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Polynomially Bounded Recursive Realizability

Saeed Salehi

Abstract A polynomially bounded recursive realizability, in which the re-
cursive functions used in Kleene’s realizability are restricted to polynomially
bounded functions, is introduced. It is used to show that provably total func-
tions of Ruitenburg’s Basic Arithmetic are polynomially bounded (primitive)
recursive functions. This sharpens our earlier result where those functions were
proved to be primitive recursive. Also a polynomially bounded schema of
Church’s Thesis is shown to be polynomially bounded realizable. So the schema
is consistent with Basic Arithmetic, whereas it is inconsistent with Heyting
Arithmetic.

1 Introduction

One of the strongest tools for studying intuitionistic theories is realizability. Real-
izability was introduced by Kleene (see, e.g., Troelstra & van Dalen [15] for the
history and definitions) and later was generalized to measure the strength of various
subclassical theories. Here we are concerned about arithmetical realizability, that
is, realizability by natural numbers, which serves as a Gödel coding of recursive
functions. A common feature of all these generalizations is restricting the recursive
functions in Kleene’s “original” realizability to a certain class of recursive functions.

In López-Escobar’s “Prim-realizability” for negationless arithmetic [7] and in
Damnjanovic’s “strictly primitive recursive realizability” ([1] and [4]) those recur-
sive functions are restricted to primitive recursives. The other realizabilities intro-
duced by Damnjanovic are realizability by <ε0-recursive functions in [2] and re-
alizability by elementary functions in [3]. In Plisko’s 6n-realizability [11] the re-
cursive functions are restricted to those functions whose graphs are definable by
6n-formulas.

A new realizability by primitive recursive functions was introduced by Salehi [13].
It was applied to Basic Arithmetic BA, a theory built on Basic Logic, a sub-
intuitionistic logic in which the modes ponens rule is not valid in its general form
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(see Ruitenburg [12] where BA was introduced). This primitive recursive realiz-
ability was further studied by Viter ([16], [17], [18], and [19]), and some relations
among the above mentioned realizabilities were recently investigated by Park ([8],
[9], and [10]).

A well-known method of measuring the strength of a theory is characterizing its
provably total functions. An application of the soundness of Heyting Arithmetic HA
with respect to Kleene’s recursive realizability is a specification of the provably total
functions of HA: they are all recursive. This has been refined by an application of the
soundness of HA to Damnjanovic’s <ε0-recursive realizability [3]: all the provably
total functions of HA are (exactly) <ε0-recursive functions.

In this paper, a result of [13], that provably total functions of BA are primitive
recursive, is sharpened by applying a realizability by polynomially bounded recur-
sive functions, abbreviated as P-realizability. Informally speaking, a formula is P-
realizable if and only if it is efficiently verifiable, that is to say, its truth can be jus-
tified by polynomially computable functions. We note that a polynomially bounded
recursive function is primitive recursive. So P-realizability is stronger than the other
realizabilities mentioned above. This could be interesting from the Complexity The-
ory point of view since it deals with easily computable functions.

The essential facts about the applicability of P-realizability are

1. polynomially bounded recursive functions are definable by an arithmetical
formula (denoted by P (x) in Section 3), and

2. all S-m-n functions can be chosen to be polynomially bounded in terms of
the variables (the details are elaborated in Section 3).

Though BA is not sound with respect to P-realizability, a subtheory of BA, called
weakened Basic Arithmetic BAw is sound with respect to this realizability. Since the
provably total functions of BA and BAw coincide, it follows that the provably total
functions of BA are polynomially bounded (primitive) recursive functions.

In Section 2, the axioms and rules of BA are listed, and some basic facts about
BA and BAw are proved. In Section 3, P-realizability is introduced and the sound-
ness of BAw with respect to it is proved. As a result it follows that the provably
total functions of BA are polynomially bounded recursive functions. Finally, in Sec-
tion 4, a polynomially bounded version of the arithmetical form of Church’s Thesis
is introduced and is proved to be P-realizable and consistent with BA, while it is
intuitionistically (and classically) false.

2 Basic Arithmetic

Basic Arithmetic is built over Basic Logic in the same way that Heyting Arithmetic
and Peano Arithmetic are built over intuitionistic logic and classical logic, respec-
tively.

The nonlogical symbols of Basic Arithmetic are a constant ‘0’, a unary function
symbol ‘S’ for successor, and the binary function symbols ‘ · ’ and ‘+’. The language
of Basic Logic contains two logical constants, ⊥ (Falsehood) and > (Truth), and the
logical connectives ∧, ∨, ∃, and ∀. Terms, atomic formulas, and formulas are defined
as usual, except that for universal quantification we have the more elaborate rule: if
A and B are formulas and x is a finite (possibly empty) sequence of variables, then
∀x(A → B) is also a formula. Free variables are defined in the obvious way. We
may write A → B for ∀(A → B), that is, implication is universal quantification with
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an empty sequence of variables. Given a sequence of variables x without repetitions,
we write Ax

t for the formulas that result from substituting the terms of t for all free
occurrences of the variables of x in the formula A (see [12], Section 2).

Axioms of BA (over the sequent calculus)

Ax1 A ⇒ A

Ax2 A ⇒ >

Ax3 ⊥ ⇒ A

Ax4 A ∧ ∃x B ⇒ ∃x(A ∧ B) where x is not free in A

Ax5 A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ (A ∧ C)

Ax6 ∀x(A → B) ∧ ∀x(B → C) ⇒ ∀x(A → C)

Ax7 ∀x(A → B) ∧ ∀x(A → C) ⇒ ∀x(A → B ∧ C)

Ax8 ∀x(B → A) ∧ ∀x(C → A) ⇒ ∀x(B ∨ C → A)

Ax9 ∀x(A → B) ⇒ ∀x(Ax
t → Bx

t )

where no variable in t is bounded by a quantifier of A or B

Ax10 ∀x(A → B) ⇒ ∀y(A → B)

where no variable in y is free in the left-hand side

Ax11 ∀yx(B → A) ⇒ ∀y(∃x B → A) where x is not free in A

Ax12 ⇒ x = x

Ax13 x = y ∧ A ⇒ Ax
y for atomic A

Ax14 S(x) = S(y) ⇒ x = y

Ax15 S(x) = 0 ⇒ ⊥

Ax16 ⇒ x + 0 = x

Ax17 ⇒ x · 0 = 0

Ax18 ⇒ x + S(y) = S(x + y)

Ax19 ⇒ x · S(y) = (x · y) + x

Ax20 ∀xy(A → Ax
Sx ) ⇒ ∀xy(Ax

0 → A)

Rules

Ru1 A ⇒ B B ⇒ C
A ⇒ C

Ru2 A ⇒ B A ⇒ C
A ⇒ B ∧ C

Ru3 A ⇒ B ∧ C
A ⇒ B

A ⇒ B ∧ C
A ⇒ C

Ru4 B ⇒ A C ⇒ A
B ∨ C ⇒ A

Ru5 B ∨ C ⇒ A
B ⇒ A

B ∨ C ⇒ A
C ⇒ A
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Ru6
A ⇒ B

Ax
t ⇒ Bx

t
in which no variable in t is bounded in A or B

Ru7 B ⇒ A
∃x B ⇒ A where x is not free in A

Ru8 ∃x B ⇒ A
B ⇒ A where x is not free in A

Ru9 A ∧ B ⇒ C
A ⇒ ∀x(B → C) where no variable in x is free in A

Ru10
A ⇒ Ax

Sx

Ax
0 ⇒ A

The Weakened Basic Arithmetic, denoted by BAw, is defined to be the sequent theory
axiomatized by the above axioms and rules except Ru10. However, BAw is closed
under a weaker version of Ru10.

Lemma 2.1 The theory BAw is closed under the rule
A ⇒ Ax

Sx
Ax

0 ⇒ ∀x(> → A)
.

Proof By Ru9, from A ⇒ Ax
Sx the sequent ⇒ ∀x(A → Ax

Sx ) follows and this
by Ax20 and Ru1 implies ⇒ ∀x(Ax

0 → A). On the other hand, by Ax1 and
Ru9, Ax

0 ⇒ ∀x(> → Ax
0) can be proved. Hence, from Ax8, Ru2, and Ru1,

Ax
0 ⇒ ∀x(> → A) follows. �

In fact, BAw is not much weaker than BA and it proves the universal closure formulas
of the BA-provable sequents.

Theorem 2.2 For a sequent A ⇒ B, if BA ` A ⇒ B, then there exists a sequence
of variables x such that BAw

`⇒ ∀x(A → B).

Proof This is essentially Proposition 6.1 of [12] whose proof is mainly based on
Proposition 4.13 (of [12]). An easy examination of the proof shows that in deduc-
ing BA `⇒ ∀x(A → B) from BA ` A ⇒ B, Ru10 is not used, so the proof
immediately implies BAw

`⇒ ∀x(A → B) from BA ` A ⇒ B. �

It follows that provably total functions of BA and of BAw coincide.

Corollary 2.3 Let A(x, y) be a formula with the shown free variables. If
⇒ ∃y A(x, y) is provable in BA, then BA `⇒ ∀x(> → ∃y A(x, y)), and then
BAw

`⇒ > → ∀x(> → ∃y A(x, y)).

Proof By Ru9, BA `⇒ ∃y A(x, y) implies BA `⇒ ∀x(> → ∃y A(x, y)), and this,
by Theorem 2.2 and Ax10, implies BAw

`⇒ > → ∀x(> → ∃y A(x, y)). �

3 Polynomially Bounded Recursive Realizability

The Gödel encoding described in Chapter V of Hájek and Pudlák [5] is used in the
paper. It is called “Linear Compressed Encoding” by Willard [21]. This encoding
enables us to have polynomially bounded S-m-n functions. The details are discussed
below.
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Let ϕx be the (unique) unary recursive function whose program has the (Gödel)
code x (cf. Soare [14] and [13]).1 Take 〈 , 〉 to be a fixed pairing function (such
as 〈x, y〉 =

1
2 (x + y)(x + y + 1) + y) with the projections π1 and π2, that is,

π1(〈x, y〉) = x and π2(〈x, y〉) = y. For a sequence x = (x1, x2, . . . , xm), ϕa(x) is
understood as ϕa(〈x1, 〈x2, . . . , 〈xm−1, xm〉〉〉). We note that any statement involving
ϕa(x) can be written in the language of arithmetic: a proposition such as A(ϕa(x)) is
∃z

(
T(a, x, z)∧A(U(z))

)
where T is Kleene’s T-predicate and U is a result-extracting

function (see, e.g., [15]).
Throughout, we take the language of N to contain function symbols for all primi-

tive recursive functions. Let P (x) be the formula ∀z
(
ϕπ1(x)(z) ≤ zπ2(x)

+π2(x)
)
, or

equivalently, ∀z∃t
(
T(π1(x), z, t)∧U(t) ≤ zπ2(x)

+π2(x)
)
. Holding P (x) means that

x = 〈x1, x2〉 where x1 is the code of a polynomially bounded recursive function with
the bound x2, that is, ϕx1(z) ≤ zx2 + x2 for all z. We note that a function f : N → N

is polynomially bounded if and only if for a fixed m ∈ N, f (x) ≤ xm
+ m holds for

all x . If such a function f is recursive, then there is a natural n such that f = ϕn and
N |H P (〈n, m〉).

We define polynomially bounded recursive realizability, P-realizability for short.

Definition 3.1 x rP A is defined by induction on the complexity of A:

1. x rP p ≡ p, for atomic p and p = >, ⊥;
2. x rP A ∧ B ≡

(
π1(x) rP A

)
∧

(
π2(x) rP B

)
;

3. x rP A ∨ B ≡
(
π1(x) = 0 ∧ π2(x) rP A

)
∨

(
π1(x) 6= 0 ∧ π2(x) rP B

)
;

4. x rP
∃z A(z) ≡ π2(x) rP A(π1(x));

5. x rP
∀z(A(z) → B(z)) ≡ P (x) ∧ ∀y, z

(
y rP A(z) → ϕπ1(x)(y, z) rP B(z)

)
.

P-realizability can be extended to sequents as

6. x rP
(

A ⇒ B
)

≡ P (x) ∧ ∀y
(
y rP A → ϕπ1(x)(y) rP B

)
.

We say “the function f P-realizes A ⇒ B”, if for a natural number n, P (n), ϕn = f ,
and n rP

(
A ⇒ B

)
hold.

A useful property of the Linear Compressed Encoding is providing an efficient
upper bound on the substitution functions. For a term t , t x

s is obtained from t by
replacing all the occurrences of x in t with the term s. As stated in the explana-
tion after Proposition 3.36 of [5] (see also Lemma 4.11 (1) of Wilkie & Paris [20])
|t x

s | ≤ constant · |t | · |s| where |a| = dlog2(a + 1)e. Moreover, this bound is essen-
tially the best possible. As a result it follows that there is a fixed natural number c
such that t x

s ≤ (s + 1)c·log2(t+1)
+ c.

Recall that S-m-n function Sm
n is a primitive recursive function satisfying

ϕSm
n (e,a)(b) = ϕe(a, b) for all (program code) e, m-tuple a, and n-tuple b. In

this paper we need the special case of m = n = 1. Suppose the program P has the
code e and its input symbols are x and y. For a natural number a, let the program Q
be constructed from P by putting a in all the places of x and restricting its input to
y. The output of the program Q for an input b (in the place of y) is ϕe(a, b). Hence,
the code of the program Q can be a candidate for the value of S1

1 function, noting
that ϕS1

1 (e,a)(b) = ϕe(a, b). The code of Q is roughly ex
a (the input x is replaced with

a), or informally speaking, ex
a ≈ S1

1(e, a). Thus from ex
a ≤ (a + 1)c·log2(e+1)

+ c,
we get a polynomially bounded version of S1

1 theorem (see also Jones [6]).



412 Saeed Salehi

Theorem 3.2 For any unary recursive function g, there is a unary polynomially
bounded recursive function f such that ϕ f (a)(b) = g(〈a, b〉) for all a, b.

This will be used in our soundness theorem of BAw to P-realizability.

Theorem 3.3 For all sequents A ⇒ B, if BAw
` A ⇒ B, then for a natural n,

N |H n rP
(

A ⇒ B
)

.

Proof The proof is by induction on the length of the proof of the sequent: we show
that for each axiom of BAw there is a natural number P-realizing it, and for any P-
realizer of the hypothesis of the rules of BAw there is a natural number P-realizing
its conclusion. Throughout the proof we suppose that the assumptions about the
variables (e.g., in Ax4 and Ru6) hold.

Axioms

For realizing a sequent A ⇒ B it is enough to find a polynomially bounded recursive
function (P-function, for short) f such that ‘m rP A H⇒ f (m) rP B’ for every m.

For Ax1 (A ⇒ A), Ax2 (A ⇒ >), Ax3 (⊥ ⇒ A), Ax14 (S(x) = S(y) ⇒ x = y),
Ax18 (⇒ x + S(y) = S(x + y)), Ax19 (⇒ x · S(y) = (x · y) + x), and Ax9
(∀x(A → B) ⇒ ∀x(Ax

t → Bx
t )), let f (u) = u.

For Ax12 (⇒ x = x), Ax15 (S(x) = 0 ⇒ ⊥), Ax16 (⇒ x + 0 = x), and Ax17
(⇒ x · 0 = 0), let f (u) = 0.

For Ax4 (A ∧ ∃x B ⇒ ∃x(A ∧ B)) and Ax5 (A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ (A ∧ C)),
let f (u) = 〈π1π2(u), 〈π1(u), π2π2(u)〉〉.

For Ax6 (∀x(A → B) ∧ ∀x(B → C) ⇒ ∀x(A → C)), let f be a P-function (by
Theorem 3.2) such that ϕ f (u)(v, x) = ϕπ2(u)(ϕπ1(u)(v, x), x).

For Ax7 (∀x(A → B) ∧ ∀x(A → C) ⇒ ∀x(A → B ∧ C)), again by Theorem 3.2,
let f be a P-function satisfying ϕ f (u)(v, x) = 〈ϕπ1(u)(v, x), ϕπ2(u)(a, x)〉.

For Ax8 (∀x(B → A) ∧ ∀x(C → A) ⇒ ∀x(B ∨ C → A)), similar to the above
cases, take a P-function f such that

ϕ f (u)(v, x) =

{
ϕπ1(u)(π2(v), x) if π1(v) = 0
ϕπ2(u)(π2(v), x) if π1(v) 6= 0.

For Ax10 (∀x(A → B) ⇒ ∀y(A → B)) we can assume x = (y, z) for some z. Take
a P-function f satisfying ϕ f (u)(y) = ϕu(y, 0).

For Ax11 (∀yx(B → A) ⇒ ∀y(∃x B → A)), take a P-function f satisfying
ϕ f (u)(v, y) = ϕu(π2(v), y, π1(v)).

For Ax13 (x = y ∧ A ⇒ Ax
y), put f (u) = π2(u).

And finally for Ax20 (∀xy(A → Ax
Sx ) ⇒ ∀xy(Ax

0 → A)), take a P-function f by
ϕ f (u)(v, 0, y) = v and ϕ f (u)(v, x + 1, y) = ϕu(ϕ f (u)(v, x, y), x, y).

For all cases it can be proven that the function f P-realizes the corresponding
axiom (cf. [13]).

Rules—The induction step
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Similar to the axiom cases, assuming that 〈n, k〉 (and 〈m, k′
〉) P-realize(s) the hypoth-

esis of the rule, it is enough to find a polynomially bounded function (denoted by f
and g) which P-realizes the conclusion of the rule. Note that if 〈n, k〉 and 〈m, k′

〉 are
P-realizers, then ϕn and ϕm are polynomially bounded.

Ru1: If 〈n, k〉 rP(
A ⇒ B

)
and 〈m, k′

〉 rP(
B ⇒ C

)
, then the function f defined by

f (u) = ϕm(ϕn(u)) P-realizes A ⇒ C.

Ru2: If 〈n, k〉 rP(
A ⇒ B

)
and 〈m, k′

〉 rP(
A ⇒ C

)
, then the function f defined by

f (u) = 〈ϕn(u), ϕm(u)〉 P-realizes A ⇒ B ∧ C .

Ru3: If 〈n, k〉 rP(
A ⇒ B ∧ C

)
, then f and g defined by f (u) = π1ϕn(u) and

g(u) = π2ϕn(u) P-realize A ⇒ B and A ⇒ C , respectively.

Ru4: If 〈n, k〉 rP(
B ⇒ A

)
and 〈m, k′

〉 rP(
C ⇒ A

)
, then f defined by

f (u) =

{
ϕn(π2(u)) if π1(u) = 0
ϕm(π2(u)) if π1(u) 6= 0

P-realizes B ∨ C ⇒ A.

Ru5: If 〈n, k〉 rP(
B ∨ C ⇒ A

)
, then f and g defined by f (u) = ϕn(0, u) and

g(u) = ϕn(1, u) P-realize B ⇒ A and C ⇒ A, respectively.

Ru6: If 〈n, k〉 rP(
A ⇒ B

)
, then 〈n, k〉 rP(

Ax
t ⇒ Bx

t
)
.

Ru7: If 〈n, k〉 rP(
B ⇒ A

)
, and x is free in B, then the function f defined by

f (u) = ϕn(π2(u)) P-realizes ∃x B ⇒ A.

Ru8: If 〈n, k〉rP(
∃x B ⇒ A

)
and if x is free in B, then f defined by f (u) = ϕn(0, u)

P-realizes B ⇒ A.

Ru9: If 〈n, k〉 rP(
A ∧ B ⇒ C

)
and all the variables in x are free in B → C , then a

P-function f satisfying ϕ f (u)(v, x) = ϕn(〈u, v〉) P-realizes A ⇒ ∀x(B → C).

It can be shown that if 〈n, k〉 (and 〈m, k′
〉) P-realize(s) the hypothesis (hypotheses)

of the above rules, then the function f (and g) P-realize(s) the conclusion of the rule
(cf. [13]). �

Polynomially bounded q-realizability is defined by applying the well-known changes
to rP-realizability.

Definition 3.4 x qP A is defined by induction on A:
1. x qP p ≡ p, for atomic p, and p = >, ⊥;
2. x qP A ∧ B ≡ (π1(x) qP A) ∧ (π2(x) qP B);
3. x qP A ∨ B ≡ (π1(x) = 0 ∧ π2(x) qP A) ∨ (π1(x) 6= 0 ∧ π2(x) qP B);

4. x qP
∃z A(z) ≡ π2(x) qP A(π1(x));

5. x qP
∀z(A(z) → B(z)) ≡ P (x)∧

∀y, z(y qP A(z) → ϕπ1(x)(y, z) qP B(z))∧∀z(A(z) → B(z)).

And similarly for the sequents, x qP
(

A ⇒ B
)

is

6. P (x) ∧ ∀y
(
y qP A → ϕπ1(x)(y) qP B

)
∧ (A → B).
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The obvious property of q-realizability is N |H (n qP A) → A for any A.
The proof of soundness of BAw to rP works as usual for qP-realizability.

Theorem 3.5 For all sequents A ⇒ B, if BAw
` A ⇒ B, then for some n,

N |H n qP
(

A ⇒ B
)

.

The theorem provides a specification of the provably total functions of BAw.

Lemma 3.6 For every formula A(x, y) with the presented free variables, there
is a (unary) polynomially bounded primitive recursive function f such that if
BAw

`⇒ ∀x(> → ∃y A(x, y)) then N |H ∀xA(x, f (x)).

Proof Suppose BAw
`⇒ ∀x(> → ∃y A(x, y)). By Theorem 3.5, there is

an n ∈ N such that N |H n qP(
⇒ ∀x(> → ∃y A(x, y))

)
. Since 0 qP

>,
then N |H ϕπ1(n)(0) qP

∀x(> → ∃y A(x, y)), hence N |H P (ϕπ1(n)(0)) and
N |H ∀x

(
ϕπ1ϕπ1(n)(0)(0, x) qP

∃y A(x, y)
)
. Put m = π1ϕπ1(n)(0) and define f by

f (x) = π1ϕm(0, x). Then N |H ∀x
(
π2ϕm(0, x) qP A(x, π1ϕm(0, x))

)
, and hence

N |H ∀xA(x, f (x)). By N |H P (ϕπ1(n)(0)) and m = π1ϕπ1(n)(0), f is polynomially
bounded primitive recursive. �

And finally our main theorem is a characterization of provably total functions of BA
(cf. Corollary 4.5 of [13]).

Corollary 3.7 Let A(x, y) be a formula with the free variables x, y. If
BA `⇒ ∃y A(x, y) or BA `⇒ ∀x(> → ∃y A(x, y)), then N |H ∀x(x, f (x))
for a polynomially bounded primitive recursive function f .

Proof From BA `⇒ ∃y A(x, y) or BA `⇒ ∀x(> → ∃y A(x, y)), by Corol-
lary 2.3, it follows that BAw

`⇒ > → ∀x(> → ∃y A(x, y)). Then by Theorem 3.5,
there is a natural k such that N |H k qP(

> → ∀x(> → ∃y A(x, y))
)

which implies
that N |H ϕπ1(k)(0) qP

∀x(> → ∃y A(x, y)). By putting n = ϕπ1(k)(0) and mimick-
ing the lines of the proof of Lemma 3.6, the existence of a polynomially bounded
recursive function f such that N |H ∀xA(x, f (x)) follows. �

4 Polynomially Bounded Church’s Thesis

The arithmetical form of Church’s Thesis,

CT0 ∀x∃y A(x, y) → ∃k∀x∃z[T(k, x, z) ∧ A(x, U(z))],

is known to be recursively realizable in Heyting Arithmetic HA (see, for example,
[15]). In this section, we introduce a polynomially bounded counterpart of the arith-
metical schema of Church’s Thesis and prove it to be P-realizable.

Definition 4.1 Let CTP be the schema

∀x(> → ∃y A(x, y)) → ∃u
(
P (u) ∧ ∀x(> → ∃z[T(π1(u), x, z) ∧ A(x, U(z))])

)
.

Theorem 4.2 All instances of the schema ⇒ CTP are P-realizable in N.

Proof Let A(x, y) be a formula with the free variables x, y. We define a P-function
f such that for all n, if n rP

∀x(> → ∃y A(x, y)) then

(?) f (n) rP
∃u

(
P (u) ∧ ∀x(> → ∃z[T(π1(u), x, z) ∧ A(x, U(z))])

)
.
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Let k1 and k2 be unary P-functions satisfying ϕk1(n)(x) = π1ϕπ1(n)(0, x) and
k2(n) = π2(n). Define the recursive functions  and ı by

 (n, x, w) = π2ϕπ1(n)(0, x) and ı(n, x) = µt (T(k1(n), x, t)),

where µ is the minimization operation. That is to say, ı(n, x) is the minimum t such
that T(k1(n), x, t) holds, if such a t exists (if there is no such a t for some n, x , then
ı(n, x) is not defined).

Let g and h be some P-functions satisfying

ϕg(n)(w, x) = 〈ı(n, x), 〈0,  (n, w, x)〉〉 and ϕh(n)(w, x) = 〈ı(n, x), 〈0, 0〉〉,

and define f by f (n) = 〈〈k1(n), k2(n)〉, 〈h(n), g(n)〉〉. Note that f is a polynomially
bounded recursive function.

Suppose n rP
∀x(> → ∃y A(x, y)). We show that (?) holds. For simplicity

let n1 = π1(n) and π2(n) = n2, so n = 〈n1, n2〉, and ϕn1(x) ≤ xn2 + n2 and
π2ϕn1(w, x) rP A(x, π1ϕn1(w, x)) hold for every w, x . The statement (?) is equiva-
lent to the two statements,

(1) h(n) rPP (〈k1(n), k2(n)〉), and
(2) g(n) rP

∀x(> → ∃z[T(k1(n), x, z) ∧ A(x, U(z))]),
which in turn are equivalent to
(1-1) π1π2ϕh(n)(w, x) rPT(k1(n), x, π1ϕh(n)(w, x)),
(1-2) π2π2ϕh(n)(w, x) rPUπ1ϕh(n)(w, x) ≤ xk2(n)

+ k2(n),
(2-1) π1π2ϕg(n)(w, x) rPT(k1(n), x, π1ϕg(n)(w, x)), and
(2-2) π2π2ϕg(n)(w, x) rP A(x, Uπ1ϕg(n)(w, x)).

Since ϕk1(n) is a P-function, then the function x 7→ ı(n, x) is total. Moreover,
T(k1(n), x, ı(n, x)) holds and Uı(n, x) = ϕk1(n)(w, x) = π1ϕn1(0, x).

Let us recall that

π1π2ϕh(n)(w, x) = π1π2ϕg(n)(w, x) = 0, and

π1ϕh(n)(w, x) = π1ϕg(n)(w, x) = ı(n, x).

Hence (1-1) and (2-1) hold by T(k1(n), x, ı(n, x)). For (1-2) we note that
by ϕn1(z) ≤ zn2 + n2, Uπ1ϕh(n)(w, x) = π1ϕn1(0, x) ≤ xn2 + n2.
Finally, (2-2) follows from the identities π2π2ϕg(n)(w, x) = π2ϕn1(0, x) and
Uπ1ϕg(n)(w, x) = Uı(n, x) = π1ϕn1(0, x), and the instance of the assumption
π2ϕn1(w, x) rP A(x, π1ϕn1(w, x)) for w = 0. �

Since by Theorem 3.3, all theorems of BAw are P-realizable and the contradiction
> ⇒ ⊥ is not P-realizable, then ⇒ CTP is consistent with BAw. We show that it is
consistent with BA too.

Theorem 4.3 The schema ⇒ CTP is consistent with BA.

Proof Assume not. So there are formulas A1(x, y), . . . , An(x, y) such that the in-
stances of CTP for those formulas lead to contradiction with BA. Denote the instance
of CTP for the formula B(x, y) by CTP

B . So,

BA + {⇒ CTP
A1

, . . . ,⇒ CTP
An

} ` > ⇒ ⊥.

By Proposition 6.1 of [12] and an argument similar to that of the Proof of Theo-
rem 2.2, it follows that

BAw
` (> → CTP

A1
) ∧ · · · ∧ (> → CTP

An
) ⇒ (> → ⊥).
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Since CTP
Ai

is P-realizable by Theorem 4.2, then so is > → CTP
Ai

. Hence
BAw

+ (> → CTP
A1

) ∧ · · · ∧ (> → CTP
An

) is P-realizable, whereas obviously
> → ⊥ is not. Contradiction. �

The arithmetical form of Church’s Thesis CT0 is consistent with HA whereas it is
inconsistent with Peano Arithmetic PA. Likewise, the polynomially bounded coun-
terpart of Church’s Thesis CTP is consistent with BA, whereas it can be easily shown
to be inconsistent with HA and PA, noting that the exponential function f (x) = 2x

is provably total in HA and PA.

5 Conclusions

The next task to be done in the research line of the paper is investigating whether or
not every polynomially bounded primitive recursive function is provably total in BA.
In the affirmative case, BA will be the first arithmetical theory with full induction
(having an induction axiom and rule for all formulas) which captures the polyno-
mially bounded recursive functions. Some bounded arithmetics (based on classical
or intuitionistic logic) are known to have the polynomially bounded recursive func-
tions as their provably total (or provably recursive) functions, though the induction
axiom/rule in those theories are restricted to a certain class of formulas.

Note

1. In the case that for a natural n there is no program with the code n, take ϕn to be the zero
constant function.
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