Notre Dame Journal of Formal Logic Volume 46, Number 3, 2005

Around Silver's Theorem

Moti Gitik

Abstract We state some results related to the Silver Theorem.

The following statement is a modern formulation of Silver's Theorem.

Theorem 1 (Shelah [3], II, 2.4(1), p. 59) Let κ be a singular cardinal of uncountable cofinality. If $pp(\kappa) > \kappa^+$ then the set $\{\delta < \kappa \mid pp(\delta) > \delta^+\}$ contains a closed unbounded subset.

What happens if we drop the assumption $pp(\kappa) > \kappa^+$? Consider the following principle:

(*)_{κ} There exists an increasing continuous sequence $\langle \kappa_i | i < cf(\kappa) \rangle$ with limit κ such that for each limit $i < cf(\kappa)$ we have max(PCF($\{\kappa_i^+ | j < i\})$) = κ_i^+ .

Note that once *i* has uncountable cofinality, then $\kappa_i^+ = \max(\text{PCF}(\{\kappa_j^+ \mid j < i\}))$ always holds by [3], Claim 2.1, p. 55.

Schindler showed ([1], 1.3) that if $(*)_{\kappa}$ fails then Projective Determinancy holds. The exact strength of $\neg(*)_{\kappa}$ is unknown but results below give a supercompact as an upperbound.

Theorem 2 ([1]) Let κ be a singular cardinal of uncountable cofinality. Assume $(*)_{\kappa}$. Then either

- 1. $\{\delta < \kappa \mid pp(\delta) = \delta^+\} \supseteq club, or$
- 2. $\{\delta < \kappa \mid pp(\delta) > \delta^+\} \supseteq club.$

A similar result holds if we replace $pp(\delta)$ by 2^{δ} .

Our aim is to give the consistency of a situation when the sets $\{\delta < \kappa \mid 2^{\delta} = \delta^+\}$ and $\{\delta < \kappa \mid 2^{\delta} = \delta^{++}\}$ are both stationary. It turns out that it is easier to deal first with gaps bigger than 1.

Printed August 22, 2005 2000 Mathematics Subject Classification: Primary, 03E04, 03E55; Secondary, 03E35 Keywords: singular cardinals, stationary sets ©2005 University of Notre Dame

Moti Gitik

Thus fix an increasing continuous sequence $\langle \kappa_i | i < cf(\kappa) \rangle$ with limit κ . Set $S_n = \{\kappa_i^{+n} | i < cf(\kappa)\}$ for each $n \ge 1$. Consider the following principle:

(*)_{κ,n} There is a club $C \subseteq cf(\kappa)$ such that $\kappa \cap PCF(\{\kappa_i^{+n} \mid i \in C\}) \subseteq S_n$.

Clearly $(*)_{\kappa}$ is equivalent to $(*)_{\kappa,1}$.

Building on the ideas of Gitik and Mitchell [2], it is possible to show the following.

Theorem 3 (\neg (\exists inner model with a strong cardinal)) Suppose that for every $i < cf(\kappa)$ we have $\kappa_i^{+\omega} = (\kappa_i^{+\omega})^K$. Then for each $n, 1 \le n < \omega$, the following holds: if for all $i < cf(\kappa), 2^{\kappa_i} \le \kappa_i^{+n}$, then $(*)_{\kappa,n}$ holds.

This means that in order to make $(*)_{\kappa,n}$ false we need to get above $(\kappa_i^{+\omega})^K$. Thus the first reasonable candidate is $\omega + 1$. The next result shows that (given reasonable assumptions) $\omega + 1$ cannot work.

Theorem 4 ([1]) Assume that for each $i < cf(\kappa)$, $pp(\kappa_i) \ge \kappa_i^{+\omega+1}$ and $pp(\kappa_i^{+\omega}) = \kappa_i^{+\omega+1}$. If $(*)_{\kappa,n}$ holds for all $n < \omega$, then $(*)_{\kappa,\omega+1}$ also holds.

The next candidate is $\omega + 2$. The following shows that it is already a good one.

Theorem 5 Assume that there is a coherent sequence of $(\kappa, \kappa^{+\omega+3})$ —extenders of length ω_1 . Then in a generic extension it is possible to have the following:

1. $cf(\kappa) = \aleph_1$, 2. sets $\{\delta < \kappa \mid 2^{\delta} = \delta^{++}\}$ and $\{\delta < \kappa \mid 2^{\delta} = \delta^{+3}\}$ are both stationary.

The construction uses a combination of Magidor forcing on extenders with short extender forcings.

Using supercompacts in the previous construction to collapse successors of δs , it is possible to obtain the following.

Theorem 6 Assume that κ is a supercompact cardinal. Then in a generic extension *it is possible to have the following:*

1. $\operatorname{cf}(\kappa) = \aleph_1$,

2. sets $\{\delta < \kappa | 2^{\delta} = \delta^+\}$ and $\{\delta < \kappa | 2^{\delta} = \delta^{++}\}$ are both stationary.

References

- Gitik, M., R. Schindler, and S. Shelah, "PCF theory and Woodin cardinals," in preparation. 323, 324
- [2] Gitik, M., and W. J. Mitchell, "Indiscernible sequences for extenders and the singular cardinal hypothesis," *Annals of Pure and Applied Logic*, vol. 82 (1996), pp. 273–316. Zbl 0871.03041. MR 98a:03080. 324
- [3] Shelah, S., Cardinal Arithmetic, vol. 29 of Oxford Logic Guides, The Clarendon Press, New York, 1994. Zbl 0848.03025. MR 96e:03001. 323

324

Around Silver's Theorem

Acknowledgments

The research was partially supported by the Israel Science Foundation.

School of Mathematical Sciences Tel Aviv University Ramat Aviv 69978 ISRAEL gitik@post.tau.ac.il