NOTE ON A THEOREM OF W. SIERPIŃSKI

VLADETA VUČKOVIĆ

As generalization of a theorem of Steiner-Riess [1], W. Sierpiński, using the axiom of choice, established in [3] the following

Theorem S. For every non-finite set E there exists a family F of triplets of elements of E such that any two distinct elements of E appear exactly in one triplet of F.

As shown by B. Sobociński in [4], theorem S is equivalent to the axiom of choice.

Here we prove the theorem S for the case of a denumerable $E,{ }^{1}$ by establishing an effective construction of the family F. We simply suppose E to be the set of positive integers $1,2,3, \ldots$

Consider the sequence $\left\{f_{n}\right\}, n=1,2, \ldots$ of functions, where

$$
f_{n}(x)=x+2-n+\frac{(x-2)(x-1)}{2}
$$

For the integer values of $x, f_{n}(x)$ takes integer values, and for $n \neq m$, $f_{n}(x) \neq f_{m}(x)$ for $x>\operatorname{Max}(m, n)$. Moreover $f_{1}(2)=3, f_{n}(n+1)-f_{1}(n)=1$, and for $x=n, f_{n-1}(x), f_{n-2}(x), \ldots, f_{2}(x)$ and $f_{1}(x)$ take as values all consecutive integers between $f_{1}(n-1)$ and $f_{n+1}(n)$ respectively (last two excluded). Therefore, for integer $x>n$ the functions $f_{n}(x)$ take as values all integers $\geqslant 3$, and every such integer appears in the double sequence $\left\{f_{n}(x)\right\}$, $n=1,2, \ldots, x>n$, exactly once. Also, if $n<x$ then $f_{n}(x)>x$.

In the following we suppose x to run only over positive integers.
Now construct the set F of triplets (p, q, r) of positive integers, $p<q<r$, in the form of a matrix as follows:

In the first row put successively all triplets

$$
\left(1, x, f_{1}(x)\right)
$$

[^0]for all $x>1$ which are different from
\[

$$
\begin{equation*}
k+2-1+\frac{(k-2)(k-1)}{2} \quad \text { for } k=2,3,4, \ldots \tag{1}
\end{equation*}
$$

\]

In the second row put successively all triplets

$$
\left(2, x, f_{2}(x)\right)
$$

for all $x>2$ which are different from

$$
\begin{equation*}
k+2-2+\frac{(k-2)(k-1)}{2} \quad \text { for } k=3,4,5, \ldots \tag{2}
\end{equation*}
$$

Moreover, if the triplet $\left(1,2, f_{1}(2)\right)$ has appeared in the first row we eliminate $f_{1}(2)$ as the possible value of x.

Having constructed first $n-1$ rows, construct the n-th row as follows. Its elements are all triplets

$$
\left(n, x, f_{n}(x)\right)
$$

for all $x>n$ which are different from
(n) $\quad k+2-n+\frac{(k-2)(k-1)}{2} \quad$ for $k=n+1, n+2, \ldots$

Moreover, if any of the triplets $\left(1, n, f_{1}(n)\right),\left(2, n, f_{2}(n)\right), \ldots,\left(n-1, n, f_{n-1}(n)\right)$ have appeared in the 1 -st, resp. $2-\mathrm{d}, \ldots$, resp. ($\mathrm{n}-1$)-th row, we eliminate all third coordinates $f_{i}(n)$ of such triplets as possible values of x.

We state: any two integers n, m such that $1 \leqslant n<m$ appear exactly in one of the triplets of F .

Namely, n, m will appear in the triplet $\left(n, m, f_{n}(m)\right)$ if and only if the pair n, m has not appeared as the second and third coordinate respectively in any of the triplets $\left(k, n, f_{k}(n)\right)$ for $k<n$. In such a case, as $m<f_{n}(m)<f_{1}(m)$, we need to consider at most first $f_{1}(m)$ columns in the first $n-1$ rows of the matrix F, and find the triplet containing n and m as the second and the third coordinate.

Therefore, constructing first n rows up to the $f_{1}(m)$-th column, we can effectively find the unique triplet containing n and m.

The following diagram gives some first elements of the matrix F. The empty places indicate the triplets which have been eliminated.

$$
\begin{array}{ccc}
(1,2,3), & ,(1,4,8),(1,5,12),(1,6,17),(1,7,23), & ,(1,9,38), \ldots \\
& (2,4,7),(2,5,11),(2,6,16), & ,(2,8,29),(2,9,37), \ldots \\
(3,4,6),(3,5,10), & ,(3,7,21),(3,8,28),(3,9,36), \ldots \\
(4,5,9), & , & ,(4,10,44)
\end{array}
$$

If we imagine the matrix F as given by the above diagram, then to find the triplet with n and m it is enough to check all first n rows up to m-th column, (supposing that $n<m$), or more economically, only the n-th column and the m-th row till the place of ($n, m, f_{n}(m)$).

BIBLIOGRAPHY

[1] E. Netto: Lehrbuch der Combinatorik. Leipzig (1901), p. 206-211.
[2] W. Sierpiński: Algèbre des ensembles. Monografje Matematyczne, v. XXIII. Warszawa - Wrocław, 1951.
[3] W. Sierpiński: Sur un problème de triads. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie. Classe III, Vol. 33-38 (1940-1945), 13-16.
[4] B. Sobociński: A theorem of Sierpiński on triads and the axiom of choice. Notre Dame Journal of Formal Logic, V (1964), 51-58.

University of Notre Dame
Notre Dame, Indiana

[^0]: 1. In [2], p. 57, Sierpinski notices that theorem S for the set of all natural numbers can be established without the aid of the axiom of choice.
