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REGRESSIVE FUNCTIONS AND COMBINATORIAL FUNCTIONS

CARL E. BREDLAU

1. Introduction.* Let ε denote the set of all non-negative integers and
let ε* denote the set of all integers. Every function f(n) from ε into ε
uniquely determines a function c, from ε into ε* such that

(1) An) = Σ a (f) , iorneε.

The function f(n) is called combinatorial if the function Ci related to f(n) by
(1) assumes no negative values. The function C{ is called the associated
function of f(n). The function c, can be explicitly expressed in terms of the
function f(n) by the formula:

(2) cH= Σ (-l)'(jf) f{n-i).

Combinatorial functions were introduced by Myhill in a set-theoretic man-
ner in [3] and play a fundamental role in the theory of recursive equivalence
types; however, in what follows we need only the number-theoretic defini-
tion of a combinatorial function given above.

We note that if c, is an effectively computable function (or formally, a
recursive function), so is f(n). For given n we can effectively calculate
Co, . . . , cn and hence f(ή) by (1). Conversely, if f(n) is a recursive com-
binatorial function, we can, given n, compute /(0), . . . , f(n), and hence
cn by (2). Thus cf is a recursive function if f(n) is. We conclude that for a
combinatorial function f(n),

f(n) is recursive < > cf is recursive.

A function tn from ε into ε is regressive, if it is one-to-one (1-1) and
there exists a partial recursive function p{x) such that

(3) f)t c δp ,
(4) (Vn)[p(tn) = tn^] .

•Research on this paper was done during 1964-65 under the direction of Dr. J. C.
E. Dekker, while the author was a Henry Rutgers Scholar.
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Intuitively, tn is regressive if given tn+i, we can effectively find tn. Since
the notion of a regressive function is a generalization of that of a recursive
function, a natural question arises: "Does there exist any correlation
between the regressiveness of a combinatorial function and the regressive -
ness of its associated function?" In view of the fact that every regressive
function is 1-1, we restrict our attention to the case where both f(n) and its
associated function a are 1-1. A priori, there are four possibilities:

(i) neither f(n) nor its associated function a is regressive;
(ii) f(n) is not regressive, but its associated function a is;

(iii) f(n) is regressive, but its associated function Ci is not;
(iv) f(n) and its associated function c* are regressive.

The purpose of this paper is to show that all four possibilities do in fact
exist.

2. Preliminaries. It is assumed that the reader is familiar with some
of the terminology and theorems concerning partial recursive, recursive,
and regressive functions. The following propositions are stated without
proof.

Proposition 1. Let tn be a regressive function. Then there exists a partial
recursive function p(x) which in addition to (3) and (4) satisfies

(5) pp c δp,
(6) (Vx)[x e δp=^(lk)[pk+1(x) = pk(x)]] .

Definition. Let tn be a regressive function. If a partial recursive function
p(x) satisfies conditions (3), (4), (5), and (6), we call p(x) a regressing func-
tion of tn. We say p(x) regresses tn.

Definition. Let an, bn be functions from ε to ε; then α w <* 6wif there exists
a partial recursive function p(x) such that

pad δ/>, (Vn)[p(an) = bn] .

Also, an ^ bn if an and bn are 1-1 and there exists a 1-1 function p(x) such
that

pa c δp, (Vn)[p(an)= bn] .

Proposition 2. Let On, bn, cn be functions from ε into ε. Then

(i) an ^ * bn and bn ^ * cn =$> an ^ * cn,
(ii) let an, bn be 1-1; then an ^* bn and bn ^* an =^> On ̂  bn.

Proposition 3. Let an ^ bn. Then an regressive < — > bn regressive.

Propositions 1 through 3 are discussed in [2], It is known that there are
exactly c regressive functions, where c denotes the cardinality of the
continuum.

3. Theorems.

Theorem 1. There exist exactly c increasing combinatorial functions f(n)
such that neither f(n) nor its associated function Ci is a regressive function.
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Proof. We shall first prove a lemma.

Lemma. Let g(x) be a function from a subset of ε into ε with an infinite
range. Let c, d, p, q be four positive constants such that p fi q. Then

(1.1) {lx)[x ^c andg(x) Jp andg{x+d) ^ q] .

Proof of Lemma. If in the following, a set is defined by enumerating its
elements, then any element of the form g{x), with x jί δg, has to be ignored.
Put

y* = te(0), . . .,£^-1));
γ . = (g(d+i), g(2d+i), . . . ), for 0 < i < d-1 then

(1.2) pg = y* + γ0 + . . . + γj-i .

We first prove (1.1) for c = 0. Assume that (1.1) is false in this case; then

(1.3) (V*) [§•(*) = p or g(x+d) = q].

We note that γ0 consists of all numbers that occur at least once in the
sequence

(1.4) g ( d ) , g ( 2 d ) , . . . .

If all elements of (1.4) are equal to p then γo= (p) and γ0 is finite. Now
assume that not all the members of (1.4) are equal to p. Let g(md) where
m ^ 1 be the first element in (1.4) which does not equal p. Relation (1.3)
implies g((m+l)d) = q since g(md) ^ p. But then g((m+l)d) ^ p, hence

g((m+2)d) = q. Using induction we see that g(id) = q for i> m. Thus (1.4)
contains only finitely many distinct members and γ0 is again finite.
Similarly, γ^ . . . , γd-i are finite. Also, y* is finite in view of the
definition. It now follows from (1.2) that pg is finite contrary to the
hypothesis. Thus (1.1) holds for c = 0. Now assume c > 0; we then put
g(&) = g(x+c). Then g(x) has an infinite range; applying the case c = 0 of
(1.1) to g(x)we obtain (1.1) itself for g(x).

We now prove the theorem. There are exactly denumerably many
functions which regress regressive functions from ε into ε, and all these
functions have an infinite range. Hence there exists a sequence go(x),
gi{x\ . . . of partial recursive functions such that

(i) for every i e ε, £",-(#)has an infinite range;
(ii) every partial recursive function which regresses at least one re-

gressive function occurs at least once in {gi(x)}
(iii) go(l)#l, * i ( 3 ) ? α ^ ( 2 ) ^ 1 .

We now define two functions f(ή) and Ci from ε into ε such that none of
the functions go(x), gi(x), . . . regresses f(n) or c{.

Basis.

(1.5) /(0)= 1, c o = 1, /(I) = 3 , a =2.

Inductive Step. Assume as inductive hypothesis, for k ^ 1, the numbers
/(0), . . . , f(k), Co, . . . , ck have been defined and that ck > 0 and ck φ f(k).
Then let
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(1.6) Ck+i= (μx)[x >ck+l andgk+i(x) 4 ck

and

gk+1(χ + Σ ci(*ffj ϊ f(k)],

(1.7) /(fc+l) = .Σ Ci^f) +ck+1.

Note that /(n)and c* are defined for w ^ 1 by (1.5). Also cλ > 0 and Ci ^ / ( l ) .
Under the induction hypothesis Ck+i exists in view of the lemma, hence
Ck i and f{k+l) are well defined. It readily follows from (1.5 - 1.7) that
f(n) is a strictly increasing combinatorial function and that cn is 1-1.

We shall now show that neither f{n) nor a is regressive. The function
go(x) does not regress f(n) nor cif since /(0) = 1 , c 0 = 1, go(l) 4 *> while 1
is the smallest value assumed by f(n) or a. Similarly, the function gi(x)
does not regress f(n) or cf . Finally, for each number & ̂  1, the function
iΓ&+i(#) does not regress f(n) or cf , in view of (1.6). Since none of the
functions go{x), gi(x), . . . regress f(n) or a, neither f(n) nor a is a
regressive function.

A minor modification of c, will enable us to prove that there are c
functions f{n). Let -β denote the family of all functions bn from ε into
{0,1} such that b0 = 0 , δ i = 0. We associate with every bn e 13 the functions
cn and/(w) in the following manner:

(1.5T) As above.
(1.6*) If bk+i = 0, Ck+i is defined as above. If δ&+i = 1 let

Ck+i = iμx) \x>ck + 1 and gk+i(x) = ck and g(x + . Σ c{ ( +

{ Xj 4 f(k)\.

Put

ck+i = (μx) Ix > ck + 1 and gk+i(x) J ck and gk+i (x + Σ χ c{ ( ^ j ) ^ /(*)J

(1.7T) As above.

Note that if bk+i = 1? both Έk+i and c* exist in view of the lemma. It is
readily seen that different choices of bn yield different functions cn and
hence different functions f(n). Since the family Ή has cardinality c, we
conclude that the family of all combinatorial functions such that neither
it nor its associated function is regressive has at least, hence, exactly,
cardinality c. The following propositions will be used in the proofs of
theorems 2 - 4 .

Proposition 4. There exists a family (7/of strictly increasing functions
from ε into ε such that d/has cardinality c and for every OnZfl/>

(1) the function gn = a2n+i is regressive^

(2) the function hn = «2« is regressive)
(3) the function an is not regressive)
(A) an <* n.
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Let # denote the family of all functions from ε into {i, . . . , θ\. We
associate with every function dne & ΣL function gn = φ\dn in the following
manner:

go = 10 do = Γdoθ7

gn+ι = 100gn + 10 dn+ι = 'doOrfiO . . . 0dn0dn+10
] .

Let Jb = φLj% We note

(i) Sn is a strictly increasing function from ε into ε,
(ii) gn is a regressive function. For let p(x)be the recursive function

defined by

ίx, if x < 100,

Then p(x) is a regressing function of gn.

(iii) the family Jb has cardinality c; for 0 has cardinality c and φx is

1-1.

We also associate with each dne& a function &„ = </)2<4 in the following
manner:

h0 = do = do .

hn+1 = 100 Λ» + dn+1 = 'doOdίO . . . Qdn0dn^ .

Let ^ = 02^. We note that % has the same properties listed for the family
A We claim:

£•„ e^f = ^ > (lhn) [hn e V and ~(gn ^ hn)] .

For assume gn e Jb. Clearly

ft ^ * ί» =^> (lp)[P(gn) = fc and pe7n^\9

where 7h/x denotes the family of all partial recursive functions of one
variable. Since *J7i/x is denumerable, there exists at most a countable
number of functions tn such that gn *?* tn. On the other hand, W has
cardinality c Thus there exists a function hn such that the relation
gn ***hn is false. We now define the function a = φ3gnhn in the following
manner: for gn e jb, let

a>2n+i = gn, a2 = hn, where ~ [ f t ^* hn].

Let ^ = φsjbM We note that ^ is a family of c strictly increasing functions;
also, the functions g-n = a2n+ι and hn = «2»are regressive. However, an is not
regressive; for if it were, we would have a2n+i ^ * <Z2«, i.e., g ***h , contrary
to our choice of h . Since 10 2 w^α 2 w=fe<10 ? w + 1 and 102n+1 ^ a2n+ι=gn < 10?w+2,
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we have n = max {y \lθy ** On}; thus n can be effectively computed from an\
i.e. On *** n. Hence each of the functions in ̂ satisfy (l)-(4).

Propositionδ. Let sn be a strictly increasing function such that s0 > 0.
Then

(1) sk + Sjk+i! < sk I, for k > 2 ,

(2) Sk-x + Skl ^Sk-il,fork>l.

The proof is left to the reader.

Theorem 2. There exist exactly c combinatorial functions f(n) such that:

(a) f(n) is a strictly increasing regressive function;

(b) the associated function Ci of f(n) is strictly increasing but not

regressive.

Let tt/ be the family of functions with the properties listed in the
statement of proposition 4. With every function anz0l/ we associate the
function f(ή) = ψxαw by

<2.i) ΛO-£*•'•(;).

Let Ci be the associated function of f(n). Then

(2.2) a = 2aϊ' .

It is readily seen that the family ψ i ^ consists of c strictly increasing
combinatorial functions /(w) whose associated function a is also strictly
increasing. We claim:

( 1 ) Cn <* On',

(2) An)***;
(3) f(n) **cnΛl;
(4) f(n) is regressive;
(5) cn is not regressive.

If we let

(2X], for x> 0,

t(x) = <
( 0 , for x = 0 .

then t(x) is a one-to-one recursive function which maps an onto cn. Hence

cn ^ an.
Re{2). We shall use the relation

(2.3) Σ a ( ~ ^ ) < Ck+i, for k > 0,

which will be proved later. We claim:

(2.4) an\ = max {3; e ε I 2 y < /(w)} , for n e ε.
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To prove (2.4) we first observe that /(0) = c0 = 2a°ι. Hence, (2.4) holds for

n = 0. Now assume n > 0, say n - k + 1. Clearly,

(2.5) f(k+l) = Σ a (*+*) + ck+1.

Taking into account that d > 0 for c, e έ, we see that Ck+i < f(k+l). In view

of (2.3) and (2.5),

2 ^ + i ! = Ck+i < f(fc+l) <2ck+i = 2Λ* I + 1 ,

from which (2.4) follows. Relation (2.4) implies

f(n)^2anl =cn.

It remains to prove (2.3). First of all, (2.3) holds for k = 0, for c0 < Ci.

Now assume k >0, then

(2.6) Σ « ( f e ^ ) < c* Σ (?f) < 1 ^ c k - 2k^ + a k l ;

for cn is a strictly increasing function. Since α0 >Q and an is strictly

increasing we see that k+1 > ak+i', thus, it follows from proposition 5 that

k +ak\ <ak+i + ak\ < ΛA+I! .

Combining this last relation with (2.6), we obtain (2.3).

Re(3). Let f{n) be given. From (2) and (1) we can compute cn and an re-

spectively. In view of the definition of an, we can compute n. If n = 0,

c W ϋ = Co; if n = 1, cw ^i= Co = /(I) - Cj.. Now assume n ^ 2, say n = £+1,

where k ^ 1. We wish to prove that cWJ.i= c& can be effectively computed

from f(n) = f(k+l). We assume

(2.7) Σ a (k".1) <ck, f o r k < 1 ,

Whose proof is similar to that of (2.3). Clearly,

(2.8) /(&+1) - ck+1= Σ a i^1) + (fc+l)cA.
ί=0 \ * /

Using (2.7) and (2.8), we conclude that

(k+l)2ak] = (k+l)ck <f(k+l) - ck+i< (k+2)ck < (k+l)2ak] + 1 ,

(2.9) α*! = max {3; | (fc+l)2" < /(fe+1) - c^+i} .

Since f(k+l) is given, k+1 and c^+ican be computed. Hence α^!, and there-

fore Q,can be computed from (2.9).

Re(4). Let the number /(^+1) be given. Consider the two sequences

( 0 ak+i, ak-i, . . . , cii+2, ai ,

(ϋ) CLk, dk-2, . . . , dj + 2, Clj ,

where i = 0, j = 1 in the case £+1 is even and z = 1, 7 = 0 in case k+1 is odd.
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If f(k+l) is given, we can compute Ck+i and <% by (2) and (3), hence, ak+i and
a,k by (1). In view of the fact thatα2«+i andα2» are regressive functions of n,
we can effectively find the sequences (i) and (ii), thus also

/<*). Σ , - ( » ) ,

Re(5). Since an ^ cn andα« is not regressive, by proposition 3, we conclude
that cn is not regressive.

Theorem 3. There exists exactly c combinatorial functions f(n) such that:

(a) f(n) is strictly increasing but not regressive;
(b) the associated function Cί of f(n) is a strictly increasing regres-

sive function.

Proof: Let ^ be a family of functions with the properties listed in the
statement of proposition 4. We also assume a0 = 2 so that in particular the
relation

(3.1) ak +ak-il <ak\

of proposition 5 holds for k = 1. With every function an e fls we associate a
function f(n) = ψ2an by

(3.2) f(n)= 2a»' , f o r « e ε .

We now define

(3.3) Ci = the associate function of f(n).

It readily follows that the family ψ2<#Όf strictly increasing functions has
cardinality c. Also, for Onβύ^, On =* f(n). We shall prove the following:

(1) Ci is a strictly increasing function from ε into ε;

(2) Cn^fin);

(3) cn ^ * f(n ^ 1);
(4) Ci is regressive;
(5) f(n) is not regressive.

Re(\) and (2). If n = 0, /(0) = c0 = 2a°ι = 4 > 0. Let us assume that n > 0,
say n = k. It follows from the definition of d that

(3.4) ck = /(fc)+ j£(-l>'(J) / M .

We shall use the relation

(3.5) g (-l)'(*)/(ft-<)> -2'* !-\ ft > 1,

which will be proved later. Combining (3.4) and (3.5), we obtain the
inequality

(3.6) ck>f(k)-2akl-1=2akl - 2 * * ! - 1 = 2 * * | - 1 > 0 .
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From (3.6) and the fact that Co > 0, we see that f(n) is combinatorial.
We therefore have

(3.7) Ck < Co + ck </(&), for k ^ 1.

Combining (3.6) and (3.7) we have

(3.8) 2β* !"1<c ifc </(&)= 2α* ! , for £5*1.

We conclude from (3.8) that Ci is strictly increasing and that

ak\ =(μy)[2y>ck], for * > 1, /(ft) = 2 ^ ! .

It follows that k = 0 < > c& = 4. Hence if we are given ak, where c& έ 4,
we can effectively find f(k) by the last two relations. Thus Ck ̂ * /(&). It
remains to prove (3.5). Let k > 0, then since f(n) is strictly increasing,

(3.9) Σ (-1)'(?)/(*-<) > -/(fe-1) g (J) >-/(fe-l)2*= -2*+ *^ !.

Since ^ 0 > 1 and an is strictly increasing, we see that k < <z&. In view of

(3.1),

& +α*-i! <ak + ak-il ^ akl f i.e., k +ak-i\ < «Λ! - 1.

Combining this last relation with (3.9), we obtain (3.5).
Let cn be given; then f(n), an, and hence n can be computed. If

n = 0, f(n - 1) = /(0) = Co. If n = 1, then /(0) =/(l) - a. We now assume
n > 1, say w = & + 1. We wish to prove that f(n - 1) = /(&) can be effec-
tively computed from cn = Ck+i. We assume

(3.10) Σ (-l)i+1 (k+1) f(k+l-i)> -(k+l)2ak]-\ f o r fe>1.

whose proof is similar to that of (3.5). In view of (3.3),

k+i

(3.11) /(fc+l) - c*+ 1= (^+l)/(fe) + g a (-1)'+1 Ak+l-i).

Combining (3.10) and (3.11), we have

(3.12) fQg+l)-ck+i> (k+l)f(k)~ (k+l)2akl'1= 0fe+l)2β*1"1.

Since ^ Λ = ( ^ | M (^) < ( ^ + 1 ) ( ^ f o r ° ^ i ^ k> k > °> w e o b t a i n

(3.13) /(fc+i) - c ^ + 1 = Σ a ( k f ) ^ (k+i) Σ cίf)(k+i)f(k), k & i .

Combining (3.12) and (3.13) we obtain

(fe+l)2 β * I " 1 </(*+l)-c A <(fe+l)/*)= (^+1)2^ ! ,

ak\ = iμy) [(^+l)2y >/(*+l) - c^+1] .

Since c&+i is given, the number k+1 and /(fe+1) can be computed; by the last
relation, we can also compute f(k) = 2akl .
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Re(A). In a proof similar to (3) of theorem 2, if we are given Ck+i, then we
can compute f(k+l) and f(k), and hence f(k-l), . . . , /(0). Thus

can be computed from Ck+i) i.e., c& is regressive.
Since an ^ f(n) and On is not regressive, we conclude that f(n) is not

regressive.

Theorem 4. There exist exactly c combinatorial functions f(n) such that

(a) /(ft) is α strictly increasing regressive function,
(b) the associated function Ci of f(ή) is a strictly increasing regres-

sive function.

Proof: Let #£be a family of c strictly increasing regressive functions such
that for every kn e %>, k0 = 2. Then in particular (1), (2), and (4) of proposi-
tion 4 hold. Define for every kn €%>, the function f(n) =\fakn by

An) = 2k»ι .

Note that f(n) ^ kn, and the family ψ^^ has cardinality c. From the
definition of kn> relations (1) through (4) of theorem 3 hold, i.e., we can
show that f(n) is a strictly increasing combinatorial function and that its
associated function is strictly increasing and regressive. Since f(n) ^ kn

and kn is regressive, f(n) is regressive. We note that if cn is regressive
then cn ^* f(n); for given cn we can compute c», cn-h . . . , c 0 and hence
f(n). Similarly, if f(n) is regressive, then f(ri) *** cn. If f(n) and cn are
both 1-1 and regressive, it follows from the above and proposition 2 that

An) =* cn.

REFERENCES

[1] Dekker, J. C. E., "Les functions combinatoires et les isols," To be published.

[2] Dekker, J. C. E., ^The minimum of two regressive isols," Math. Zeit., vol 83
(1964), pp. 345-366.

[3] Myhill, J., "Recursive equivalence types and combinatorial functions," Bull.
Amer. Math. Soc, vol. 64 (1958), pp. 373-376.

Rutgers - The State University
New Brunswick, New Jersey




