A NOTE ON THE AXIOMATIZATION OF RUBIN'S SYSTEM (S)

JOHN THOMAS CANTY

Rubin, in [3], suggests that the axiomatic for system (S) may be simplified. It is here shown that

```
R5 If \vdash\alpha in (S) then }\vdash\mp@subsup{\square}{2}{}\alpha\mathrm{ in(S)
```

and
R*5 If \vdash - α in (S) then $\vdash^{-} \square_{1} \alpha$ in (S)
are derivable from the other axioms and rules of (S).
This paper presupposes [3] and adopts the same primitive basis and definitions for (S). Thus the axioms and rules of (S) are

A1 $\quad(\alpha \wedge \beta) \Longrightarrow(\beta \wedge \alpha)$
A2 $(\alpha \wedge \beta) \Rightarrow \alpha$
A3 $\alpha \Longrightarrow(\alpha \wedge \alpha)$
A4 $\quad((\alpha \wedge \beta) \wedge \gamma) \Longrightarrow(\alpha \wedge(\beta \wedge \gamma))$
A5 $\alpha \Longrightarrow \sim \sim \alpha$
A6 $\quad((\alpha \Longrightarrow \beta) \wedge(\beta \Rightarrow \gamma)) \Longrightarrow(\alpha \Longrightarrow \gamma)$
A7 $\quad(\alpha \wedge(\alpha \Longrightarrow \beta)) \Rightarrow \beta$
A8 $\square_{2} \alpha \Longrightarrow \square_{2} \square_{2} \alpha$
A12 $\square_{2} \alpha \Longrightarrow \square_{1} \alpha$
R1 If $\vdash \alpha$ and $\vdash(\alpha \Rightarrow \beta)$ then $\vdash \beta$.
R2 If $\vdash \alpha$ and $\vdash \beta$ then $\vdash(\alpha \wedge \beta)$.
R3 If $\vdash(\alpha \Longleftrightarrow \beta)$ and $\vdash \gamma$ and δ results from γ by replacing α for β (or β for α) then \vdash.
together with $A^{*} 1-A^{*} 8, \mathbf{R}^{*} 1-\mathbf{R}^{*} 3$. (T^{*} is the wff obtained from T by replacing all the " \diamond_{2} ' s " by ' \diamond_{1} ' s ".)

The following theorems, S1-S7, follow from A1-A8 and R1-R3, and their proofs can be found in [1]. ${ }^{1}$

```
S1 }\alpha=
S2 ((\alpha\supset\beta)^(\beta\supset\gamma)) \Longrightarrow(\alpha\supset\gamma)
S2 \(\quad((\alpha \supset \beta) \wedge(\beta \supset \gamma)) \Rightarrow(\alpha \supset \gamma)\)
S3 \(\quad \square_{2} \alpha \Longrightarrow \alpha\)
S4 \(\quad(\alpha \Longrightarrow \beta) \Leftrightarrow \square_{2}(\alpha \supset \beta)\)
```

S5	$\left(\square_{2} \alpha \wedge \square_{2} \beta\right) \Leftrightarrow \square_{2}(\alpha \wedge \beta)$
S6	$\left(\square_{2} \alpha \wedge \square_{2} \beta\right) \Longrightarrow(\alpha \Longleftrightarrow \beta)$
S7	$\square_{2} \square_{2} \alpha \Leftrightarrow \square_{2} \alpha$

S6 $\quad\left(\square_{2} \alpha \wedge \square_{2} \beta\right) \Longrightarrow(\alpha \Leftrightarrow \beta)$ [19.84]
S7 $\quad \square_{2} \square_{2} \alpha \Leftrightarrow \square_{2} \alpha$
Some additional theorems of (S) follow
S8

$$
\begin{array}{ll}
\text { S8 } & \left(\alpha \Longrightarrow \square_{2} \beta\right) \Longrightarrow(\alpha \Longrightarrow \beta) \\
\text { S9 } & (\alpha \Longrightarrow \beta) \Longrightarrow\left(\square_{2} \alpha \Longrightarrow \square_{2} \beta\right)
\end{array}
$$

S8 was proved by Parry [2] p. 139, and S9 is given by Rubin [3] p. 308. Any further theorems of (\mathbf{S}) that are needed will be given without proof-though their proofs are indicated by the bracketed information.

S10 $\quad \square_{2} \square_{2}(\alpha \supset \beta) \Longrightarrow \square_{2} \square_{1}(\alpha \supset \beta)$
[A12, S9, R1]
S11 $(\alpha \Longrightarrow \beta) \Longrightarrow \square_{2}(\alpha \rightarrow \beta)$
[S10, S4, S7, R3, $\left.S^{*} 4, \mathrm{R}^{*} 3\right]$
S12 $(\alpha \Longrightarrow \beta) \Longrightarrow \square_{2}(\alpha \Longrightarrow \beta)$
[S1, S4, S7, R3]
S13 $\square_{2}(\alpha \rightarrow \alpha)$
[S1, S11, R1]
S14 $\square_{2}((\alpha \wedge(\alpha \Longrightarrow \beta)) \Longrightarrow \beta)$
[A7, S12, R1]
S15 $\square_{2}\left(\square_{2} \alpha \Rightarrow \alpha\right)$
[S3, S12, R1]
S16 $\quad\left(\square_{2} \alpha \Rightarrow \alpha\right) \Leftrightarrow((\alpha \wedge(\alpha \Rightarrow \beta)) \Rightarrow \beta) \quad[$ S14, S15, R2, S6, R1]
S17 $\quad\left(\square_{2} \alpha \Longrightarrow \alpha\right) \Longrightarrow((\alpha \wedge(\alpha \Longrightarrow \beta)) \Longrightarrow \beta) \quad[S 16, \mathrm{df} . ' \Leftrightarrow \prime \overline{\mathrm{R} 3}, \overline{A 2}, \mathbf{R} \overline{1}]$
The following lemma will be needed for the proof of R5.
Lemma I If $\vdash \square_{2} \alpha$ and $\mid-(\alpha \rightarrow \beta)$ then $\vdash \square_{2} \beta$
Proof.

(1) $\square_{2} \alpha$	[Hypothesis]
(2) $\alpha \rightarrow \beta$	[Hypothesis]
(3) $\square_{1} \alpha$	$[(1)$, A12, R1]
(4) $\square_{1}(\alpha \supset \beta)$	$\left[(2), S^{*} 4, \mathbf{R}^{*} 3\right]$
(5) $\square_{1} \alpha \wedge \square_{1}(\alpha \supset \beta)$	$\left[(3),(4), \mathbf{R}^{* 2}\right]$
(6) $\alpha \longleftrightarrow(\alpha \supset \beta)$	$\left[(5), S^{*} 6, \mathbf{R}^{*} 1\right]$
(7) $\square_{2}(\alpha \supset \beta)$	$\left[(1),(6), \mathbf{R}^{*} 3\right]$
(8) $\alpha \Longrightarrow \beta$	$[(7)$, S4, R3]
(9) $\square_{2} \alpha \Longrightarrow \square_{2} \beta$	$[(8), S 9, \mathbf{R} 1]$
(10) $\square_{2} \beta$	$[(1),(9), \mathbf{R} 1]$

It is now possible to prove
R5 If $\vdash \alpha$ then $\vdash \square_{2} \alpha$
Proof. R5 can be established by induction on the length of the proof of α. If α is one of the axioms, $A 1-A 8, A 12$, then $\square_{2} \alpha$ follows by $S 12, \mathrm{R} 1$ and $A 1-A 8$, A12 respectively. If α is one of the axioms $A^{*} 1-A^{*} 5$ then $\square_{2} \alpha$ follows by S11, R1, and A1-A5 respectively. Thus it remains to show $\square_{2} \alpha$ when α is one of the axioms $A * 6-A * 8$. But the following are theorems of (S).

S18	$\square_{2}(((\alpha \supset \beta) \wedge(\beta \supset \gamma)) \rightarrow(\alpha \supset \gamma))$	[S2, S11, R 1]
S19	$\square_{2}\left(\square_{1}((\alpha \supset \beta) \wedge(\beta \supset \gamma)) \rightarrow \square_{1}(\alpha \supset \gamma)\right)$	[S18, ${ }^{*}{ }^{*}$, Lemma I]
S20	$\square_{2}(((\alpha \rightarrow \beta) \wedge(\beta \rightarrow \gamma)) \rightarrow(\alpha \rightarrow \gamma))$	[S19, S*4, ${ }^{*} 5, \mathrm{R}^{* 3}$]
S21	$\square_{2}\left(\square_{1} \alpha \rightarrow \square_{1} \alpha\right)$	[S13, $S^{* 9}$, Lemma I]
S22	$\square_{2}\left(\square_{1} \alpha \rightarrow \alpha\right)$	[S21, S^{*}, Lemma I]

S23 $\square_{2}((\alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)$
S24 $\square_{2}\left(\square_{1} \alpha \rightarrow \square_{1} \square_{1} \alpha\right)$
[S21, $S^{* 7}, \mathrm{R} * 3$]
Thus S20, S23, and S24 complete the basis of the induction for the proof of R5.

If α follows from previous theorems of (S) by R1-R3 or $R^{*} 1-R^{*} 3$, $\square_{2} \alpha$ may be obtained from the induction hypothesis using S3, S5, S9 (in case callows by R1-R3, or \mathbb{R}^{*} 2); by S3 and Lemma I (in case α follows by $R^{*} 1$); and by S_{3}^{*} (in case a follows by $R^{*} 3$).

Finally, on the basis of R5, it is possible to prove
$\mathbf{R}^{*} 5$ If $\vdash \alpha$ then $\vdash \square_{1} \alpha$.
Proof. (1) α
[Hypothesis]
(2) $\square_{2} \alpha$
[(1), R5]
(3) $\square_{1} \alpha$
[(2), A12, R1]

NOTE

1) The numbers in brackets following each of the theorems, $S 1-S 7$, refer to the corresponding theorems in Lewis and Langford [1].

BIBLIOGRAPHY

[1] C. I. Lewis and C. H. Langford, Symbolic Logic, Dover, New York (1932), 506 pp.
[2] W. T. Parry, Modalities in the "Survey System" of strict implication, The Journal of Symbolic Logic, v. 4 (1939), 137-154.
[3] J. E. Rubin, Bi-modal logic, double-closure algebras, and Hilbert space. Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik, v. 8 (1962), 305-322.

Seminar in Symbolic Logic
University of Notre Dame
Notre Dame, Indiana

