∀u∀v(U̇ (u) → ¬(v ∈̇ u)), and

∀u∀v(Ḟ(u, v) → (u ∈ N & U̇ (v))) &

∀v(U̇ (v) → ∃u(Ḟ(u, v))) &

∀u∀v∀w((Ḟ(u, v) & Ḟ(u, w)) → v = w).

(The latter states that Ḟ describes a bijection between N and the set of urelements.)
We denote the (countable) set of urelements in W by UW and the i th urelement (i.e.,
the value of i under the function described by Ḟ) by U|i .

Again, by the axiom scheme of Ersetzung, we have a well-defined transitive clo-
sure operator in each model of ZFU, and we write tclW(u) for the ⊆-smallest transi-
tive set containing u as an element. Note that this allows the definition of a formula
saying that a set is pure:

9Pure(u) l ∀v(v ∈ tcl(u) → ¬(U̇ (v))).

4 Homotopy of ZF and ZFU

We remind the reader of the standard embeddings of ZF in ZFU and vice versa:
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4.1 Interpreting ZFU inside V Given a model V |H ZF, we can build a model
of ZFU in it: In the following, we work in V, so all operations and sets (e.g., the
ordered pair, the natural numbers, the ordinals) are the operations and sets in V. Let
U := {〈0, n〉 ; n ∈ N}. Define a class W by transfinite recursion as follows:

W0 := U ,
Wα+1 := {〈1, x〉 ; x ⊆ Wα} ∪ Wα ,

Wλ :=

⋃
α<λ

Wα (for limit ordinals λ).

By the transfinite recursion theorem, there is a formula 8W defining the class
W :=

⋃
α∈Ord Wα . Now we define the following formulas:

8∈̇(x, y) l ∃z(〈1, z〉 = y & x ∈ z),
8U̇ (x) l ∃n(n ∈ N & x = 〈0, n〉),
8N(x) l function(x) & dom(x) = N & x(0) = 〈1,∅〉

& ∀n(n ∈ N → x(n + 1) = 〈1, {x(n)}〉),
8Ḟ (x, y) l ∃z(8N(z) & ∃n(n ∈ N & z(n) = x & y = 〈0, n〉)).

Then if you use the formulas 8∈̇, 8Ḟ , and 8U̇ to define binary and unary relations
∈̂, F̂ , and Û , respectively, then 〈W, ∈̂, F̂, Û 〉 |H ZFU. Consequently,

TZFU,ZF := 〈8W , 〈∈̇,8∈̇〉, 〈Ḟ,8Ḟ 〉, 〈U̇ ,8U̇ 〉〉

is a translation that yields an interpretation of ZFU in ZF.

4.2 Interpreting ZF inside W Now assume that W = 〈W, ∈̂, F̂, Û 〉 is a model of
ZFU. As is well known, the class of pure sets in a ZFU-model is a model of ZF, so
we take the formula 9Pure from above and the formula

9∈̇(u, v) l u ∈̂ v

and get that
TZF,ZFU := 〈9Pure, 〈∈̇, 9∈̇〉〉

is a translation that yields an interpretation of ZF in ZFU. We denote the class of pure
sets inside W with V W.

4.3 Homotopy It is clear that neither TZFU,ZF nor TZF,ZFU can be INT0-
isomorphisms (synonymies) as neither9Pure nor8W are the trivial condition (in fact,
ZFU-provably, there are sets u such that ¬9Pure(u) and ZF-provably, there are sets
x such that ¬8W (x)). However, it is easy to see that they are INT1-isomorphisms.2

5 Graphs Representing Sets

5.1 Definitions A pointed graph is a triple 〈G, E, ν〉 such that 〈G, E〉 is a di-
rected graph, and ν ∈ G; a labeled pointed graph is a quadrupel 〈G, E, ν, `〉 such
that 〈G, E, ν〉 is a pointed graph and ` : ω + 1 → G is a function.

We call a pointed graph 〈G, E, ν〉 a ZF-graph if it has the following properties:
1. the set G contains a subset N := {ni ; i ∈ ω} such that n0 is the unique least

element of 〈G, E〉 and for all i ∈ ω, the following holds:

∀x ∈ G (x Eni+1 ↔ x = ni ),

2. 〈G, E〉 is well-founded,
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3. 〈G, E〉 is extensional, and
4. G\tcl(ν) ⊆ N .

In analogy to the ZF-graphs, let’s define the corresponding ZFU-graphs: Let
〈G, E, ν, `〉 be a labeled pointed graph. We call it a ZFU-graph if it has the
following properties:

1. the function ` is a bijection betweenω+1 and the minimal elements of 〈G, E〉

(let us denote the image of ` by A);
2. the set G contains a subset N := {ni ; i ∈ ω} such that `(ω) = n0, and for

all i ∈ ω, the following holds:

∀x ∈ G (x Eni+1 ↔ x = ni );

3. 〈G, E〉 is well-founded;
4. 〈G\A, E〉 is extensional; and
5. G\tcl(ν) ⊆ N ∪ A.

If now V = 〈V,∈〉 |H ZF, and x ∈ V , then let Gx := tclV(x) ∪ NV and
Ex := ∈∩Gx ×Gx . Then 〈Gx , Ex , x〉 is a ZF-graph. If W = 〈W, ∈̂, F̂, Û 〉 |H ZFU,
and u ∈ W , then we define Hu := tclW(u)∪ NW

∪ UW, Eu := ∈̂ ∩ Hu × Hu and the
function ` by `(ω) := ∅W and `(n) := U|

W
n . Then 〈Hu, Eu, u, `〉 is a ZFU-graph.

Note that while we gave the definitions informally, they can be given within the
models V and W, respectively, and we denote by GV

x and HW
u the elements of V

and W that are the ZF-graph associated to x and the ZFU-graph associated to u,
respectively.

Proposition 5.1 Let M = 〈M,∈0〉 or M = 〈M,∈0, F0,U0〉 be a model of
either ZF or ZFU, and let V,∈,W, ∈̂, F̂, Û be definable subclasses such that
V := 〈V,∈〉 |H ZF and W := 〈W, ∈̂, F̂, Û 〉 |H ZFU. Let G = 〈G, E, ν〉 ∈ M be a
ZF-graph and H = 〈H, E, ν, `〉 ∈ M be a ZFU-graph.

1. There are M-definable operations setM,V and isetM,W such that
setM,V(G) ∈ V and isetM,W(H) ∈ W , GV

setM,V(G) is isomorphic to G
(as pointed graphs) and HW

isetM,W(H)
is isomorphic to H (as labeled pointed

graphs).

2. The operations setM,V and isetM,W are injective up to isomorphism, that
is, if G0 and G1 are isomorphic as pointed graphs and H0 and H1 are
isomorphic as labeled pointed graphs, then setM,V(G0) = setM,V(G1) and
isetM,W(H0) = isetM,W(H1).

3. If x ∈0 y, then Gx is a subgraph of Gy , and if G = 〈G, E, ν〉 is a ZF-graph
and a subgraph of GV

x for some x ∈ V, then setM,V(G) ∈ x.

4. Similarly, if u ∈0 v, then Hu is a subgraph of Hv , and if H = 〈H, E, ν, `〉 is
a ZFU-graph and a subgraph of HW

u for some u ∈ W, then isetM,W(H) ∈̂ u.

Proof The operations setM,V and isetM,W are defined by transfinite recursion along
the well-founded relations ∈ and ∈̂ in the models V and W in the obvious way by
translating the elements of the graph into elements of V or W and finally reading
off the value by looking at the value of ν (in the ZFU-case, we are assigning U|

W
i

to the node n ∈ H with `(i) = n and ∅W to the node n with `(ω) = n). The
assignment function produced during this process serves as an isomorphism between
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G and GV
setM,V(G), and H and HW

isetM,W(H)
. The injectivity up to isomorphism follows

immediately from the isomorphy of the original graph with the associated ZF- or
ZFU-graph. �

5.2 Transforming graphs Now we shall describe operations that link ZF- and
ZFU-graphs. We work in a model M of either ZF or ZFU.

Let G = 〈G, E, ν〉 be a ZF-graph with special subset N = {ni ; i ∈ N} ⊆ G.
We split up the set N into an even part N0 := {n2i ; i ∈ N} and an odd part
N1 := {n2i+1 ; i ∈ N} and use N0 as the natural numbers and N1 as the urelements
in the definition of a ZFU-graph.

Define

nE∗n′
⇐⇒ (n = n2i & n′

= n2i+2) or (n′ /∈ N & nEn′),

`(ω) = n0, and `(i) = n2i+1.

The following is obvious.

Proposition 5.2 If 〈G, E, ν〉 is a ZF-graph and E∗ and ` are defined as above, then
〈G, E∗, ν, `〉 is a ZFU-graph. We denote it by zfu(G).

In words, in a ZF-graph, n0 takes the role of 0 = ∅ and ni+1 takes the role of
i + 1 = {i}. In order to make a ZFU-graph out of it, we have to designate nodes as
the natural numbers and others as the urelements. The node n2i will take the role of
{i} and n2i+1 will take the role of U|i . All other edges stay the same, so, for instance,
a node that was representing {1, 2, 7, {3, 10}} in a ZF-graph G, will be representing
{U|0, 1, U|3, {U|1, 5}} in zfu(G).

For the other direction, let H = 〈H, E, ν, `〉 be a ZFU-graph with special subsets
A = {ai ; i ∈ N} and N = {ni ; i ∈ N}. If we define

nE∗n′
⇐⇒ (n = ai & n′

= ni+1) or (n = ni & n′
= ai ) or

(n′ /∈ N & nEn′),

then again, the following is obvious.

Proposition 5.3 If 〈H, E, ν, `〉 is a ZFU-graph and E∗ is defined as above, then
〈H, E∗, ν〉 is a ZF-graph. We denote it by zf(H).

Note that, clearly, the two operations are inverses of each other, so G = zf(zfu(G))
and H = zfu(zf(H)).

5.3 Graphs in submodels For the following, suppose that V = 〈V,∈〉 is a model
of ZF, and that WV is the model of ZFU inside V defined in Section 4.1. We shall be
working with the usual Kuratowski pairing function, so

〈x, y〉 = {{x}, {x, y}},

and, consequently, in WV, we have

〈u, v〉WV
= 〈1, {〈1, {u}〉, 〈1, {u, v}〉}〉.

Suppose that WV
|H “H = 〈H, E, ν, `〉 is a ZFU-graph”. Then we can define an

isomorphic ZFU-graph in V as follows. Let H = 〈1, x〉 and E = 〈1, y〉. Since WV

thinks that 〈H, E〉
WV

is a graph, we know that the (∈-)elements of E are of the form

〈1, {〈1, {u}〉, 〈1, {u, v}〉}〉

for some u and v such that u ∈̂ H and v ∈̂ H .
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We work in V and define a V-graph H\. Let H \
:= {u ; u ∈̂ H} and for u, v ∈ H \,

we define
u E\ v : ⇐⇒ 〈1, {〈1, {u}〉, 〈1, {u, v}〉}〉 ∈̂ E .

For the definition of `\, let Z be the V-function with dom(Z) = ω+1 such that Z(x)
is the unique element of WV representing x . Then

`\(x) = u : ⇐⇒ 〈1, {〈1, {Z(x)}〉, 〈1, {Z(x), u}〉}〉 ∈̂ `

⇐⇒ WV
|H `(Z(x)) = u.

Proposition 5.4 Work inside V. If WV
|H “H = 〈H, E, ν, `〉 is a ZFU-graph”

and H \, E\, and `\ are defined as above, then H\
= 〈H \, E\, ν, `\〉 is a ZFU-graph.

Moreover, isetV,W
V
(H\) = isetW

V,WV
(H).

Of course, there is no need for a similar retraction between W and VW, as the element
relation stays the same when you move from W to VW; so if VW

|H “G is a ZF-
graph”, then G literally is a ZF-graph in W.

6 The Synonymy of ZF and ZFU

In the following, we shall use the operations x 7→ Gx , u 7→ Hu , setW,VW
, isetV,W

V
,

zf, and zfu to define an interpretation of ZFU in ZF which is a synonymy.

6.1 Interpreting ZFU inside V (second version) We start with a model V = 〈V,∈〉

of ZF. By the work from Section 4.1 and Proposition 5.2, the operation

I : x 7→ Gx 7→ zfu(Gx ) 7→ isetV,W
V
(zfu(Gx ))

is definable in V. We define a translation

T ∗
ZFU,ZF = 〈δ, 〈∈̇, 4∈̇〉, 〈Ḟ, 4Ḟ 〉, 〈U̇ , 4U̇ 〉〉

with

δ(v0) l v0=̇v0,
4∈̇(v0, v1) l 8∈̇(I (v0), I (v1)),
4Ḟ (v0, v1) l 8Ḟ (I (v0), I (v1)), and
4U̇ (v0) l 8U̇ (I (v0)).

In order to show that this translation induces an interpretation, define relations ∈
∗,

F∗, and U∗ on V, defined via the mentioned formulas: x ∈
∗ y : ⇐⇒ 4∈̇(x, y),

F∗(x, y) : ⇐⇒ 4Ḟ (x, y), and x ∈ U∗
: ⇐⇒ 4U̇ (x).

Proposition 6.1 The operation I : 〈V,∈∗, F∗,U∗
〉 ≺ 〈W V, ∈̂, F̂, Û 〉 is an ele-

mentary embedding.

Proof This is proved by induction on the formula complexity. The only interesting
step is the universal quantifier. Suppose that u witnesses that WV

|H ¬∀v0 ψ , that
is, WV

|H ¬ψ[u]. Let HWV
u be the ZFU-graph of u as defined in W V. We use the

\-operation defined from Proposition 5.4 and get a graph H\
:= (HWV

u )\ in V such
that

isetV,W
V
(H\) = isetW

V,WV
(HWV

u ) = u.

Now let x := setV,V(zf(H\)). Then I (x) = u, and thus by the induction hypothesis
〈V,∈∗, F∗,U∗

〉 |H ¬ψ[x]; whence 〈V,∈∗, F∗,U∗
〉 |H ¬∀v0 ψ . �
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Corollary 6.2 The translation T ∗
ZFU,ZF induces an interpretation from ZFU in ZF.

6.2 Interpreting ZF inside W (second version) Using the ideas from Section 6.1,
we do the same for a ZFU-model W: We start with a model W = 〈W, ∈̂, F̂, Û 〉 of
ZFU. By the work from Section 4.2 and Proposition 5.3, the operation

J : u 7→ Hu 7→ zf(Hu) 7→ setW,VW
(zf(Hu))

is definable in W. We define a translation

T ∗
ZF,ZFU = 〈δ′, 〈∈̇, ϒ∈̇〉〉

with

δ′(v0) l v0=̇v0, and
ϒ∈̇(v0, v1) l 9∈̇(J (v0), J (v1)).

We define a relation E∗ on W by u E∗ v : ⇐⇒ ϒ∈̇(u, v) and prove an analogy to
Proposition 6.1.

Proposition 6.3 The operation I : 〈V,∈∗, F∗,U∗
〉 ≺ 〈W V, ∈̂, F̂, Û 〉 is an ele-

mentary embedding.

Corollary 6.4 The translation T ∗
ZF,ZFU induces an interpretation from ZF in ZFU.

6.3 Synonymy Everything is prepared to state the main result of this note.

Theorem 6.5 The theories ZF and ZFU are synonymous (i.e., isomorphic in INT0).

Proof We claim that the interpretations 〈ZFU, T ∗
ZFU,ZF,ZF〉 and 〈ZF, T ∗

ZF,ZFU,ZFU〉

are inverses of each other. For this, let us look at their concatenations

K := 〈ZFU, T ∗
ZFU,ZF,ZF〉 ◦ 〈ZF, T ∗

ZF,ZFU,ZFU〉

and
L := 〈ZF, T ∗

ZF,ZFU,ZFU〉 ◦ 〈ZFU, T ∗
ZFU,ZF,ZF〉.

Let τK = 〈1L , 〈∈̇,1K
∈̇

〉, 〈Ḟ,1K
Ḟ
〉, 〈U̇ ,1K

U̇
〉〉 and τL = 〈1L , 〈∈̇,1L

∈̇
〉〉 be the trans-

lations defining K and L . It is obvious that both1L and1K are the trivial condition,
so we have to show the following:

ZF ` v0 ∈̇ v1 ↔ J (I (v0)) ∈̇ J (I (v1)), (1)
ZFU ` v0 ∈̇ v1 ↔ I (J (v0)) ∈̇ I (J (v1)), (2)
ZFU ` Ḟ(v0, v1) ↔ Ḟ(I (J (v0)), I (J (v1))), and (3)
ZFU ` U̇ (v0) ↔ U̇ (I (J (v0))). (4)

As all of these proofs are rather similar, let us focus on the proof of (1): Let us work
in some model V = 〈V,∈〉 of ZF. Then

J (I (x)) = setW
V,VWV

(
zf

(
HWV

isetV,WV
(zfu(Gx ))

))
.

To reduce notation, let’s write

'x := HWV

isetV,WV
(zfu(Gx ))
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(note that this is a labeled pointed graph in WV). By Proposition 5.1, we have that
'x is isomorphic as a labeled pointed graph (in V) to zfu(Gx ), so that zf('x ) is
isomorphic as a pointed graph to Gx (again, in V).

Now if V |H y ∈̇ z, then by iterated applications of Proposition 5.1 (3) and (4),
zf('y) is a subgraph of zf('z), and thus

VWV
|H J (I (y)) ∈̇ J (I (z)).

For the other direction, we write

Yx := GVWV

J (I (x)) = GVWV

setWV,VWV
(

zf
(

HWV

isetV,WV
(zfu(Gx ))

)) .

We assume that VWV
|H J (I (y)) ∈̇ J (I (z)) and apply Proposition 5.1 (1) to see that

(in V), Yy is isomorphic to zf('y) and thus (again by Proposition 5.1 (1)) isomorphic
to Gy . Similarly, Yz is isomorphic to Gz . But by our assumption, Yy is a subgraph
of Yz , and so Gy is isomorphic to a subgraph of Gz . This yields that y ∈ z. �

Notes

1. This version of ZFU is the one Visser uses in [2], p. 33. It is slightly nonstandard, as we
demand that there are countably infinitely many urelements. Typically (cf. [1], §15), there
would be no restraint on the structure of the set of urelements. It is important to note that
the translations defined in Section 6.2 are only ZF or ZFU definable if it is guaranteed that
the set of urelements is, so our additional assumption is essential here.

2. Cf. [2], p. 33.
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