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ON NEW THEOREMS FOR ELEMENTARY NUMBER THEORY

ALBERT A. MULLIN

Introduction: This paper* generalizes the classical number-theoretic
notions of multiplicative function and additive function. In addition to
extending classes of functions it can be shown that certain specific
functions such as, e.g., Euler's totient, Mόbius' function, and Liouville's
function have precise analogues within the theory. Results of G. H. Hardy
and S. Ramanujan are used in the study.

1. Apply the Unique Factorization Theorem (UFT) of [1], viz., n -
p^1 pmm (p{ simply ordered, and distinct) to its own natural number
exponents >1, and apply the UFT to the exponents >1 so obtained, etc. (use
induction), until the process terminates, for a given n, with a unique
"constellation" of prime numbers alone called a mosaic [2;3]. E.g., the
mosaic of 10,000 is 2*2 522. This process provides a simple revision of
the standard Gaussian model of the UFT [3].

Definition 1. A number-theoretic function / is said to be generalized
multiplicative provided f(a b) = f(a) -f{b), if the mosaics of a and b have no
prime in common.

Lemma 1. Every standard multiplicative number-theoretic function [l]
is generalized multiplicative, and there exists a generalized multiplicative
function ψ2 (defined as ψ("ψ( )), where ψ is defined as follows: ψ(n) is the
product of the primes alone in the mosaic of n which is not multiplicative
i.e., the class of generalized multiplicative functions property contains the
class of multiplicative functions.

Proof. Clearly every multiplicative function is generalized multiplica-
tive, since if the function "factors" when a and b have no prime base in
common (but possibly their mosaics may have some prime in common)
then, a fortiori, the function "factors" when the mosaics of a and b have no
prime in common. Now, since ψ is multiplicative ψ2(a b) = ψ(ψ(a) ψ(b)).
But, if the mosaics of a and b have no prime in common then (ψ(a), ψ(b)) = 1.
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Hence ψ2(a b) = ψ2(a) ψ2(b). I.e., ψ2 is generalized multiplicative.
Finally, i//2(36) = 18, but ι//2(4). ψ2(9) = 4 6 = 24; hence ψ/2(4 9) ̂  ι//2(4) ψ2(9).

Definition 2. A number-theoretic function g is said to be generalized
additive provided g{a*b) = g(a) + g(b), if the mosaics of a and b have no
prime in common.

Lemma 2. Every standard additive function [4] is generalized additive,
and there exists a generalized additive function (ψ*(ψ(-))> where ψ is
defined as before and ψ* is defined as follows: ψ*(n) is the sum of the
primes alone in the mosaic of n which is not additive; i.e., the class of
generalized additive functions properly contains the class of additive
functions.

Proof. By reasoning similar to that used in Lemma 1 every additive
function is generalized additive. Now, since ψis multiplicative, ψ*(ψ(a b)) =
ψ*(ψ(a) ψ(&)). Hence, if the mosaics of a and b have no prime in common,
ψ(a) and ψ(b) are relatively prime. Thus by the additivity of ψ*9 ψ*(Ψ(a &)) =
Ψ*(Ψ(<*)) + Ψ*(Ψ(*>)). Finally, ψ*(ψ(36)) = 8, but ψ*(ψW) + Ψ*(Ψ(9)) = 4 + 5 = 9 .

Hence ψ*(ψ(4 9)) ¥ Ψ*(Ψ(*)) + ψ*(ψ(9)).

2. At this point we discuss the effect of modifying a number of specific
number-theoretic functions with classical significance. We shall see that,
e.g., the property of generalized multiplicativity of the Mobius' function or
Liouville's function is preserved under the change to their analogues.

Definition 3. Define μ* (Modified Mδbius function) as follows: μ*(l) =
1; if n > 1, μ*(n) = 0, if any prime is repeated in the mosaic of n; if n > 1,
μ*(n) = (-l)m, if no prime is repeated in the mosaic of n, where m is the
number of (distinct) primes in the mosaic of n. Define λ* {Modified
Liouville's function) as follows: λ*(l) = 1; if n > 1, λ*(n) = {-l)m, where m
is the number of primes in the mosaic of n, counting repetitions according
to their multiplicities, if any. Define Ω* as follows: Ωi*(w) is the total
number of primes in the mosaic of n counting repetitions according to their
multiplicities, if any. Define Ω2* as follows: Ω*(n) is the number of distinct
primes in the mosaic of n.

Lemma 3. μ* is generalized multiplicative, but not multiplicative X*
is multiplicative, but not completely so; Ω* is additive, but not completely
so; Ω2* is generalized additive, but not additive.

Proof. To establish that μ* is generalized multiplicative suppose that
the mosaics of a and b have no prime in common. Then, if a prime is
repeated in either mosaic it is repeated in the mosaic of a . b. If a prime
is repeated in a mosaic of a b, it is repeated in the mosaic of a or in the
mosaic of b. For this case μ*(α b) = μ*(α) μ*(6) = 0. Hence we need only
consider the case where the mosaics of a and b have no prime repeated
within themselves individually, and no prime in common between them.
However, then μ*(a b) = μ*(α) μ*(b). Now, μ*(225) = 0; but μ*(9) = 1 and
μ*(25) = 1. Hence μ* is not multiplicative.
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To establish that λ* is multiplicative, suppose that (a,b) = 1. Then,
the summation of the number of primes in the mosaics of a and b act
independently in total summations. Hence λ*{a b) = λ*{a) λ*(b). But
λ*(16) = -1, whereas λ*(4) λ*(4) = 1; thus λ* is not completely multiplica-
tive.

To show that Ω* is additive, recall that when {a, b) = 1 the total
of primes in the mosaics act independently. Hence Ω,*(a δ) = Ω1*(α) + Ωi*(δ).
Now Ω*(16) = 3, but Ωi*(4) + Ωj*(4) = 4; hence Ω* is not completely additive.

To prove that Ω2* is generalized additive recall that when mosaics have
no prime in common the numbers of their distinct primes act independently.
Finally Ω2*(72) = 2, but Ω2*(8) + Ω2*(9) = 2 + 2=4; hence Ω2* is not additive.

We close by noting that there are infinitely many generalized multi-
plicative arithmetic functions which are not multiplicative. This result
follows since if/x and f2 are different multiplicative functions which are not
completely multiplicative, then/i( (•)) and/2( (•)) are different generalized
multiplicative functions which are not multiplicative. But there are
infinitely many multiplicative functions which are not completely multi-
plicative. Thus, F^n) = Σ<//Wσ(d), F2(n) = Σd/nF^d), . . . , where σ(d) is the
sum of the divisors of d.

3. Now we relate some of these ideas to work by G. H. Hardy and
S. Ramanujan [5;6].

Definition 4. Let Ωi(w) be the total number of prime factors of n, and
let Ω2(w) be the number of distinct prime factors of n. Then we have,
clearly,

Lemma 4. For every natural number n, Ω2(rc) ^ Ω2*(w) ^ Ωi*(w) ^ Ωi(rc).
Further, Ω2(#) = Ω2*(#) = Ωi*(#) = Ωi(#), if q is square-free.

Proof. Every distinct prime factor of n is a distinct prime in the
mosaic of n\ hence Ω2(w) < Ω2*(w). Clearly Ω2*(n) ^ Q*(n) since the number
of distinct primes in a mosaic cannot exceed the total number of primes in
the mosaic. Finally Ω,*{n) ^ Ωi(w), since for every prime in a mosaic there
is at least one prime factor (and generally many prime factors). The last
result follows because under this condition a mosaic is a product of
distinct primes, and thus the canonic form of q and the mosaic of q
coincide.

Lemma 5. The normal order [5;6] of both Ω*{n) and Ω2*(w) is log(log n).

Proof. Apply lemma 4, and recall Hardy's and Ramanujan's result that
the normal order of both Ωi(w) and Ω2(w) is log (log n).
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