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Relational Semantics for
Kleene Logic and Action Logic

Katalin Bimbó and J. Michael Dunn

Abstract Kleene algebras and action logic were proposed to be solutions to
the finite axiomatization problem of the algebra of regular sets (of strings). They
are treated here as nonclassical logics—with Hilbert-style axiomatizations and
semantics. We also provide intuitive accounts in terms of information states of
the semantics which provide further insights into the formalisms. The three types
of “Kripke-style” semantics which we define develop insights from gaggle the-
ory, and from our four-valued and generalized Kripke semantics for the minimal
substructural logic. Soundness and completeness are proven each time.

1 Introduction

Finite state automata (FSAs) are important in computer science due to their wide
applicability—despite the fact that they are not full-blown models of computa-
tion. FSAs and their equivalents—regular languages (regular sets) and regular
expressions—have been extensively investigated for decades. Regular expressions
contain three operations, which are called “regular operations.” These are union
(∨ or +), concatenation (◦, · , or simply juxtaposition), and the Kleene star (∗).
There are two distinguished elements, namely, the empty language (F or ∅) and
the empty string language (t or { ε }). The set of regular languages is closed under
these operations (and also under some other operations including intersection and
complementation).1 Kleene algebras10 (KA10) were proposed in Kozen [24] as a
solution to the problem of the finite axiomatization of the algebra of regular sets
by finitely many equations.2 Although KA10 is only a quasi variety, it can prove
the equality of any two regular languages that correspond to the same minimal
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deterministic FSA. Action logic (ACT) was introduced in Pratt [25] as a solution to
the same problem. ACT is a variety (over an extended vocabulary) and it is complete
for the equality problem of regular languages. Another natural interpretation of ACT
is that it talks about actions and “program execution.” This interpretation is closely
related to the interpretation of one of the sorts in dynamic logic. Both KA10 and ACT
have other models beyond regular sets, notably, relation algebras.

Our interest in these logics stems from their lack of conjunction (meet) and their
lack of a set theoretical semantics. Nonclassical logics have been supplied with set
theoretical semantics from the late 50s–early 60s. First, some normal modal logics
and intuitionistic logic were given such semantics by Kripke. Then in the early 70s
Routley and Meyer defined relational semantics for various relevance logics, and
many other nonclassical logics received set theoretical semantics along the same
lines afterward. The theory of generalized Galois logic (gaggle theory) provides
a unified framework for relational semantics for various nonclassical logics. Our
paper might be viewed—beyond giving semantics for particular logics—as a further
extension and development of gaggle theory.

To make our paper self-contained, in Section 2 we introduce syntactic calculi for
KL10 and ACT, and we elaborate on why these logics are interesting from the point
of view of representation theory. In Section 3—as a background for the semantics
we are to define—we recall the basic principles of gaggle theory. Section 4 contains
our semantics for KL10 together with the proof of adequacy. We also show that a
natural interpretation—in terms of information states—emerges from a view akin to
Shannon’s concept of information. Section 5 concerns the undefinability of transitive
reflexive closure in first-order logic. Section 6 introduces ideas from our four-valued
approach and provides a sound and complete semantics for ACT. We also point out
the modifications that are necessary and sufficient to have adequacy for KL10. We
end this section by showing that a “dual” to Shannon’s view on information, which
perhaps could be called the “common view,” provides additional explanation of the
logics and algebras. In Section 7 we make precise the intuitive idea that the ∗ opera-
tion is related to ◦ and not merely yet another connective of the logic. The semantics
we define uses a single (ternary) relation to model both ◦ and ∗. Lastly, Section 8
highlights the results that show how to extend gaggle theory in various ways—what
we consider to be the primary contribution of our paper.

2 KL10 and ACT Defined

KA10 was introduced in the form of an algebra. We define KL10 as a Hilbert-style
calculus, so that the Lindenbaum algebra of KL10 turns out to be a KA10. KL10 is a
0-order logic, with binary connectives ∨, ◦,→, a unary connective ∗, and constants
t and F.3

The connectives may be informally interpreted as extensional disjunction (∨),
intensional conjunction (fusion) (◦), and the Kleene star (∗). → is entailment, and
we allow this connective to occur only as the main connective of a formula. t is
intensional truth and F is extensional falsity.4

The axioms and rules of KL10 are as follows. (Here ϕ,ψ, χ, . . . are restricted to
be wffs that do not contain→.)
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(A1) ϕ→ ϕ
(A2) ϕ→ (ϕ ∨ ψ)
(A3) ϕ→ (ψ ∨ ϕ)
(A4) F→ ϕ
(A5) (t ◦ ϕ)→ ϕ
(A6) ϕ→ (t ◦ ϕ)
(A7) (ϕ ◦ t)→ ϕ
(A8) ϕ→ (ϕ ◦ t)
(A9) (ϕ ◦ (ψ ◦ χ))→ ((ϕ ◦ ψ) ◦ χ)
(A10) ((ϕ ◦ ψ) ◦ χ)→ (ϕ ◦ (ψ ◦ χ))
(A11) (ϕ ◦ F)→ F
(A12) (F ◦ ϕ)→ F
(A13) (ϕ ◦ (ψ ∨ χ))→ ((ϕ ◦ ψ) ∨ (ϕ ◦ χ))
(A14) ((ϕ ◦ ψ) ∨ (ϕ ◦ χ))→ (ϕ ◦ (ψ ∨ χ))
(A15) ((ϕ ∨ ψ) ◦ χ)→ ((ϕ ◦ χ) ∨ (ψ ◦ χ))
(A16) ((ϕ ◦ ψ) ∨ (χ ◦ ψ))→ ((ϕ ∨ χ) ◦ ψ)
(A17) (t ∨ (ϕ ◦ ϕ∗))→ ϕ∗

(A18) (t ∨ (ϕ∗ ◦ ϕ))→ ϕ∗

(R1) ϕ→ ψ, χ → ψ // (ϕ ∨ χ)→ ψ
(R2) ϕ→ ψ, χ → ζ // (ϕ ◦ χ)→ (ψ ◦ ζ )
(R3) (ϕ ◦ ψ)→ ψ // (ϕ∗ ◦ ψ)→ ψ
(R4) (ϕ ◦ ψ)→ ϕ // (ϕ ◦ ψ∗)→ ϕ
(R5) ϕ→ ψ,ψ → χ // ϕ→ χ

Definition 2.1 A = 〈A; ∨, ◦, ∗, t, F〉 is a Kleene algebra10 when5

(i) 〈A; ∨, F〉 is a join semi-lattice with bottom,
(ii) 〈A; ◦, t〉 is a monoid,

(iii) a ◦ F = F = F ◦ a,
(iv) a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c) (b ∨ c) ◦ a = (b ◦ a) ∨ (c ◦ a),
(v) t ∨ (a ◦ a∗) ≤ a∗ t ∨ (a∗ ◦ a) ≤ a∗,

(vi) a ◦ b ≤ b ⇒ a∗ ◦ b ≤ b b ◦ a ≤ b ⇒ b ◦ a∗ ≤ b.

Two formulas ϕ and ψ are in the equivalence relation, which is used in the definition
of the Lindenbaum algebra, whenever ` ϕ→ ψ and ` ψ → ϕ. (We leave the proof
of the next lemma to the interested reader.)

Lemma 2.2 The Lindenbaum algebra of KL10 is a KA10.

ACT extends the set of connectives by implications (→ and←), which are the (right
and left) residuals of fusion. The introduction of residuation is what allows equa-
tional axiomatization. A Hilbert-style calculus for ACT is the following collection of
axiom schemes and rules.

(A1) ϕ→ ϕ
(A2) ϕ→ (ϕ ∨ ψ)
(A3) ϕ→ (ψ ∨ ϕ)
(A4) F→ ϕ
(A5) ((ϕ ◦ ψ) ◦ χ)→ (ϕ ◦ (ψ ◦ χ))
(A6) (ϕ ◦ (ψ ◦ χ))→ ((ϕ ◦ ψ) ◦ χ)
(A7) (t ◦ ϕ)→ ϕ
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(A8) ϕ→ (t ◦ ϕ)
(A9) (ϕ ◦ t)→ ϕ
(A10) ϕ→ (ϕ ◦ t)
(A11) ((ϕ→ ψ) ◦ ϕ)→ ψ
(A12) ϕ→ (ψ → (ϕ ◦ ψ))
(A13) (ϕ ◦ (ψ ← ϕ))→ ψ
(A14) ψ → ((ϕ ◦ ψ)← ϕ)
(A15) (t ∨ (ϕ∗ ◦ ϕ∗) ∨ ϕ)→ ϕ∗

(A16) (ϕ→ ϕ)∗ → (ϕ→ ϕ)
(R1) ϕ→ ψ,ψ → χ // ϕ→ χ
(R2) ϕ→ ψ // (χ → ϕ)→ (χ → ψ)
(R3) ϕ→ ψ // (ϕ← χ)→ (ψ ← χ)
(R4) ϕ→ ψ, χ → ψ // (ϕ ∨ χ)→ ψ
(R5) ϕ→ ψ, χ → ζ // ϕ ◦ χ → ψ ◦ ζ
(R6) ϕ→ ψ // ϕ∗ → ψ∗

(R7) ϕ→ ψ, ϕ // ψ

The equivalence relation to define the Lindenbaum algebra of ACT is—again—
generated by ϕ → ψ and ψ → ϕ both being theorems. For our purposes it is not of
primary importance to formulate the algebra with equations only; therefore, we give
the Lindenbaum algebra in a form that is more suited to semantical proofs. (The
proof of the following lemma is left to the reader.)

Lemma 2.3 The Lindenbaum algebra of ACT is A = 〈A; ∨, ◦,→,←, ∗, t, F〉
where6

(i) 〈A; ∨, F〉 is a join semi-lattice with a least element,
(ii) 〈A; ◦, t〉 is a monoid,

(iii) a ≤ b→ c ⇔ a ◦ b ≤ c ⇔ b ≤ c← a,
(iv) t ∨ (a∗ ◦ a∗) ∨ a ≤ a∗,
(v) a∗ ≤ (a ∨ b)∗,

(vi) (a→ a)∗ ≤ a→ a.

A common feature of Kripke-style semantics for various logics is the use of (some
kind of) filters in the canonical model. In the case of normal modal logics (that have
Boolean negation) these are ultrafilters; without Boolean negation these are prime
filters. (In both cases conjunction is ∩ and disjunction is ∪.) If conjunction and
disjunction are not in the language but there is a fusionlike operation and maybe its
residual(s), then cones (upward closed subsets) may be used instead of filters. If a
logic has both conjunction and disjunction but they do not distribute over each other,
then the semantics might become more complicated; in particular, ideals might be
used too. Nonetheless, the intensional connectives are defined on the filters, or on
some combination of filters and ideals. The ideals are primarily exploited to define a
closure operation on the union of sets of filters; that is, conjunction is unchangeably
modeled as ∩ and disjunction is the closure of ∪.7

KL10 and ACT do not have conjunction; therefore, there are no filters whatsoever
in their Lindenbaum algebras. This means that if we are to define a semantics for
these logics then we should rely not on filters or a combination of filters and ideals
but either purely on ideals or on a combination of cones and ideals. (Of course, yet
another possibility is to extend these logics to include conjunction; however, our aim
is to give semantics for them as they are.)



Relational Semantics 465

Our first semantics (for KL10) is based on ideals only. Thus we start with solving
the problem of representing the intensional connectives on ideals. Of course, we also
change the usual modeling of disjunction; we trade the customary ∪ for a ∩, which
makes perfect sense once we have moved from filters to ideals. For insights we rely
on gaggle theory turned on its head, so to speak. More precisely, we show how to
extend gaggle theory to join semi-lattices with a technical trick, namely, by using
Zorn’s lemma to define suitable ideals.

Another problem to solve is how to model ∗. One way to look at this operation is
simply as yet another operation in the algebra. Since there is no distribution pattern
to base the proper modeling on according to gaggle theory, we will let the behavior
of ∗ on the extremal element guide us in choosing the modeling.8

3 Gaggles

Gaggle theory provides semantics for a wide range of nonclassical logics in a sys-
tematic way. The regularity of the semantics is based on the distribution patterns of
operations (over the lattice operations meet and join) and the interrelations of oper-
ations via abstract residuation. We want here only to introduce the main ideas of
gaggle theory in order to explain how our present representation results are related
to and go beyond it. Hence, we do not give a comprehensive description, and we use
illustrations, which involve binary operations only.9

A gaggle contains a distributive lattice and a family of operations. Each oper-
ation is required to distribute into meet or join over meet or join. The last sen-
tence is not a misprint. For example, let us consider ⊃—classical implication.
(ϕ ∨ ψ) ⊃ χ is equivalent to (ϕ ⊃ χ) ∧ (ψ ⊃ χ), and χ ⊃ (ϕ ∧ ψ) is equiv-
alent to (χ ⊃ ϕ) ∧ (χ ⊃ ψ). In other words, ⊃ distributes into ∧ over ∨ in its
first and over ∧ in its second argument place. From the distribution pattern a certain
tonicity of an operation follows, because both meet and join allow the definition of a
partial order—in a lattice, of one and the same partial order. A family of operations
is not simply a collection of operations but a collection of operations of the same
arity, where the operations are connected via abstract residuation laws. A concrete
example of (abstract) residuation is the relation that links the (binary intensional)
operations ◦,→, and← in the Lambek calculus into a family. These operations are
related in the Lindenbaum algebra as a ◦ b ≤ c if and only if a ≤ b → c if and
only if b ≤ c ← a. Roughly speaking, residuation allows moving back and forth
between the left- and right-hand side of inequations with the operations changed
appropriately.

Given a family of operations on a distributive lattice, gaggle theory provides rules
as to how to define n-ary operations from an n + 1-place accessibility relation on a
frame and how to define the canonical accessibility relation. Instead of stating the
rules we give an illustration on a familiar example of ◦ and→ from relevance logic.
◦ distributes into join over join in both places. Therefore, the operation defined from
a ternary relation is the existential image operation; that is, the definition is an ex-
istentially quantified conjunction. → distributes into meet; hence it is represented
via a universally quantified disjunction that has the complemented “converse” of this
relation—where the “converse” corresponds to picking another argument place to
“stand for” the implication than the one that was inhabited by fusion. Set member-
ships in the definitions are positive when an operation distributes into join over join
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or into meet over meet; they are negated otherwise. That is,

A ◦ B = { z | ∃xy(Rxyz ∧ x ∈ A ∧ y ∈ B) },

B → C = { x | ∀yz(R
1�3
zyx ∨ y /∈ B ∨ z ∈ C) }.

These definitions are easily seen to be (or to be equivalent to) the usual ones—we
chose their form only to emphasize the points of the previous paragraph. (1 � 3
indicates “converse”, i.e., the relation is as R except that the first and third arguments
are interchanged.)

The canonical accessibility relation is defined as a universally quantified disjunc-
tion if the operation distributes into join and as an existentially quantified conjunc-
tion otherwise. Set memberships in the definitions are negative when an operation
distributes into join over join or into meet over meet; they are negated otherwise.
Continuing with the same example, the canonical accessibility relation is defined as

∀ab (a /∈ x ∨ b /∈ y ∨ a ◦ b ∈ z). (R)

Of course, we tacitly assumed in this example that conjunction and disjunction are
modeled in the usual way, that is, as intersection and union, and the objects of the
canonical model are (proper) prime filters. As a first step toward turning gaggles
upside down we state a small representation theorem.

Theorem 3.1 Let A = 〈A; ∧,∨,}〉 be a distributive lattice with an operation }
which has a distribution pattern ∧,∧ → ∧. (That is, a } (b∧ c) = (a }b)∧ (a } c)
and (a ∧ b) } c = (a } c) ∧ (b } c).) The powerset of a structure (U, R) with in-
tersection, union, and the existential image operation of R contains a homomorphic
image of A. The canonical structure is the set of prime ideals with R defined as in
(R ) above.

Proof We leave some of the details of the proof to be filled in by the reader; how-
ever, we fix some ideas. The powerset is certainly a distributive lattice, so a subset
closed under ∩, ∪, and } (the operation defined from R) is suitable as a carrier set.
To see that the distribution pattern is preserved it is enough to note that meet is union,
and the existential quantifier distributes over disjunction. �

This theorem provides an important insight on how we are to model the operation
◦ and ∗ when there are only ideals. (The above operation is like an intensional
disjunction that appears in some substructural logics.)

4 Semantics Motivated by Gaggle Theory

A semantics for Kleene logic is obtained from a structure F defined as follows.

Definition 4.1 F = 〈U, R◦, R∗, I 〉 where the elements of the four-tuple satisfy
the following conditions.

(1) ∅ 6= U , ∅ 6= I ⊆ U , R◦ ⊆ U ×U ×U , R∗ ⊆ U ×U

(2) ∃β(R◦βαα ∧ β /∈ I ) (R◦αβγ ∧ α /∈ I ∧ γ ∈ A) ⇒ β ∈ A

∃β(R◦αβα ∧ β /∈ I ) (R◦αβγ ∧ β /∈ I ∧ γ ∈ A) ⇒ α ∈ A

(3) (R◦αβε ∧ R◦εγ δ) ⇒ ∃ζ(R◦βγ ζ ∧ R◦αζδ)

(R◦βγ ε ∧ R◦αεδ) ⇒ ∃ζ(R◦αβζ ∧ R◦ζγ δ)
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(4) (αR∗β ∧ α ∈ A) ⇒ β ∈ I

(5) (R◦αβγ ∧ δR∗γ ∧ εR∗α ∧ δ ∈ A) ⇒ (ε /∈ A ∧ β ∈ A)

(R◦αβγ ∧ δR∗γ ∧ εR∗β ∧ δ ∈ A) ⇒ (ε /∈ A ∧ α ∈ A)

(6) (R◦δεβ ∧ δ /∈ B ∧ β ∈ B) ⇒ ∃ϑ(ϑR∗ε ∧ R◦δϑβ)

(R◦δεβ ∧ ε /∈ B ∧ β ∈ B) ⇒ ∃ϑ(ϑR∗δ ∧ R◦ϑεβ)

Informally, U is a set of information states, and I is a nonempty subset of distin-
guished states. Informally speaking these are the logical states. R◦ is a ternary and
R∗ is a binary accessibility relation on U . The role of the rest of the conditions will
become clear in the soundness proof.

Definition 4.2 Let F be a structure. A KL10-model M (based on F) contains a set
of subsets of U (M ⊆ P (U )) which has as its elements the sets defined in (7) and (8)
and which is closed under the operations defined in (9) – (11). (The (meta)variables
A and B range over P (U ).)

(7) t =def I

(8) F =def U

(9) A ∨ B =def A ∩ B

(10) A ◦ B =def { γ : ∀αβ((R◦αβγ ∧ α /∈ A) ⇒ β ∈ B) }

(11) A∗ =def {β : ∃α(αR∗β ∧ α ∈ A) }

The set I , which models the intensional truth t , is sometimes created from a special
situation. In the present semantics postulating the set outright avoids some compli-
cations. The bottom element of a lattice is usually the empty set of (prime) filters, so
“dually” here it is the set of all the information states.

(9) is straightforward if one thinks in terms of ideals. (10) relies essentially on
the insights from Theorem 3.1 together with the observation that just as ∃ distributes
over ∨, so does ∀ over ∧. Note that (10) and (11) are very different despite the fact
that ◦ and ∗ are related—for example, as are concatenation and the Kleene star in
regular languages. However, as we already mentioned, ∗ does not distribute over ∨
and does not preserve the bottom element—unlike ◦ does. The latter suggests that (if
there were ∧ in the logic) a ∀α(· · · ∨ · · · )-type definition would be appropriate (on
filters). Thus, using ∃α(· · ·∧ · · · ) is indeed the correct “necessity sort of” definition.

Theorem 4.3 (Soundness) A KL10-model M is a KA10.

Proof In effect, we show that the Lindenbaum algebra is freely generated by (the
equivalence classes of) the propositional variables with respect to the class of KL10-
models. Namely, we show that (i) – (vi) (from Definition 2.1) hold in any KL10 model.

1 Disjunction is interpreted via set intersection; therefore, associativity, commu-
tativity, and idempotence are immediate. With F = U , F is clearly the bottom
element.

2 We prove that conditions (2) – (3) are sufficient to ensure that ◦ is associa-
tive with I being its identity. First, let us assume that γ ∈ I ◦ A, that is,
∀αβ((R◦αβγ ∧ α /∈ I ) ⇒ β ∈ A). Let us also assume (to the contrary)
that γ /∈ A. By universal instantiation from the previous formula we have that
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∀α((R◦αγ γ ∧ α /∈ I ) ⇒ γ ∈ A). (2) provides that ∃β(R◦βαα ∧ β /∈ I ). From
the apparent contradiction we obtain γ ∈ A. For the other direction we assume
that γ ∈ A, and additionally that R◦αβγ and α /∈ I . One of the other frame
conditions listed in (2) is ∀αβγ ((R◦αβγ ∧ α /∈ I ) ⇒ (γ ∈ A ⇒ β ∈ A)).
By two detachments β ∈ A. Eliminating the last two assumptions we have that
∀αβ((R◦αβγ ∧ α /∈ I ) ⇒ β ∈ A), that is, γ ∈ I ◦ A. (A ◦ I = A may be proven
analogously using the next two conditions in (2).)

Now we prove that ◦ is associative. Let δ ∈ (A ◦ B) ◦ C . Then ∀αγ ((R◦αγ δ∧
α /∈ A ◦ B) ⇒ γ ∈ C). Further, let us assume that R◦εζδ and ε /∈ A as well
as R◦γϑζ and ϑ /∈ C . By eliminating and introducing a few conjunctions we have
the antecedent of the second condition in (3), (R◦γϑζ ∧ R◦εζδ). Modus ponens
yields ∃α(R◦εγ α ∧ R◦αϑδ). Having instantiated ∃α, and having conjoined the sec-
ond subformula with ϑ /∈ C , we apply modus tollens, and so we get α ∈ A ◦ B.
Then, from the definition of ◦ and R◦εγ α ∧ ε /∈ A, we obtain γ ∈ B. Further,
∀γϑ((R◦γϑζ ∧ γ /∈ B) ⇒ ϑ ∈ C), that is, ζ ∈ B ◦C ; hence δ ∈ A ◦ (B ◦C) after
we introduce⇒ and apply the definition of ◦. (The other inclusion may be proven
similarly using the first condition in (3).)

3 To prove that ◦ is normal, we first prove that F = F ◦ A. From right to left
the inclusion is trivial. From left to right the inclusion means that if γ ∈ F, then
γ ∈ F ◦ A. However, the latter is the same as ∀αβ((R◦αβγ ∧β /∈ A) ⇒ α ∈ F)—
which is certainly true. (F = A ◦ F is alike.)

4 We prove that ◦ distributes over join from both sides as follows. Let
γ /∈ A ◦ (B ∨C), that is, ∃αβ(R◦αβγ ∧ α /∈ A∧ β /∈ (B ∨C)). Since β /∈ B ∨C if
and only if β /∈ B or β /∈ C , by distribution γ /∈ A ◦ B or γ /∈ A ◦C , that is, γ is not
a member of their intersection, which means that γ /∈ (A ◦ B)∨ (A ◦C). (The other
direction is by retracing the steps, and the “from right” is analogously by a certain
symmetry of the definition of ◦.)

5 There are two equations and two quasi equations characterizing ∗, but we chop
the two equations into “subequations.” To prove A∗ ⊆ I we assume β ∈ A∗. Then
∃α(αR∗β ∧ α ∈ A). By modus ponens from (4) we obtain β ∈ I . For the second
subequation, let us assume that γ ∈ A∗, that is, ∃δ(δR∗γ ∧ δ ∈ A). Assume also
R◦αβγ and εR∗α. From (5) ε /∈ A and β ∈ A. By⇒ introduction α /∈ A∗, and
further, γ ∈ A∗ ◦ A. (The third subequation is proven similarly to this one.)

6 Lastly, we prove that the two quasi equations hold too. Suppose that B ⊆ B ◦ A
and β ∈ B. Expanding β ∈ B ◦ A we get ∀αγ ((R◦αγβ ∧ γ /∈ A) ⇒ α ∈ B).
Relying on the definition of ◦ and the conclusion we are to derive, let us assume
that R◦δεβ as well as δ /∈ B. From the first condition in (6) by detachment we get
∃ϑ(ϑR∗ε ∧ R◦δϑβ). Instantiating in β ∈ B ◦ A and detaching the antecedent we
have ϑ ∈ A. Then ε ∈ A∗; hence, β ∈ B ◦ A∗ as we had to show. (The other
inequation may be proven to hold similarly using the other condition in (6).) �

Before we turn to prove completeness we pause to provide a more detailed informal
interpretation of the semantics in terms of actions. The background concept is that
information is “proportional” to the amount of eliminated possibilities. This idea is
famous with Shannon, who developed it quantitatively. Here we do not assume a
fixed numerical space, rather we assume that information states might be “incom-
mensurable,” in which case it is still meaningful to interpret some logical operations



Relational Semantics 469

on them. Thus, the lack of information corresponds to the whole set U of infor-
mation states. Actions are represented by the information states that they exclude.
Given two actions A and B the choice (that is, A∨ B) excludes only the states which
are excluded by both A and B. These are the states which fall into the intersection
of A and B. The composition of actions A and B (that is, A ◦ B) admits an infor-
mation state which can be reached from any state that is not excluded by A via R◦
and through a state not excluded by B. Lastly, the result of the repeat of the action
A excludes any information state that is accessible from an already excluded state
passing along the relation R∗.

Now we prove completeness of KL10 with respect to our first canonical model that
is defined as follows.

Definition 4.4 (Canonical model) The canonical model is M = 〈I, R◦, R∗, I, h 〉
where I is the set of (nonempty) proper ideals on the Lindenbaum algebra, and the
other elements of the quintuple are defined as
(12) R◦αβγ ⇔def ∀ab(a ◦ b ∈ γ ⇒ (a ∈ α ∨ b ∈ β)),

(13) αR∗β ⇔def ∀a(a ∈ α ⇒ a∗ ∈ β),

(14) I =def {α : α ∈ I ∧ t ∈ α },
(15) U =def I (or equivalently, U =def {α : α ∈ I ∧ F ∈ α } ),
(16) h(a) =def {α : α ∈ I ∧ a ∈ α }.

Theorem 4.5 (Completeness) h is an isomorphism.

Proof First we prove that h is a homomorphism and, second, that h is 1-1.

1.1 The two constants are obviously preserved by h.

1.2 The easiest connective is ∨. If γ ∈ h(a ∨ b) then a ∨ b ∈ γ by the definition
of h, and a ∈ γ and b ∈ γ since γ ∈ I. Then γ is in both ha and hb and so also in
ha ∨ hb using properties of ∩. All the steps are reversible; hence h preserves ∨.

1.3 We prove that h(a ◦ b) = ha ◦ hb. From left to right, let us assume that γ is
a member of the set; then a ◦ b ∈ γ . Additionally let us suppose R◦αβγ . Modus
ponens gives a ∈ α ∨ b ∈ β, that is, α ∈ ha ∨ β ∈ hb. By implication introduction
∀αβ(R◦αβγ ⇒ (α ∈ ha∨β ∈ hb)), which is the same—according to the definition
of ◦—as γ ∈ ha ◦ hb.

For the inclusion from right to left we assume γ /∈ h(a ◦ b); hence a ◦ b /∈ γ .
We have to show that there are ideals that are in relation R◦ with respect to γ
and not elements of ha and hb. Let E be the set of pairs of ideals defined as
{ 〈I1, I2〉 : ∀ab(a ◦ b ∈ γ ⇒ a ∈ I1 ∨ b ∈ I2) }. Whatever γ is, if a ◦ b is in
γ , then (a] and (b] are suitable ideals, because ◦ is a monotone operation. Thus E
is surely nonempty. As usual, E might be partially ordered by pointwise inclusion.
We are to use Zorn’s lemma in a somewhat unusual form.10 For this purpose we
note that ideals are subalgebras of a semi-lattice, and their intersection is an ideal
too. In particular, if a chain of ideals is in E then so is the intersection of the chain.
Then there is a maximal element in E .11 To see that I1 and I2 from the maximal
pair 〈I1, I2〉 are /∈ ha and /∈ hb, respectively, we argue in two steps. First, if a ◦ b
is not of the form (a1 ∨ · · · ∨ an) ◦ (b1 ∨ · · · ∨ bm) then I1 /∈ ha and I2 /∈ hb by
monotonicitiy of ◦. If a ◦ b is of the mentioned form then by distributivity a ◦ b is an
m × n element disjunction where the disjuncts are ai ◦ b j (1 ≤ i ≤ n, 1 ≤ j ≤ m).
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For the sake of transparency, let us assume n = 2 and m = 2. (The cases when one
of the indexes is 1, or one or both of them are ≥ 2 are argued similarly. We only give
an illustration in Figure 1 to help the reader to see how to construct the argument for
the m, n case.) Since a ◦ b /∈ γ at least one of the four disjuncts is not in γ . By
simple combinatorics one can choose just one of a1 and a2 and just one of b1 and b2
to account for all the disjuncts that are in γ . Hence if a ∈ I1 or b ∈ I2 then the pair
of these two ideals is not maximal in E contradicting the assumption. It remains to
introduce existential quantifiers ∃αβ(R◦αβγ ∧ α /∈ ha ∧ β /∈ hb) and to apply the
definition of ◦ to get γ /∈ ha ◦ hb.

a1 ◦ b1 . . . a1 ◦ bm
}

a1, . . . , ai−1...
...

...
· · · ai ◦ b j · · ·

...
...

...

an ◦ b1 . . . an ◦ bm

}
ai+1, . . . , an︸ ︷︷ ︸

b1, . . . , b j−1

︸ ︷︷ ︸
b j+1, . . . , bm

Figure 1 The m × n matrix of disjuncts where (ai ◦ b j ) 6∈ γ .

1.4 Let us assume that β ∈ h(a∗), that is, a∗ ∈ β. By the definition of R∗ and
monotonicity of ∗, we have that (a]R∗β. Since (a] ∈ ha, ∃α(αR∗β ∧ α ∈ ha),
which is the same as β ∈ (ha)∗. To prove the converse, suppose the latter. Then
∃α(αR∗β ∧α ∈ ha), and further, ∃α(αR∗β ∧ a ∈ α). From the definition of R∗ we
get a∗ ∈ β, and hence β ∈ h(a∗), as desired.

2 To show that h is one-one, let us assume that a � b. Then (b] ∈ hb but (b] /∈ ha
because a /∈ (b], that is, hb * ha. This completes the proof. �

Before we proceed to define our next semantics, we briefly recall a result from model
theory.

5 Undefinability of Transitive (Reflexive) Closure

Transitive closure of binary relations plays an important role in many places from set
theory to filtration in modal logics. Transitive closure and transitive reflexive closure
are defined as follows.

Definition 5.1 Let % be a binary relation on X . The transitive closure of % (denoted
by %+) is inductively defined as

(1) 〈x, y〉 ∈ % ⇒ 〈x, y〉 ∈ %+,
(2) 〈x, y〉, 〈y, z〉 ∈ %+ ⇒ 〈x, z〉 ∈ %+,

where x, y, z range over X .
The transitive reflexive closure of % (denoted by %∗) is inductively defined as

(3) 〈x, x〉 ∈ %∗,
(4) 〈x, y〉 ∈ % ⇒ 〈x, y〉 ∈ %∗,
(5) 〈x, y〉, 〈y, z〉 ∈ %∗ ⇒ 〈x, z〉 ∈ %∗,

where x, y, z ∈ X . (Of course, if %+ is already defined from % then %∗ is just
%+ ∪ { 〈x, x〉 : x ∈ X }.)
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Despite the seeming simplicity of these definitions, it is useful to underscore that
the definitions are inductive (recursive). There are two possible misunderstandings
concerning the definability of %∗. First, a confusion might be caused by the following
two formulas:

∀x .P(x, x)

∀xyz((P(x, y) ∧ P(y, z)) ⇒ P(x, z))

which do state that P (or, more accurately, the interpretation of this two-place predi-
cate) is a reflexive and transitive relation. However, these are sentences (closed wffs)
and they do not define a binary relation at all.

Another potential misunderstanding is that given a binary relation %, it is possible
to define %∗ by the formula

〈x, z〉 ∈ %∗ ⇔ ∃y0 . . . yn : x = y0 ∧ yn = z ∧ ∀i. 0 ≤ i < n ⇒ 〈yi , yi+1〉 ∈ %.

Of course, for this formula to be a definition of %∗ the index n would have to be
thought of as tacitly quantified (i.e., bound by ∃n ∈ N). However, according to a
well-known metatheorem of first-order logic there is no wff with one free variable
that is true of models of arbitrary finite size but false on models of infinite size. In
other words, the seemingly first-order formula above, in fact, is not such and cannot
be turned into a true first-order formula.

The first-order undefinability of the (reflexive) transitive closure of a binary re-
lation does not follow simply from these observations; however, it may be proven
using pebble games (or any of the equivalent methods—cf. Ebbinghaus and Flum
[20]). This undefinability result is, of course, not an issue for KL10 and ACT itself,
since these are not first-order logics, but it is useful to keep the undefinability in mind
when we build the semantics, especially when we want to use the same relation to
represent ◦ and ∗. Now we turn to define our second semantics.

6 Semantics Motivated by Four-valued Approach

The idea behind our four-valued approach to substructural logics was to use filters
and ideals in the semantics. The filters were thought of as theories, whereas ideals
were considered countertheories, and a proposition consisted of a set of theories and
a set of countertheories. Moreover, theories and countertheories jointly characterized
a proposition by being sets of sentences which were implied and which implied a
particular sentence. To conform to our terminology in the preceding sections we will
continue to talk about ‘information states’ instead of ‘theories’.12

Definition 6.1 A structure for action logic is F = 〈U+,U−, v , R◦, R∗, ι, ≶ 〉

where the elements satisfy the conditions (1) – (10). F is called a ∗-structure if it
additionally satisfies (11) and (12).

(1) U+ 6= ∅ 6= U−; ι ∈ U+; v , R∗ ⊆ U+
2
; R◦ ⊆ U+

3
; ≶ ⊆ U+×U−

(2) (α ≶ x ∧ α v α′) ⇒ α′ ≶ x and ∃α∀x .α ≶ x

(3) ∃!α ∀β. β v α (this α is denoted by T )

(4) (α v β ∧ β v γ ) ⇒ α v γ and α v α
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(5) R◦↓↓↑ and ↑R∗↓, i.e.,

(R◦αβγ ∧ α′ v α ∧ β ′ v β ∧ γ v γ ′) ⇒ R◦α′β ′γ ′

(αR∗β ∧ α v α′ ∧ β ′ v β) ⇒ α′R∗β ′

(6) ∃α(R◦αββ ∧ ι v α) and (R◦αβγ ∧ ι v α) ⇒ β v γ

∃α(R◦βαβ ∧ ι v α) and (R◦αβγ ∧ ι v β) ⇒ α v γ

(7) (R◦αβη ∧ R◦ηγ δ) ⇒ ∃ε(R◦βγ ε ∧ R◦αεδ)

(R◦βγ ε ∧ R◦αεδ) ⇒ ∃η(R◦αβη ∧ R◦ηγ δ)

(8) (R◦αβγ ∧ α ∈ [T)) ⇒ γ ∈ [T)

(R◦αβγ ∧ β ∈ [T)) ⇒ γ ∈ [T)

(9) (ι v β ∧ αR∗β) ⇒ α ∈ A

(10) αR∗β ⇒ β v α

(11) (R◦αβγ ∧ ∀δ(δR∗α ⇒ δ ∈ A) ∧ ∀ε(εR∗β ⇒ ε ∈ A) ∧ ϑR∗γ )⇒ ϑ ∈ A

(12) ∃βγ(R◦αβγ ∧ β ∈ A ∧ γ /∈ A)⇒ ∃δεϑ(δR∗α ∧ R◦δεϑ ∧ ε ∈ A ∧ ϑ /∈ A)

We borrowed from the four-valued approach the idea that states are of two kinds.
However, below we primarily rely on sets of positive states, moreover, only on those
that are stable. Stability is to be defined via the relation ≶ which links positive
and negative states and—by going a type level up—sets of positive states to sets of
negative ones.

Definition 6.2 Let X ⊆ U+ and Y ⊆ U−. � and � (� : P (U+) −→ P (U−),
� : P (U−) −→ P (U+)) are defined as

(13) �X =def { y : ∀α(α ∈ X ⇒ α ≶ y) },

(14) Y� =def {α : ∀y(y ∈ Y ⇒ α ≶ y) }.

A set of positive states X is stable when X = (�X)�. The set of stable subsets of
U+ is denoted by P (U+)g. A model is a ∗-structure with a valuation added—
M = 〈F, h〉, where h maps wffs into stable sets in accordance with (15) – (21). In
other words, M = 〈M,∨, ◦,→,←, ∗ , t, F〉, where M ⊆ P (U+)g, M contains
[ ι ) and [T), and M is closed under the operations defined in (17) – (21).

Definition 6.3 Let A, B ∈ P (U+)g.

(15) h(t) = [ ι )

(16) h(F) = [T)

(17) h(A ∨ B) = (�h(A) ∩ �h(B))�

(18) h(A ◦ B) = { γ : ∃α ∈ h(A) ∃β ∈ h(B). R◦αβγ }

(19) h(A→ B) = { γ : ∀β ∈ h(A)∀α /∈ h(B). R◦γβα }

(20) h(A← B) = { γ : ∀β ∈ h(B)∀α /∈ h(A). R◦βγα }

(21) h(A∗) = {β : ∀α /∈ h(A). αR∗β }
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Of course, in general, the clauses themselves do not guarantee that having started
with stable sets the resulting sets are stable too. Therefore, now we prove that cer-
tain relationships hold between the various types of structures and closure under the
operations we have just defined. First we introduce the notion of upward closed sets.

Definition 6.4 Let 〈W,≤〉 be a pre-ordered set. The set of upward closed subsets
of W (denoted by P (W )↑) and the upward closed subset generated by x (denoted
by [x)) are defined as
(22) V ∈ P (W )↑ iff V ∈ P (W ) ∧ ∀xy((x ∈ V ∧ x ≤ y) ⇒ y ∈ V )

(23) y ∈ [x) iff x ≤ y .

Lemma 6.5 Let F be a structure. If X ∈ P (U+)g then X ∈ P (U+)↑.

Proof Let us suppose the antecedent and X /∈ P (U+)↑. Then ∃αβ(α ∈ X ∧
α v β ∧ β /∈ X). Since X is stable, ∀y(y ∈ �X ⇒ α ≶ y). However, α ≶ y and
α v β implies β ≶ y; hence β ∈ (�X)�, which is a contradiction. �

Lemma 6.6 (Hereditary operations) If h(A), h(B) ∈ P (U+)↑, then h(A ∨ B),
h(A ◦ B), h(A → B), h(A ← B), h(A∗) ∈ P (U+)↑. Also, h(t) and h(F) are
upward closed.

Proof For ∨ the claim follows from the proof of the preceding lemma, which also
established that Y� ∈ P (U+)↑ (for Y ⊆ U−). The cases of ◦,→,←, and ∗ follow
from the tonicity conditions imposed on R◦ and R∗. (We omit the details.) h(t) is
an element of P (U+)↑ by its definition, and so is h(F). �

Definition 6.7 Let F be a structure. α, β ∈ U+ are indistinguishable whenever
α ≶ x ⇔ β ≶ x (∀x ∈ U−). F is distinguished if and only if there are no distinct
α, β ∈ U+ which are indistinguishable.

Clearly, a subset of P (U−) together with the indistinguishability relation gives rise
to a partition on U+. Furthermore, any structure satisfying (2) and divided out by
this equivalence relation yields a distinguished structure which again satisfies (2).
Informally, in a distinguished frame any two positive states differ from each other in
regard to which negative states they are linked.

Definition 6.8 Let F be a structure for action logic. F is

(24) inverted iff �
[α) ⊆ �

[β) ⇒ α v β,

(25) complete iff ∃!β.
⋂

i∈I
�
[αi ) =

�
[β),

(26) R◦◦-fit iff ∃! γ ′. [γ ′) = { γ : ∃αβ(R◦αβγ ∧ α ∈ [α′) ∧ β ∈ [β ′)) },

(27) R→◦ -fit iff ∃!α′. [α′) = {α : ∀βγ ((R◦αβγ ∧ β ∈ [β ′)) ⇒ γ ∈ [γ ′)) },

(28) R←◦ -fit iff ∃!β ′. [β ′) = {β : ∀αγ ((R◦αβγ ∧ α ∈ [α′)) ⇒ γ ∈ [γ ′)) },

(29) R∗-fit iff ∃!β ′. [β ′) = {β : ∀α(αR∗β ⇒ α ∈ [α′)) }.

Lemma 6.9 Let F be a distinguished complete inverted structure. Then X ∈
P (U+)g if and only if ∃α. X = [α).13

Proof From right to left let us assume that X = [α). By (2) y ∈ �
[α) ⇔ α ≶ y.

Were X /∈ P (U+)g then there would be a β ∈ (�X)� such that β /∈ X , that is,
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α 6v β. By the definition of � ∀y(y ∈ �X ⇒ β ≶ y). Replacing the antecedent we
get ∀y(α ≶ y ⇒ β ≶ y), which means that �

[α) ⊆ �
[β). Since F is inverted it follows

that α v β—a contradiction.
For the other direction let us assume that X is stable, but for no α holds that

X = [α). X ∈ P (U+)g implies X ∈ P (U+)↑. �X =
⋂
α∈X

�
[α), which by the

frame being complete is �
[β) (for some β). If there is a γ such that �

[β) ⊆ �
[γ )—

which puts γ into
(�
[β)

)�—then indeed γ ∈ X because β v γ by the invertedness
of the frame. �

The properties of structures that we introduced so far are sufficient for the stability
of constants and operations.

Lemma 6.10 (Stability of constants and operations) Let F be a distinguished struc-
ture. Then

(i) h(F) = [T) ∈ P (U+)g;
(ii) h(t) = [ ι ) ∈ P (U+)g if F is inverted.

Let F be a distinguished complete inverted structure and h(A), h(B) ∈ P (U+)g.
Then

(iii) h(A ∨ B) ∈ P (U+)g;
(iv) h(A ◦ B) ∈ P (U+)g if F is R◦◦-fit;
(v) h(A→ B) ∈ P (U+)g if F is R→◦ -fit;

(vi) h(A← B) ∈ P (U+)g if F is R←◦ -fit;
(vii) h(A∗) ∈ P (U+)g if F is R∗-fit.

Proof

1 (3) together with the assumption that the frame is distinguished guarantees that
[T) is stable.

2 From Lemma 6.9 follows that [ ι ) ∈ P (U+)g since ι generates [ ι ).

3 It is easy to see that (iii) follows from the completeness of a structure; indeed, a
special case of the completeness condition, namely, I = 2 suffices.

4 The conditions (26), (27), (28), and (29) guarantee, respectively, that (iv), (v),
(vi), and (vii) are true. �

Theorem 6.11 (Soundness) All the equations of the Lindenbaum algebra of action
logic hold in a model M.

Proof

1 Levi’s definition of ∨ (cf. Birkhoff [7]) guarantees that the stable subsets of U+

form a join semilattice. Since h(F) = [T) �h(F) ∩ �h(A) = �h(A).

2 The conditions in (7) make ◦ associative, and from (6) it follows that [ ι ) is the
left-right lower-upper identity of the operation. (We leave the details to be filled in
by the reader.)

3 Residuation follows from the definitions of ◦ and→,← (18) – (20). (Again, we
leave the details to be filled in by the reader.)

4 We show that h(F◦A) = h(F), because our way of modeling F is somewhat un-
usual. Let us assume that γ ∈ h(F◦A), that is, ∃αβ(R◦αβγ∧α ∈ h(F)∧β ∈ h(A)).
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From one of the conditions in (8) we immediately get that γ ∈ [T) which means
γ ∈ h(F). The other inclusion is obvious and h(A ◦ F) = h(F) is alike.

5 To prove h(t) ⊆ h(A∗), assume β ∈ h(t). Additionally, let us also suppose
αR∗β. Condition (9) implies α ∈ h(A); hence β ∈ h(A∗).

Next let β ∈ h(A), and suppose αR∗β. (10) implies β v α, however, since
h(A) ∈ P (U+)↑. Also α ∈ h(A) and so β ∈ h(A∗).

For the third part of the equation, let us assume that γ ∈ h(A∗ ◦ A∗), that is,
∃αβ(R◦αβγ ∧ α ∈ h(A∗) ∧ β ∈ h(A∗)). To prove that γ ∈ h(A∗) let us also
assume that ϑR∗γ—from which we intend to derive ϑ ∈ h(A). The definition of
h for ∗ gives ∀δ(δR∗α ⇒ δ ∈ h(A)) and ∀δ(δR∗β ⇒ δ ∈ h(A)). Conjoining
the last two formulas with the R◦ and R∗ formulas we get the antecedent of (11);
by detachment, then ϑ ∈ h(A). Eliminating the last assumption and applying the
definition of h on ∗ we get that γ ∈ h(A∗).

6 Let us assume that γ ∈ h(A∗), that is, ∀β(βR∗γ ⇒ β ∈ h(A)). Let us also
assume that βR∗γ . By modus ponens β ∈ h(A) and since h(A) ⊆ h(A ∨ B), it
follows that β ∈ h(A ∨ B). Then γ ∈ h(A ∨ B).

7 We prove the last inclusion contrapositively. Thus, α /∈ h(A → A) if and only
if ∃βγ (R◦αβγ ∧ β ∈ h(A) ∧ γ /∈ h(A)). This is the antecedent of the implication
in (12), and so by modus ponens, ∃δεϑ(δR∗α ∧ R◦δεϑ ∧ ε ∈ h(A) ∧ ϑ /∈ h(A)).
Using the definition of h, the latter is the same as ∃δ(δR∗α ∧ δ /∈ h(A → A));
further, α /∈ h(A→ A). �

The following is an immediate consequence of Lemma 6.10 and Theorem 6.11—it
summarizes the relationship between the properties of structures and models of ACT.

Corollary 6.12 Let F be a distinguished, inverted, complete R←,◦,→◦ -fit and R∗-
fit ∗-structure. Then M = 〈M,∨, ◦,←,→, ∗, [ ι ), [T), h〉 (where M ⊆ P (U+)g

and Im(h) ⊆ M) is a model for ACT whenever h maps propositional variables into
P (U+)g and is extended to complex formulas according to (17) – (21).

Our earlier representation results in Bimbó and Dunn [6] (for the minimal substruc-
tural logic LS) contained two different semantics. One of the representations relied
on both positive and negative states. Another one, which we called “generalized
Kripke semantics,” used only positive states. In the present representation we “uni-
fied” the two approaches (by slightly modifying the one that used pairs). Although
we have two sets, the set of positive and that of negative states, we now show that
the canonical structure and model may be defined both ways.

In the first case we define only the canonical model for ACT.

Definition 6.13 The canonical model is M = 〈C,I,⊆, R◦, R∗, [t), G, h〉 where
the elements are as follows.

(1) C =def { X : X 6= ∅ ∧ X ∈ P (A)↑ }

(2) I =def { X : X ∈ P (A) ∧ ∀ab((a ∈ X ∧ b ≤ a) ⇒ b ∈ X)∧
∀ab(a, b ∈ X ⇒ a ∨ b ∈ X) }

(3) ⊆=def ⊆ � C

(4) R◦αβγ ⇔def ∀ab((a ∈ α ∧ b ∈ β) ⇒ a ◦ b ∈ γ )
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(5) αR∗β ⇔def ∀a(a∗ ∈ β ⇒ a ∈ α)

(6) α G x ⇔def ∃a(a ∈ α ∧ a ∈ x)

(7) h(a) =def { X : X ∈ C ∧ a ∈ X }

Informally, C is the set of cones on the Lindenbaum algebra of ACT, whereas I
is the set of ideals.14 R◦ and R∗ might look familiar when ◦ and ∗ are thought
of as fusion and necessity. G is the nonempty intersection of pairs of cones and
ideals; that is, a cone α and an ideal x are in this relation whenever they overlap. h
maps formulas into upward closed subsets of C such that each element contains the
formula in question.15

Theorem 6.14 (Completeness) The canonical valuation is an isomorphism.

Proof First we prove that h maps all formulas into stable sets. By definition, ha
is a principal cone of cones generated by a principal cone, namely, [[a)). Since I

contains ideals (without any restrictions) �ha is an upward closed set—a principal
cone (with respect to ⊆)—of ideals generated by (a]. In other words, �ha = [(a]),
and so (�ha)� = ha.

The rest of the proof falls into two parts, namely, showing that h preserves the
operations and constants and then that h is 1-1.

1.1 α ∈ h t if and only if t ∈ α by definition; h t is stable since it is of the form ha.
α ∈ h F if and only if F ∈ α, and so, h F is stable too.

1.2 To show h(a ∨ b) = ha ∨ hb we suppose that γ /∈ h(a ∨ b). Since
a ∨ b /∈ γ , let us consider (a ∨ b]. Certainly, ¬ γ G (a ∨ b], but [a) G (a ∨ b] and
[b) G (a ∨ b]. Then (a ∨ b] ∈ �ha ∩ �hb, and so ∃x(x ∈ �ha ∩ �hb ∧ ¬ γ ≶ x).
Thus, γ /∈ ha ∨ hb. For the converse inclusion, let us assume that the last formula
holds. From ∃x(x ∈ �ha ∧ x ∈ �hb ∧ ¬γ G x) and the definition of � we get
∀β(β ∈ ha ⇒ β G x) and ∀β(β ∈ hb ⇒ β G x). Since [a) ∈ ha and [b) ∈ hb,
a, b ∈ x and so a ∨ b ∈ x (because of x ∈ I). But from ¬γ G x follows that
a ∨ b /∈ γ and so γ /∈ h(a ∨ b).

1.3 Let γ ∈ h(a ◦ b). Then a ◦ b ∈ γ , and by the definition of R◦, R◦[a)[b)γ .
[a) ∈ ha and [b) ∈ hb; therefore, ∃αβ(R◦αβγ ∧ α ∈ ha ∧ β ∈ hb), that is,
γ ∈ ha ◦ hb. For the other direction let γ ∈ ha ◦ hb, which means that for some
α, β, R◦αβγ and α ∈ ha and β ∈ hb. Then, from a ∈ α, b ∈ β and the definition of
R◦ a ◦ b ∈ γ ; thus γ ∈ h(a ◦ b).

1.4 Let α ∈ h(b → c), that is, b → c ∈ α. Let us also assume that R◦αβγ and
b ∈ β. In the Lindenbaum algebra (b → c) ◦ b ≤ c, so c ∈ γ , and γ ∈ hc. Then
α ∈ hb→ hc. For the other inclusion, let α /∈ h(b→ c), that is, b→ c /∈ α. Let us
consider the cone [b) for β, and for γ take { c : ∃ab′(a ∈ α∧b′ ∈ [b)∧a◦b′ ≤ c) }—
which is a cone by monotonicity of ◦. Let us assume that c ∈ γ . Then x ◦ b ≤ c
for some x ∈ α. But then x ≤ b → c, which is a contradiction. Therefore,
∃βγ (R◦αβγ ∧ β ∈ hb ∧ γ /∈ hc), that is, α /∈ hb → hc. (The case of ← is
alike.)

1.5 Let α ∈ h(a∗) and βR∗α. Then a∗ ∈ α and ∀(b∗ ∈ α ⇒ b ∈ β). Since
a ∈ β, β ∈ h(a), and α ∈ (ha)∗. For the converse suppose that α /∈ h(a∗), that
is, a∗ /∈ α. For β consider { c : ∃b(b∗ ∈ α ∧ b ≤ c) }, which is a cone because
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∗ is isotone; then βR∗α. If a were an element of β then there would be a c∗ ∈ α
such that c ≤ a. However, then it follows that a∗ ∈ α contradicting the original
assumption. Hence ∃β(βR∗α ∧ β /∈ ha), and so α /∈ (ha)∗ as we had to show.

2 The separation of any two (i.e., distinct) elements is obvious. If a � b, then
b /∈ [a); hence [a) /∈ hb, but certainly, [a) ∈ ha. Therefore, ha * hb. �

Now we prove a second completeness theorem based on a canonical frame which is
like a structure in the generalized Kripke semantics in [6]. One of the novelties of the
four-valued semantics for first-degree entailment was that it allowed formulas to be
true and false at the same time—cf. Dunn [10] and [11]. We develop this idea further
by identifying the set of positive and negative states, that is, U+ and U−. In other
words, it is not determined a priori, so to speak, if an information state is positive or
negative. Rather the role that the state plays determines its “sign.” Thus it is not a
“typo” that C is repeated in the following definition.

Definition 6.15 The canonical structure F is 〈C,C,⊆, R◦, R∗, [t),⊆〉 where C,
⊆, R◦, R∗, [t) are as in Definition 6.13.

This canonical structure is very much like the one in the generalized Kripke seman-
tics for minimal substructural logic. Since U+ and U−, as well as v and ≶ are
identified, the structure could be presented in a simpler form as 〈C,⊆, R◦, R∗, [t)〉.
This way the similarity to the original Kripke semantics for modal logics would be-
come more obvious—with the exception that a relation is added.16

Lemma 6.16 X ∈ P (C)g if and only if X ∈ P (C)↑ and
⋂

X ∈ X.17

Proof From right to left,
⋂

X ∈ X implies that
⋂

X = α, and since X ∈ P (C)↑

and
⋂

X ∈ X , in fact, X = [α). Then �X = (α], and so (�X)� = X .
From left to right, let X be stable.

⋂
X is a cone, and it is not empty, because

the semi-lattice of the Lindenbaum algebra has a greatest element too. Furthermore,
(
⋂

X ] equates to �X , since these are precisely the cones that are included in all
elements of X . Then [

⋂
X) is (�X)�, and so if

⋂
X were not a member of X then

X would not be stable. Since it is stable, X = [
⋂

X) proving both
⋂

X ∈ X and
X ∈ P (C)↑. �

This lemma is more general and more specific at the same time than Lemmas 5.2
and 5.3 in [6]. This lemma uses cones not filters, but now we deal with a bounded
semi-lattice, whereas in [6] we had an unbounded lattice.18

Lemma 6.17 The canonical structure (as defined in 6.15) is a structure (as defined
in 6.1).

Proof

1 Clearly all the conditions in (1) hold.

2 If α ⊇ x and α ⊆ α′ then α′ ⊇ x . Further, ∀x . [F) ⊇ x ; thus (2) holds.

3 [F) ∈ C, and clearly, [F) = T.

4 ⊆ is transitive and reflexive as needed.

5 We show that R∗ has the right tonicity—R◦ is similar modulo some changes. Let
us assume αR∗β, α ⊆ α′, and β ′ ⊆ β. Then ∀a(a∗ ∈ β ⇒ a ∈ α). But a ∈ α
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implies a ∈ α′ and a∗ ∈ β ′ implies a∗ ∈ β. That is, ∀a(a∗ ∈ β ′ ⇒ a ∈ α′), which
is α′R∗β ′.

6 By monotonicity of ◦, the definition of R◦, and because t ◦ a = a R◦[t)ββ as
well as R◦β[t)β. For the two other conditions, let us suppose [t) ⊆ α and b ∈ β.
t ∈ α, and b ∈ β imply (by the definition of R◦) b ◦ t = b ∈ γ . Switching the
argument places of R◦ does not affect the reasoning; thus all four formulas in (6) are
true.

7 Let us assume R◦αβη ∧ R◦ηγ δ. To construct an appropriate ε let us define
{ e : ∃ad(a ∈ α ∧ a ◦ d ∈ δ ∧ d ≤ e) }. Monotonicity ensures that ε is a cone and
R◦αεδ. To verify that R◦βγ ε, let us assume that a ∈ α, b ∈ β, and c ∈ γ . By the
assumptions a ◦ b ∈ η and (a ◦ b) ◦ c = a ◦ (b ◦ c) ∈ δ; therefore, b ◦ c ∈ ε. Then
indeed, R◦βγ ε. (The other condition is provable by permuting α, β, and γ .)

8 Let us assume that R◦αβγ and α ∈ [T), that is, α = [F). Since F ∈ α, for any
b ∈ β F ◦ b ∈ γ , but F ◦ b = F and so γ = [F). (The condition for the second
argument place of R◦ may be shown to hold similarly.)

9 If [ t ) ⊆ β then t ∈ β. By the definition of R∗ if a∗ ∈ β then a ∈ α whenever
αR∗β. Then F ∈ α, which implies α = [F). However, for all A [F) ∈ A whenever
A ∈ P (C)↑ and A 6= ∅.

10 Let αR∗β. Then if a ∈ β, so is a∗ (because a ≤ a∗ and β ∈ C). However,
αR∗β and a∗ ∈ β imply a ∈ α; therefore, β ⊆ α. �

Lemma 6.18 The canonical structure F is distinguished, complete, and inverted as
well as an R←,◦,→◦ -fit and R∗-fit structure.

Proof

1 Let α and β be two cones, that is, α 6= β. By reflexivity α ⊆ α and β ⊆ β. If
α ⊆ β and β ⊆ α would hold, then α would be equal to β. Therefore, either α * β

or β * α, and so ∃γ ∈ C distinguishing �
{α } from �

{β }.

2 Let �
[α) ⊆ �

[β), that is, whenever γ ⊆ α also γ ⊆ β. By universal instantiation
α ⊆ α ⇒ α ⊆ β; hence α ⊆ β as we had to show.

3 Let αi∈I be a collection of cones. For each i �
[αi ) is (αi ]. The intersection of co-

cones is a cocone.19 Since the Lindenbaum algebra has a top element T [T ) ∈ (αi ]

for all i , the intersection of all (αi ]s is not empty. For any collection of cones their
intersection is a cone; moreover,

⋂
i∈I (αi ] =

( ⋂
i∈I αi

]
, that is, (β] for some β ∈ C.

Since ⊆ is a partial order β is unique. Then, indeed, ∃!β
⋂

i∈I
�
[αi ) =

�
[β).

4 We define γ to be { c : ∃ab(a ∈ α ∧ b ∈ β ∧ a ◦ b ≤ c) }. γ is a cone and clearly
minimal among those cones for which R◦αβγ . γ is unique to have this property and
so the structure is R◦◦-fit.

5 The cases of the two implications are “symmetric” and so we detail only one of
them. Let us consider the principal cones of cones [β) and [γ ). We define α to be the
set { c : ∃a ≤ c∀b ∈ β.a ◦ b ∈ γ }. By monotonicity of ◦, α ∈ C. Furthermore, α is
obviously minimal among the cones for which R◦αβγ and at the same time β ′ ∈ [β)
ensures γ ′ ∈ [γ ). Therefore, indeed [α) = {α′ : ∀β ′γ ′((R◦α′β ′γ ′ ∧ β ′ ∈ [β)) ⇒
γ ′ ∈ [γ )) }. Since α is the only minimal such set, it is unique.
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6 Let us take [α), a principal cone of cones. We define β to be { c : ∃a(a ∈ α ∧ a∗

≤ c) }. Since ∗ is isotone, β is upward closed, and clearly the minimal set which
ensures that α′R∗β ⇒ α′ ∈ [α) is true. The tonicity of R∗ then gives that
[β) = {β ′ : ∀α′(α′R∗β ′ ⇒ α′ ∈ [α)) }. Antisymmetry of ⊆ ensures that β is
unique. �

Since some of the conditions imposed on a structure involve propositions in an es-
sential way, we prove completeness after we introduce the notion of admissible as-
signments. We limit the set of potential assignments because, as we saw before, a
model is built of stable sets of information states (rather than arbitrary sets of possi-
ble worlds—as in ordinary modal logics). In other words, we want to make sure that
A ranges over sets that may enter a model (in particular, when it comes to conditions
(11) and (12)).

Definition 6.19 (Admissible assignments) s is an admissible assignment on the
canonical structure F if s(p) ∈ P (C)g, s(t) = [[t)), and s(F) = [[F)).

In Lemma 6.18 we proved that the canonical structure has all properties defined in
(24) – (29), and in Lemma 6.10 we proved these properties to guarantee the stability
of the operations. Therefore, any admissible assignment s on the canonical structure
can be extended to a valuation hs ; however, the so obtained valuation need not be the
canonical valuation.

Lemma 6.20 Let s be an admissible assignment and hs its extension to a valuation.
If ∀α(α ∈ hs(A)⇒ a ∈ α) then ∀β(β ∈ hs(A∗)⇒ a∗ ∈ β).

Proof We argue contrapositively that the statement holds. Suppose ∃β(β ∈
hs(A∗)∧a∗ /∈ β). By the definition of hs(A∗), ∀α(αR∗β ⇒ α ∈ hs(A)). Consider
the cone α, which is minimal with respect to inclusion among those for which αR∗β
is true. Assume, nonetheless, that a ∈ α. This means that for some b ≤ a, b∗ ∈ β.
But by monotonicity then a∗ ∈ β which contradicts to the conjunct a∗ /∈ β. Hence,
∃α(α ∈ hs(A) ∧ a /∈ α) which concludes the proof. �

Lemma 6.21 (∗-structure) The canonical structure F with a valuation hs (where
hs is the valuation that extends an admissible assignment s) is a ∗-structure.

Proof Lemma 6.17 provides the first half of the proof. It remains to show that
given a valuation hs the conditions (11) and (12) are also satisfied on the canonical
structure.

Let us assume that γ ∈ hs(A∗ ◦ A∗), and let a be an element of all δ ∈ hs(A).
Then by Lemma 6.20 a∗ ∈ α, β (where R◦αβγ and α, β ∈ hs(A∗)). By the def-
inition of R◦, a∗ ◦ a∗ ∈ γ , that is, a∗ ∈ γ . Further, by the definition of R∗, it
follows that a ∈ ϑ whenever ϑR∗γ . Since the argument may be repeated without
any change for the generators of the minimal cone in hs(A), ϑ ∈ hs(A), and so
∀ϑ(ϑR∗γ ⇒ ϑ ∈ hs(A)), which is the same as γ ∈ hs(A∗).

For the last condition (12) let us suppose the antecedent. Let us assume that
A is [ε). There is an a such that a ∈ ε but a /∈ γ . Since R◦αβγ implies
R◦αεγ , by the definition of R◦ we know that t /∈ α. We define δ as the set
{ c : ∃b(b∗ ∈ α ∧ b ≤ c) }. ∗ is isotone; hence δ ∈ C. Further, in order to have
R◦δεϑ we define ϑ = { c : ∃ab(a ∈ δ ∧ b ∈ ε ∧ a ◦b ≤ c) }. The monotonicity of ◦
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ensures that ϑ ∈ C, too. Let us assume, for a reductio, that ε ⊆ ϑ . Since, for any a,
a = t ◦ a, the inclusion implies t ∈ δ, which is a contradiction (t = t∗ /∈ α, δ). �

Definition 6.22 The canonical valuation h is defined as

h(a) = {C : C ∈ C ∧ a ∈ C }.

Theorem 6.23 (Completeness) The canonical valuation is an isomorphism.

Proof From Lemmas 6.17 and 6.18 we know that the canonical structure is a distin-
guished, inverted, complete, as well as an R←,◦,→◦ -fit and R∗-fit structure. Clearly,
h(p) ∈ P (C)g by Lemma 6.16. Therefore, by Lemma 6.10, h is indeed a valua-
tion provided it is a homomorphism. From Theorem 6.14 we can extract for all the
operations—except for ∨—that h is a homomorphism and also preserves the con-
stants. (The definitions of the operations (save that of ∨) are the same as before.)

Now we prove that h preserves ∨ too. Let us assume that γ ∈ ha ∨ hb, that is,
∀x(x ∈ �ha∩�hb⇒ x ⊆ γ ). By definition of h, γ ∈ ha if and only if a ∈ γ , that is,
ha = [[ a )); similarly, hb = [[ b )). Since the least upper bound of { a, b } is a ∨ b,
x ∈ �ha ∩ �hb whenever x ⊆ [a ∨ b). Therefore, γ ⊇ [a ∨ b), and so a ∨ b ∈ γ .
The steps may be traced back, and so h(a ∨ b) = ha ∨ hb.

Then by Lemma 6.21 the canonical structure with the canonical valuation h is a
∗-structure. Thus it only remains to be shown that h is 1-1, for which Theorem 6.14
step 2 suffices. �

The following claim, a consequence of Lemma 6.21 and of the proof of the com-
pleteness theorem (Theorem 6.23), may be viewed as an analogue of the claim that a
normal modal logic is canonical. The latter means that if the Lindenbaum algebra of
a logic is in a class of algebras, then the complex algebra of the canonical structure of
the Lindenbaum algebra is in that class too. To put it differently, any assignment of
(the equivalence classes of) propositional variables into elements of the complex al-
gebra of the canonical structure extends to a homomorphism. That is, under arbitrary
valuations the complex algebra of the canonical structure contains a homomorphic
image of the Lindenbaum algebra of the logic. The disanalogy between the case of
ACT and modal logics stems from what the canonical embedding algebra for ACT
turns out to be and what the complex algebra of the canonical structure would be.
(In the case of normal modal logics these two algebras are the same.)

We contend that as a first approximation to the notion of canonicity (when a BA
is not a reduct of the Lindenbaum algebra) the algebra suitable as an embedding
algebra is the algebra of stable sets of the canonical structure. Then, of course, the
more restricted notion of assignment that we introduced under the name “admissible
assignment” is immediately justified.

Corollary 6.24 ACT is sound on the canonical structure whenever hs is a valuation
that extends an admissible assignment s.

Now we interpret informally the semantics we gave in this section. The propositions
are characterized by the information states that are implied by a proposition. We
should point out that there might be information states that are neither excluded nor
implied by a certain proposition; thus the role of the two functions � and � is to
allow us to move from a set of information states that are implied to those that are
excluded—via �, and vice versa—via �. The information states that are excluded
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by A ∨ B—a choice between A and B—are exactly those that are excluded by both
A and B; that is, in �A ∩ �B. Then we get to the set of states that are implied by
moving back, so to speak, which is what (�A ∩ �B)� means. The interpretation of
sequencing actions is straightforward. If the relation R◦ allows passing from states
α and β which are implied by the propositions A and B, respectively, to a state γ ,
then γ is implied by A ◦ B. In the case of→,←, and ∗ it is easier to consider when
an information state is not implied by those complex propositions. An information
state is not implied by the action ‘B if ever A’ (A→ B) when A implies a state from
which one can get to a state—via R◦—that is not implied by B. Dually, the action
‘had A then B’ (B ← A) implies an information state α when from any state implied
by A there is a path through R◦ and α to some state in B. Lastly, an information state
is not implied by the iteration of A whenever that state can be reached via R∗ from a
state not implied by A. In other words, state β is implied by A∗ when β is reachable
from α only if α is an information state implied by the proposition A.

We conclude this section by listing the modifications that are necessary to obtain a
semantics that is not only sound but also complete for KL10. Since ACT is a conserva-
tive extension of KL10, the conditions that concern→ and← have to be dropped. But
some conditions have to be added to compensate for some implied losses. In Defi-
nition 6.1, condition (7) should include that ◦ is additive; in an abbreviated form the
formulas look like A◦(B∨C) ⊆ (A◦B)∨(A◦C) and (B∨C)◦A ⊆ (B◦A)∨(C◦A).
Clause (11) should be replaced by two clauses, namely,

∃αβ(R◦αβγ ∧ α ∈ A ∧ ∀δ(δR∗β ⇒ δ ∈ A)) ⇒ ∀δ(δR∗γ ⇒ δ ∈ A)

and

∃αβ(R◦βαγ ∧ α ∈ A ∧ ∀δ(δR∗β ⇒ δ ∈ A)) ⇒ ∀δ(δR∗γ ⇒ δ ∈ A).

Condition (12) should be replaced similarly by two conditions, which are in short-
hand form

A ◦ B ⊆ B ⇒ A∗ ◦ B ⊆ B

and

B ◦ A ⊆ B ⇒ B ◦ A∗ ⊆ B.

In Definition 6.8, (27) and (28) are now superfluous, as is the closure for→ and← in
the following definition of a model. Similarly, in Definition 6.3 and Lemmas 6.6 and
6.10, the clauses concerning the two residuals are to be omitted. In Theorem 6.11,
step 3 is to be dropped, and the distributivity of ◦ is to be inserted—which is guar-
anteed by the new frame condition and the definition of ◦. Also steps 6 and 7 should
be replaced by showing (v) and (vi) (from the definition of KA10). In the first com-
pleteness theorem (6.14) the only change is that 1.4 is omitted. As a preliminary to
the second completeness theorem, in Lemma 6.17, step 7 should include a proof that
the “half” distributivity of ◦ over ∨ holds. In Lemma 6.18 two cases of fitness are,
obviously, to be omitted. Lastly, in Lemma 6.21 it should be proven that the new
conditions (which replace (11) and (12)) hold. Having carried out all these modifi-
cations, there are no changes to be made to Theorem 6.23—because of the way we
structured the presentation of the second completeness theorem. (We leave filling in
the details to the reader.)
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7 Star Semantics

Gaggle theory is about representing families of operations that are of the same arity
and are appropriately linked (as we sketched in Section 3). Gaggles and partial
gaggles may also include constants that are related to an operation in a family, for
example, as are identities and combinators. In some applications constants were used
to define new (with respect to the family) operations—as in the case of intuitionistic
logic where negation is definable from a constant falsity and implication. Now we
show that ∗, thought of as an operation which is “derived” from concatenation (◦),
can be modeled using the same relation that models fusion.

We will define the ∗ operation in two stages, but before that we return to the
Lindenbaum algebra and introduce some notation to simplify some expressions.

Definition 7.1 The nth power of a in the Lindenbaum algebra of ACT is defined as
follows.

(1) a0
= t

(2) an+1
= a ◦ an (whenever n ≥ 0)

This notation is well in accordance with the usual definitions in formal language
theory. a0 corresponds to the empty string of which t is indeed an analogue.
a1
= a ◦ t = a and an are completely usual in formal language theory except that ◦

is ordinarily omitted from the notation.

Lemma 7.2 In the Lindenbaum algebra of ACT,

∀n ∈ N. an
≤ a∗.

Proof For the basis we note that t ≤ a∗ by a (sub)equation in (iv). If an
≤ a∗, then

a ◦ an
≤ a ◦ a∗ by monotonicity, and since a ◦ a∗ ≤ a∗, the proof is finished. �

Lemma 7.3 Let A be the Lindenbaum algebra of action logic. There is no x such
that an

≤ x, for all n ∈ N, and x < a∗.

Proof Consider the relational algebra R which contains all the binary relations on
two elements o1 and o2. There are 16 relations in R, with { 〈o1, o1〉, 〈o2, o2〉 } = t ,
∅ = F, ∪ = ∨, ◦ = ◦, and ∗ = ∗ (that is, composition is ◦ and reflexive transitive
closure is ∗). The implications are added by the definitions r1 → r2 = { 〈x, y〉
: ∀z(〈y, z〉 ∈ r1⇒〈x, z〉 ∈ r2) }, r2 ← r1={ 〈x, y〉 : ∀z(〈z, x〉 ∈ r1⇒〈z, y〉 ∈ r2) }
(cf. [25]). (Complementation, converse, and intersection are as usual.)

To see that there is no x as specified in the claim, let us consider, for instance,
a = { 〈o1, o2〉, 〈o2, o1〉 }. Then a0

= { 〈o1, o1〉, 〈o2, o2〉 }, a1
= a—of course—and

a2
= a0. The only element which is greater than both of these elements is the total

relation on { o1, o2 }, indeed, the ∗ of the element we started with. (We leave the
inspection of the other elements to the interested reader.) �

Definition 7.4 A structure for ACT is F = 〈U,v, R◦, ≶ ,T, ι〉 where the elements
of the six-tuple satisfy conditions (1) – (8). If F additionally satisfies (9) and (10)
then it is called a ∗-structure.20

(1) ∅ 6= U ; v∈ U 2
; R◦ ⊆ U 3

; ≶ ⊆ U 2
; T, ι ∈ U

(2) (α ≶β ∧ α v α′) ⇒ α′ ≶β and ∃α∀β. α ≶β

(3) ∀β. β v T ∧ ∀α(∀β. β v α ⇒ α = T)
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(4) (α v β ∧ β v γ ) ⇒ α v γ and α v α

(5) R◦↓↓↑, that is,
(R◦αβγ ∧ α′ v α ∧ β ′ v β ∧ γ v γ ′) ⇒ R◦α′β ′γ ′

(6) ∃α(R◦αββ ∧ ι v α) and (R◦αβγ ∧ ι v α) ⇒ β v γ
∃α(R◦βαβ ∧ ι v α) and (R◦αβγ ∧ ι v β) ⇒ α v γ

(7) (R◦αβη ∧ R◦ηγ δ) ⇒ ∃ε(R◦βγ ε ∧ R◦αεδ)
(R◦βγ ε ∧ R◦αεδ) ⇒ ∃η(R◦αβη ∧ R◦ηγ δ)

(8) (R◦αβγ ∧ α = T) ⇒ γ = T
(R◦αβγ ∧ β = T) ⇒ γ = T

(9) A∗ ◦ A∗ ⊆ A∗

(10) [ ι ) ∨ A ◦ B ⊆ B ⇒ A∗ ⊆ B

Let h be a valuation. The operations—except ∗—are as in Definition 6.3 (17) – (21);
the constants are interpreted as in (15) – (16). Additionally, h(An) and h(A∗) are
defined as follows.

Definition 7.5 We define inductively h(An) and based on this definition we define
h(A∗).

(i) h(A0) = [ ι )
(ii) h(A1) = h(A)

(iii) h(An+1)= { γ : ∃αβ(R◦αβγ ∧ α ∈ h(A) ∧ β ∈ h(An)) } (n ≥ 1)
(iv) h(A∗) = { δ : ∀γ (∃n(n ∈ N ∧ γ ∈ h(An)) ⇒ γ ≶ δ) }�

Lemma 7.6 (Power and ∗ are hereditary operations) If h(A) ∈ P (U )↑ then
h(An), h(A∗) ∈ P (U )↑.

Proof The first can be proven inductively. h(A0) and h(A1) are upward closed.
h(An+1) is upward closed too—h(An) is such by the hypothesis of induction, and
since so is h(A), the tonicity of R◦ ensures that h(An+1) ∈ P (U )↑. The definition
obviously ensures that the claim is true for h(A∗). �

Lemma 7.7 (Stability of h(An) and h(A∗)) Let F be a distinguished, inverted,
complete R◦◦-fit structure. Then h(A) ∈ P (U )g implies h(An) ∈ P (U )g and
h(A∗) ∈ P (U )g.

Proof

1 From Lemma 6.10 we know that h(A0) (h(t)) is stable because of the assumption
that the structure is inverted. h(A1) = h(A) ∈ P (U )g by the assumption of the
lemma. Assuming that h(An) is stable, the definition of h(An+1) and the structure’s
R◦◦-fitness together with Lemma 6.10 ensure that h(An+1) is stable too.

2 Completeness means that for an arbitrary set of stable sets there is a unique in-
formation state which generates a cone that has the same �-image as the intersection
of the stable sets. Since ∗ is the � -image of this set, it is stable. �

Theorem 7.8 On a distinguished, inverted, complete, R←,◦,→◦ -fit ∗-structure F

with a valuation h added (such that h(p) ∈ P (U )g and h satisfies (15) – (20) (from
Section 6)) all the equations of the Lindenbaum algebra of action logic hold.
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Proof Note that we changed only the conditions relating to the ∗, and so the first
part of the proof is the same as steps 1 – 4 in the proof of Theorem 6.11.21

1 Obviously, h(t) ⊆ h(A∗) and h(A) ⊆ h(A∗) by the two base cases of the
definition of h(An), and further, by the definition of h(A∗).

2 Since h(A) ⊆ h(A ∨ B), clearly, X ∩ h(A) ⊆ X ∩ h(A ∨ B) (for any X ). The
latter suffices for h(A∗) ⊆ h((A ∨ B)∗) to hold.

3 The last two conditions take care of the remaining equalities. �

Definition 7.9 The canonical structure F is 〈C,⊆, R◦,⊆, [F), [ t )〉 where C,⊆,
and R◦ are as in Definition 6.13, and [F), [ t ) are the principal cones generated by
{ F } and { t }.

We assume that the notions of admissible assignment and valuation from the previous
section are adapted (with the obviously needed modifications) to the present frame.

Lemma 7.10 Let s be an admissible assignment and hs its extension to a valuation.
Then

(i) (∀α ∈ hs(A). a ∈ α∧∀β ∈ hs(B). b ∈ β)⇒∀γ (γ ∈ hs(A◦B)⇒a◦b ∈ γ );
(ii) ∀α(α ∈ hs(A) ⇒ a ∈ α) ⇒ ∀β(β ∈ hs(An) ⇒ an

∈ β);
(iii) ∀α(α ∈ hs(A) ⇒ a ∈ α) ⇒ ∀β(β ∈ hs(A∗) ⇒ a∗ ∈ β).

Proof

1 Let us assume the antecedent together with the negation of the consequent. Then
∃αβ(R◦αβγ ∧ α ∈ hs(A) ∧ β ∈ hs(B)). It follows that a ∈ α, and b ∈ β; hence by
the definition of R◦ also a ◦ b ∈ γ—which is a contradiction.

2 hs is a valuation, and so ∀α ∈ hs(t). t ∈ α. For n = 1 the claim is a propositional
tautology. From n we move to n + 1 using the previous step.

3 Using the definition of ∗ together with Lemma 7.3 and the previous step in this
proof, indeed, a∗ ∈ β. �

Lemma 7.11 The canonical structure F with a valuation hs , which is an extension
of an admissible assignment, is a ∗-structure.

Proof

1 Let us assume that γ ∈ hs(A∗ ◦ A∗), that is, ∃αβ(R◦αβγ ∧ α ∈ hs(A∗) ∧ β ∈
hs(A∗)). Since hs(A∗) = [δ) for some δ, we also have R◦δδγ ∧ δ ∈ hs(A∗) by
R◦↓↓↑. From Lemma 7.10 we know that if a ∈ ϑ for all ϑ ∈ hs(A), then a∗ ∈ δ.
By the definition of R◦, a∗ ∈ γ . The definition of hs(A∗) means that it is generated
by a cone of the form [{ a1, . . . , an, . . . }). Therefore, a∗ ∈ γ (for any a that is an
element of the cone that generates hs(A)) is sufficient for γ ∈ hs(A∗).

2 Let us assume that hs(t ∨ A ◦ B) ⊆ hs(B). Of course, for any valuation
hs(t) = [[ t )); hence t ∈ ϑ for all ϑ ∈ hs(t). Assuming a ∈ α ∈ hs(A) and
b ∈ β ∈ hs(B), by Lemma 7.10, a ◦ b ∈ γ ∈ hs(A ◦ B). The inclusion in the first
assumption guarantees that both t ≤ b and a ◦ b ≤ b. In the Lindenbaum algebra
then a∗ ≤ b.22 However, by the definition of hs(A∗), a∗ must be in δ ∈ hs(A∗)
and so hs(A∗) ⊆ hs(B) as we wanted to show. �
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Definition 7.12 The canonical valuation h is defined as

h(a) = {C : C ∈ C ∧ a ∈ C }.

Lemma 7.13 h(an) = (ha)n (for all n ∈ N), that is, h is a homomorphism for the
power operation.

Proof Let us assume that γ ∈ h(an). Then an
∈ γ by the definition of h.23

(i) If n = 0 then an
= t , that is, t ∈ γ . Since ι canonically is [ t ) and

h(a0) = [[ t )), γ ∈ (ha)0.
(ii) If n = 1, then we have h(a1) = ha = (ha)1.

(iii) Let the hypothesis of induction be that the claim is true for n. Since
an+1

∈ γ , surely R◦[a)[an)γ . By the hypothesis of induction [an) ∈ (ha)n

and [a) ∈ ha. Therefore, ∃αβ(R◦αβγ ∧ α ∈ ha ∧ β ∈ (ha)n). This means
exactly that γ ∈ (ha)n+1.

For the converse, let us assume that γ ∈ (ha)n .
(i) Let n = 0 to start with. Then (ha)n = [[ t )), and since a0

= t , γ is indeed
an element of h(a0).

(ii) Let n = 1. Again, ha = ha.
(iii) Lastly, if the claim is true for n, then we have by inductive hypothesis that

∃αβ(R◦αβγ ∧ α ∈ ha ∧ β ∈ (ha)n), and so β ∈ h(an). The definition of R◦
implies that a ◦ an

∈ γ , since a ∈ α and an
∈ β. Thus, γ ∈ h(an+1) as we

wanted to show. �

Theorem 7.14 The canonical valuation h is an isomorphism.

Proof In view of the proof of the previous completeness theorem we only have to
prove that h preserves ∗. (Note that we proved in Lemmas 6.17 and 6.18 that the
current canonical structure is a distinguished, complete, inverted R←,◦,→◦ -fit struc-
ture. In Lemma 7.11 we proved that the canonical structure with a valuation is a
∗-structure.)

Let us assume that δ ∈ h(a∗). Then a∗ ∈ δ. Since an
≤ a∗ for all n ∈ N, and

by the preceding lemma h preserves the power operation, a∗ is in the intersection
of the h(an)s. Thus, δ ∈ (ha)∗. For the converse let us assume the latter. Since
δ ⊇

⋂
n∈N[[ a

n)), any x such that an
≤ x for all ns is an element of δ. Therefore,

a∗ ∈ δ, and so δ ∈ h(a∗). �

Corollary 7.15 With a valuation the canonical structure yields a model of ACT.

We conclude this section noting that to obtain an adequate semantics for KL10 only
Definition 7.4 and the second step in Lemma 7.11 need a slight adjustment. Namely,
the conditions on the structure have to be modified as before making ◦ additive
and replacing (9) and (10) with [ ι ) ∨ A ◦ A∗ ⊆ A∗, [ ι ) ∨ A∗ ◦ A ⊆ A∗ and
A ◦ B ⊆ B ⇒ A∗ ◦ B ⊆ B, B ◦ A ⊆ B ⇒ B ◦ A∗ ⊆ B, respectively. Then in
Lemma 7.11 the new clauses have to be proven to hold. (We leave the few omitted
details to be filled in by the reader.)

8 Extensions of Gaggle Theory

This paper may be seen to continue a program begun in [12] and [13] by Dunn—
the results of which were applied to particular logics in further papers, for instance,
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Dunn [16] and Dunn [17].24 The first paper [16] showed how to represent relation
algebras using Routley-Meyer frames. The second paper [17] gave a philosophical
interpretation that can be put on these kinds of representations, pointing out that a
ternary relation on “states” can be viewed as an indexed binary relation that is a
transition between states. Thus a set of states (a “proposition”) can be simultane-
ously viewed as static and dynamic, and one can model von Neumann’s concept of
a “stored program.” This paper additionally posed the problem of modeling action
logic (representing action algebras) as well as modeling Pratt’s dynamic logic and
Hoare’s logic using Routley-Meyer frames. The present paper solves the first of
these problems.

In conclusion we would like to emphasize once again some of the ways in which
we extended—on the examples of action logic and Kleene logic—gaggle theory.
Our first semantics showed how to dualize gaggles to obtain a semantics for a join
semi-lattice ordered monoid—[13] considered (only) meet semi-lattices with fusion.
Our second semantics showed how to add to a partial gaggle only one of the lattice
operations.

In both semantics where we used a separate relation to model ∗ we relied on
distribution patterns in a way that was not predicted by gaggle theory itself. More
precisely, we observed that the only distribution pattern that could hold for ∗ on a
join semi-lattice—namely, ∨ −→ ∨—does not hold. Therefore, we based the choice
of the modeling on the preservation (or the lack of preservation) of the least (and in
the case of action logic also on the greatest) element of the Lindenbaum algebra.
(Incidentally, we also modeled the least element differently than usual. We contend
that our modeling is the general one, since it does not use special properties of the
empty set—which are customarily exploited in definitions of normal operations on
lattices with a bottom element.)

Lastly, in the star semantics we showed that a partial gaggle may be extended with
an operation of different arity when the new operation is inductively definable—as
the power operation—or the new operation is the closure of an inductively definable
operation—as the Kleene star operation.

Notes

1. A comprehensible introduction to FSAs, regular languages, and regular expressions (and
more) is, for instance, Sipser [26].

2. We use the names KL10 and KA10 to honor Kozen’s claim that there were nine other
inequivalent definitions of Kleene algebras before his—a claim we did not attempt to
disprove or verify.

3. We use p, q, r, p0 , . . . for propositional variables of the object language and ϕ,ψ, χ,
ϕ0 . . . as metavariables for well-formed formulas (wffs). We assume familiarity with
basic logical notions and Hilbert-style axiom systems, in particular. (See, e.g., Curry [9]
and Enderton [21].) Accidentally, KL10 is neither of Kleene’s two well-known three-
valued logics, the weak nor the strong one.

4. Kozen and Pratt—by and large—use different notation than we do. We treat KL10 and
ACT as nonclassical logics and use a notation that (probably) originated in relevance
logics and by now is widely accepted in substructural logics. In particular, in naming the
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residuals we follow Anderson and Belnap [2], §18, not Pratt. (However, note that ∗ here
is very different from ∗ in the syntax (or in the semantics) of some relevance logics.)

5. A monoid has a binary associative operation and an identity element. For standard defi-
nitions of algebraic notions see, for instance, Grätzer [22] and Dunn and Hardegree [18].

6. We use the same symbol for an operation in the Lindenbaum algebra as we used for
the connective from which it originated. However, instead of [ϕ], [ψ], . . . we denote
equivalence classes of formulas simply by a, b, c . . ..

7. For various semantics that involve ideals see Birkhoff and Frink [8], Urquhart [28], All-
wein and Dunn [1], Hartonas and Dunn [23], [6], and Bimbó [3]. We note that ideals may
not be necessary to define a closure operation. For example, in one of the semantics in
[6] the closure operation is defined from a proto-order (which is canonically exemplified
by set inclusion).

8. ∗ has no distribution pattern since it does not distribute over ∨ in the model on regular
sets, and, of course, there is no conjunction in the language. (Actually ∗ does not dis-
tribute over the intersection of regular languages either.) ∗ does not preserve F, because
F∗ = t .

9. For a complete exposition of generalized Galois logics (gaggle theory) and some of its
applications we refer the interested reader to Dunn’s papers [12], [13], [14], and [15].

10. For different formulations of Zorn’s lemma see, for example, Stoll [27], p. 116, or Dunn
and Hardegree [18], p. 30. Zorn’s lemma is commonly used in semantics to obtain a
suitable ultra, prime, or join irreducible filter, or a maximally disjoint pair of filters and
ideals. We use the lemma to define appropriate ideals because there seems to be no
straightforward way to define an α and a β from the information that a ◦ b /∈ γ . (The
problem with a Lindenbaum-style construction here is that it is not clear what ordering of
the wffs to use to ensure that both (12) is satisfied and the minimally necessary additions
are made to α and β.)

11. Of course, from the point of view of “size” these ideals are minimal, but from the point
of view of the ordering ⊆˘ they are maximal elements.

12. Since we have to distinguish between two sorts of objects, we will use the terms ‘positive
states’ and ‘negative states’, mostly for mnemonic purposes. Lowercase Greek letters
range over positive states, whereas lowercase Roman letters are variables for negative
states. A, B,C, . . . are subsets of U+.

13. Notice that ∅ does not play a role in the representation; ∅ is not stable due to the second
half of condition (2).

14. We excluded ∅ only because it has no role to play in the representation.

15. The definition of h differs from that in [6], however, very much like the valuation h in
the first representation there—in its spirit.
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16. Of course, in modal logics (e.g., in a frame for any of the unimodal normal modal logics)
there is only one binary relation, whereas here there are two relations; moreover, one of
them is ternary. However, in ACT there are binary intensional operations in addition to a
unary ∗ operation.

17. We pointed out that ∅ /∈ P (U+)g. It is easy to see that ∅ /∈ P (C)g because the
Lindenbaum algebra has a least element. Indeed, (�∅)� = C�

= { [F) }.

18. Also, the present proof is somewhat different from the other one, although the proofs,
perhaps, merely reflect different ways of looking at algebras that are similar to an extent.

19. A cocone is the dual of a cone, that is, a downward closed subset.

20. We use here ◦, ∨, and ∗ as abbreviations—to enhance readability—which are meant to
be understood in the sense of the previous definition for ◦ and ∨, and in the sense of the
following definition (Definition 7.5) for ∗.

21. A reader who scrutinized the two semantics probably noticed that in the second we
postulated a single set of information states only. However, nothing in the proof of
Theorem 6.11 depended on U− and U+ being distinct—indeed the second canonical
construction identified the positive and negative states.

22. The quasi equation t∨a◦b ≤ b ⇒ a∗ ≤ b holds in the Lindenbaum algebra. (Cf. [25].)

23. The definition of an was inductive; therefore, our proof is inductive too—a situation
somewhat unusual in the context of the semantics of nonclassical logics only because
ordinarily operations are not inductively defined.

24. We singled out the two papers that are motivationally most closely related to our treat-
ment of KL10 and ACT. However, we could mention a whole series of papers which
define semantics for various logics by generalizing in one way or other the Jónsson-
Tarski-Kripke-Routley-Meyer-Dunn approach. (From among the references we could
list here also [1], [3], [4], [5], [6], [14], [15], [16], [17], [19], [23].)
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