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A GENERALIZATION OF SIERPINSKI'S THEOREM ON
STEINER TRIPLES AND THE AXIOM OF CHOICE

WILLIAM J. FRASCELLA

In the language of combinatorial analysis, a finite set F is said to
possess a Steίner triple system if and only if there exists a family 9 of
subsets of F such that 1) each element of 9 contains exactly three elements
of F and 2) every subset of F, containing exactly two elements, is contained
in exactly one of the elements of J . It has been long established that a
necessary and sufficient condition for the existence of such a system for a
finite set F is that F s 1 or 3 (mod 6).

In [l], W. Sierpinski has showed that a Steiner triple system always
exists for any set which is not finite. The proof of this result depends upon
the axiom of choice. In [2], B. Sobocinski has proved that the assumption
that every non-finite set possesses a Steiner triple system is, in fact,
equivalent to the axiom of choice.

The aim of the present paper is to further generalize these two results.
We begin by making a

Definition 1: An arbitrary set E is said to possess a Steiner system of
order k {where k is a natural number >J) if there exists a family 9 k of
subsets of E such that 1) each element of 9k contains exactly k elements of
E and 2) every subset of E, containing exactly k-1 elements, is contained in
exactly one member of the family 9k

§1. With the aid of the axiom of choice we shall show that every set
which is not finite possesses a Steiner system of order n for n = 2,3,4,....
In addition, we shall establish that the assumption that every set which is
not finite possesses a Steiner system of order n, for n = 3,4,..., is equiva-
lent to the axiom of choice. We are not able to demonstrate the necessity
of the axiom of choice to establish the existence of a Steiner system of
order 2 for any set which is not finite.

To this end we first prove, with the aid of the axiom of choice,

Theorem 1: Let E be any set which is not finite. Then E possesses a
Steiner system of order nfor n = 3,4,....
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Proof: As mentioned above, the theorem has been proved by Sierpiήski for
n = 3. In the manner of induction we will assume

(1) Theorem 1 is true for n-1, n> 3.

Now the axiom of choice tells us that the non-finite setE has as its cardinal
number some aleph. That is,

(2) E= « λ.

Thus_without loss of generality we may impose a well-ordering on E such
that Έ = ωχ, where ωχ is the initial ordinal number of the class of all ordi-
nals whose cardinality is N.χ. Hence, we may take E to be the set of all
ordinal numbers less than ωχ.

In [l], Sierpiήski remarks that the set P2 = {<a,β>:a <β <ωχ} can be
given a well-ordering such that P2 = ωχ. (Here, as elsewhere in this paper,
< , > is to be taken as the symbol for an ordered pair. Similarly, <,, > is
to be taken as an ordered triple, etc Also, all small Greek letters are
to be regarded as ordinal numbers.) The proof of Theorem 1 will depend
upon a generalization of this remark. Its statement will be given the form
of a lemma whose demonstration will follow the proof of the theorem.

Lemma 1: The set Pk = {<al9... ,ak> :a i < a 2 < . . . <ak <ωχ} can be

given a well-ordering such that Pk = ωχ, for k = 2,3,4,....

Now, in virtue of this lemma, we are in a position to index the elements
of P n-\ and express this set as follows:

(3) Pn.ί={<al1\...,af^>: ξ < ωλ}.

By (1) we know E possesses a Steiner system of order w-I. Hence there
exists a family 9n-γ satisfying the properties of Definition 1 for k =n-l.

Before proceeding it is necessary to make some definitions.

Definition 2: Let γ be an ordinal number less than ωχ. Then F{γ~l)is that
unique member of the family 9n_ι which contains the set {a(γ , . . . ,α(y"2)}.

In addition, suppose that

(4) ί $ r u = {a«>,...,aΐ-2\β}

and that

(5) <*«> < . . .< af <β < a^+Ώ <...<a^2) < ωλ.

We now formulate another

Definitions:1

 (n-D .- ^CW-D . a
a γ V) a γ T P

[Σaή +1 ifa^=β

1. In this paper the symbol Σ will represent the standard addition of either ordinal
or cardinal numbers. On the other hand, the symbol U, which later appears in
(10), represents the standard concept of set-theoretical union.
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We are now in a position to construct, after the manner of Sierpiήski in
[l], with certain modifications, a transfinite sequence of ordinal numbers
indexed by all ordinals less than ω\. Let φλ = 1. Assume δ to be an arbi-
trary ordinal number such that 1 <6<ω\. Now suppose <Pξ has been de-
fined for all I < δ. Then we let <Pδ be the smallest ordinal μ which satisfies
the following condition:

(6) { < ' , . . .,(#-»} Φ {F^-X)U S(F^): ξ < δ}.

To establish that this construction is non-vacuous it is sufficient to
exhibit a μ such that (6) holds. To accomplish this we construct the follow-
ing sets:

(7) Ri ={/z ( ^ ) : ξ < δ }

where fi(ψξ) = a%\ for i = 1,2,..., (n-I). It is clear that for each i we have

(8) Ri Ik δ

where R{ has the order induced by the indices of the elements of the trans-
finite sequence already defined. Hence

(9) Ri Ξδ" for i = 1,2,...,(n-1).

But clearly δ is either a finite cardinal number or an aleph. If we now con-
struct

n-\

(10) R= (J Ri
i—\

_ n~ι _

it is clear that R = LJ R{. NOW if δ is a finite cardinal number it is
_ i =1 _

immediate that R < tfx = E. On the other hand, however, if δ is an aleph,
say tf*, we have, in virtue of the fact that tf* + tf* = tf*,

(11) Rί N+.

But since δ < coχ and ωχ is an initial number

(12) X* < N λ

and therefore we again arrive at

(13) R< Kλ = J .

It is clear, then, that there must exist n-2 elements of E which are not con-
tained in R. That is, there exists a (1) , . . . fa

(n"2) such that

(14) a
(i) € E-R for i = 1,2,. .., (n-2).

Hence by (7) and (14) no aω can be considered an image point of the func-
tion fj for all <i, j> e {1,2,..., (n-2)} x {1,2,... ,{n-l)}. Therefore
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(15) α t f ) * {F?*\ I < δ} for < = i , 2 , . . . , (n-2).

If we suppose α ( 1 ) < . . . < α ( w " 2 ) we have

(16) <aa),...,a{n-2\a(n-2)+l>e P ^ .

In virtue of (3) we may write

(17) aω = ^ 1 } ; ...;cίn-2) =a?-2) ;a(n'2) + l = α £ - 1 }

for some μ < ω\.

Therefore

(18) K,...,^^} Φ{n--» US(Fς-υ):ί<β}.

Thus the construction of the transfinite sequence is well formed. We
now state and prove an important property of this transfinite sequence.

Lemma 2: The transfinite sequence {φ^ }ξ < ωχ is strictly increasing.

Proof: To the contrary suppose we have either of the following:

Case 1: ηi< η2< ω\ and φηi = φΊ]2

Case 2: Vι<η2< ω̂  and <PVI > φη2 .

If Case 1 occurs we have by (6), φη2 = μ2 to be the smallest ordinal
such that

(19) { < , . . . , < ; " } <t { F * * U S ( ^ > ) : ξ < η2} .

But since η Λ <η29 we must have

(20) { < > , , . . , β « ; ^ φ {F^> u S(F«^}.

But by assumption, φVl = ^τ/2; hence

(2i) K1;,...,^} Φ{^;υ u5«-2

υ)}

which contradicts the very definitions of F%'1} and S(F%~υ). Thus Case 1
Ί 2 Ί 2

never obtains.
Suppose Case 2 occurs. By (6) we have φηi = μχ, the smallest ordinal

such that

(22) { < - , . . . , < ; * > } ${F™ U S(F<7): ^ < ^ }

In the same manner we have φη = μ2 to be the smallest ordinal such that

(23) {a™ ,... , α £ » } ψ {F^-1' U S ( ^ " ): ξ< r,J.
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But (23) and the fact that r\ι <η2 implies

(24) {«;» , . . . , α<;2-
u} <t {*•«•* u S ( F ™ ) : ξ < η j .

But (24) and the fact that μ2 < μi contradict the definition of φηi . Thus
Case 2 never obtains and Lemma 2 is proved.

Finally we are in a position to define a family of subsets of E which
will insure the existence of a Steiner system of order n.

Definition 4\ 9n = { F £ " 1 } U S ( F ^ " υ ): ξ < ωλ}

To show this is the family in question, let a (1) , α ( 2 ) , . . . , a ( w " υ be any
n-1 distinct elements of E. We may assume that

(25) aω <σi2) < . . .<<* ( w - υ <coλ.

Clearly we have <a(1) , . . . , ain"ι) > e Pn^1. Therefore by (6) there must
exist an ordinal number μ < ojχ such that

(26) af =a{i) for i = 1,2,... ,(n-l).

But since the sequence {φ^ }ξ<ωχ is strictly increasing, there exists an
ordinal δ < ω\ such that

(27) φb > μ.

But by the definition of φb, there must exist an ordinal ξo< δ such that

(28) { < \ . . . , < - " } c {*>;»•*> u s( F™) }

for otherwise (27) could not hold. Therefore (28) shows every n-1 distinct
elements of E is contained in at least one member of the family 9n.

On the other hand, suppose we have n-1 distinct elements of E con-
tained in two distinct members of the family 9n. That is, suppose we have
η < ξ < coχ such that

(29) {a α > , . . . , a'"'1'} c { F * " U U S(F™)}

(30) {a(1>,..., a'"-»} c {p™ U S(F«*>)}.

Again by (6) there must exist an ordinal number μ < ω λ such that a{ί) = α(^

for i = 1,..., n-1. By Definition 3,S(F%j) and SC*^) are the greatest ele-

ments (according to magnitude) of the sets {F?~1} U S(F^n~υ )} and

{F^uSiF^)}, respectively. But since we assume a(1) < . . . < α ( w " 1 ) ,
we must have

(31) { α α ) , . . . , α ( κ - 2 ) } c i ^ " 1 '
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and

(32) { α ( 1 ) , . . , α ( H ) } c F ^ .

But since

(33) F ^ c ^ x and F™ e 9n_1}

we must have

(34) F™ =F^- 1 )

since Jw_x is the Steiner family of orders-I.
There now follows two cases:

Casel: a ^ e F%Ώ = F™

Case 2: a(n^ f F^l) = F?f° .

If Case 1 occurs, by Definition 3 we must have

(35) S(i^- 1 }) = S(F^) = a(1) + a(2) + . . . + a(w"1} + i .

But this contradicts our assumption that the members of 9n are distinct.
If Case 2 occurs we must have

(36) S(F^Ό) =ain-1) = S ( F ^ " 1 } ) .

But this, too, leads to the same contradiction.
Thus the family 9n has the properties of Definition 1 and the existence

of a Steiner system of order n for the set E is assured. The induction being
completed, Theorem 1 is proved.

We now return to the unfinished business of proving Lemma 1.

Proof of Lemma 1: Since the lemma is true for n = 2 it will be sufficient to
proceed by induction. Hence we assume

(37) Lemma 1 to be true for k = n-1 (n = 3).

Since E = Nλ and the fact that K ' tf = K for any aleph, tf, we have

(38) (Ex . . . XE) = tfλ.
n-times

But according to the definition of Pn we have

(39) Pn <z{Ex...xE)
n-times

and hence
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(40) Pntk$λ.

We now consider the following subsets of Pn_x:

(41) i £ 1 = { < 0 , α ( 2 ) , . . . , α ( w - 1 ) > : 0 < a(2) <..,<a'n'Ό < ωλ}

(42) Pnt, = P β . 1 - P ; . 1

By (37) we have Pw_ x = Kλ . Also since, by (42), P*_x c P w - 1 :

(43) ^ * ! * N λ.

But it is possible to map the set E in an one-one manner onto a certain
subset of P*-i Let

(44) f.E - P*_,

where,

(< 2,£, . . . ,(w-2),α> if a>n-2

(45) /(α) = J
( <a + 1, a + 2, . . . ,a + n-l> if a = n-2.

We remark that / is well constructed, since by the definition of P*_x, no n-1
tuple in this set has 0 as its first coordinate. Thus the set E is equinumer-
ous to some subset of P*-! Hence

(46) ?*_, * Nλ = E.

Thus (43) and (46) yield

(47) C i i = ̂ λ

We now construct the following subset of Pn:

(48) P * = {<0,a2,...,an>: 0<a2< ...<an < ωλ}.

An one-one correspondence naturally arises between the sets P* and P^*^
Namely,

(49) g:P*^^ P *

where

(50) g(<al9...9anr.1>) =<0,a1,...,anίml>.

The very definitions of the sets P*_x and P* insure that the mapg is well
defined. Hence,

(51) Cίi=^*

Together with (47) we have

(52) P^= « λ .

But since P* c pn we conclude
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(53) Pn ^ Kλ.

Therefore (40) and (53) establish

(54) Pn = « λ .

Thus we may impose a well-ordering on Pn such that Pn = ω\. The induc-
tion being completed, Lemma 1 is proved.

§2. In order to further our results, we will establish a functional
characterization for a Steiner system of arbitrary order.

Theorem 2: Let E be any set which is not finite. Then E possesses a
Steiner system of order n, for n = 2,3,... if and only if there exists a set
function f such that

1° The domain of f is the family of all subsets of E which contain exactly
n-1 elements.

2° The range of f is some subset of E.

3° f({ax,a2 , . . . , On^i}) ί {«i,«2> , On^lh

4 ° If f{{ai,..., an;ml}) =beE then f{{au . . . ,fl, β l , δ , f l f + i , . . , « » , - 1 } ) =a{for
i = l,2,...,n-l.

Remark: It is important to observe that the proof of Theorem 2 will not
employ the axiom of choice.

Proof:

Necessity: Suppose the non-finite set E possesses a Steiner system of
order n. Let us now construct

(55) c4 = \A cE:A=n-l} .

By Definition 1, we know that for every Aec4 there exists a unique element
of 9n which contains A. We represent such an element of 9n by the symbol
FA . Next, we construct a map

(56) fiσi-* E

where

(57) f(A) = FA -A for each A e J.

Since FA e 9n> it follows that FA = n. But also A = n-1 and A c FA.
Hence f (A) e E. Thus / satisfies properties Γ and 2° of the theorem.
Clearly f(Aj = (FA - i ) t A, and property 3° is thereby satisfied.

Now suppose A t&4. Thus we may write

(58) A= {al9...fan^}.

And suppose

(59) FA = W . . , * β - i , δ } .

Therefore by (57) we have

(60) f(A) = 6 .
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Now construct the set A1 = {al9..., a{_l9b9ai+19... ,αw-i}. By (59) we see
A' c f A , Hence

(61) FA* = FA .

Therefore we have

(62) /(-A1) = FAi-A* =FA-A=ai.

Property 4° holding for /, necessity is established.

Sufficiency: Suppose we have given the function / with the stated properties
Γ-4°. We now define for each A e^4,

(63) F* =AUf(A).

By properties 2° and 3° of / we see that F* is a subset of E consisting of
exactly n elements.

We are now in a position to define a family of subsets of E consisting
of exactly n elements. Namely,

(64) 9n = {F%:Ae*4}.

It remains to show that 9n establishes a Steiner system of order w.
By property 1° of / and (64) it is clear any subset of E9 consisting of

exactly n-1 elements, is contained in at least one member of the family 3n.
Specifically

(65) A <zF* for each A z<A.

It remains to show that every Ae&4 is contained in, at most, one mem-
ber of the family 9n. To the contrary, suppose

(66) A c F* € 9n

and

(67) A c F* e 9n

where

(68) Fx φ F*.

Suppose A = {«!,..., an_ι}. Then we have

(69) F* ={fli, ...,««-!,*}

and

(70) F* = {fl!,..., anr.19y} .

But (69) and (70) together with property 4° of /yields

(71) f(A) =Λrand f(A) =y.

Hence x = y9 which contradicts (68).
Thus the family 9n has the desired properties and, therefore, E

possesses a Steiner system of order n. Sufficiency established, Theorem 2
is proved.
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§3. After constructing and characterizing the Steiner system of order
n, one naturally raises the question as to whether the existence of a Steiner
system of arbitrary order implies the axiom of choice. An answer is ob-
tained in

Theorem 3: The assumption that every non-finite set possesses a Steiner
system of order n implies the axiom of choice for any n^3.

Remark: The proof of this theorem follows, in substance, the proof given
in [2] by B. Sobociήski, who has established the result for the case when
n=3.

Proof: Let m be an arbitrary cardinal number which is not finite. As is
well known, to m we may associate a certain aleph, tt(m), called Hartogs'
aleph for m, where tf (m) is the least aleph with the property:

(72) tf(m) φ m.

Since N(m) is an aleph, there must exist an ordinal number λ such that

(73) K(m) = Kλ.

Let ωχ represent the initial number of the class of all ordinals whose
cardinality is $λ Elementary results tell us there exists a cardinal num-
ber, m + K(ttt), which is not finite.

Hence, there must exist non-finite sets E, R and P such that

(74) P= K(m) = Kλ

(75) P = {a:a is an ordinal < ω\}

(76) R=m

(77) R 0 P = φ

(78) E = R U P

(79) E = R + P= m + K(m).

By the hypothesis of Theorem 3, the non-finite set E possesses a
Steiner system of o r d e r s , where n is a natural number greater than 3.
Thus, by Definition 1, there must exist a family 9 of subsets of E such that

(80) every element of 9 is a subset of E containing exactly n elements

and

(81) every n-1 distinct elements of E is contained in one, and only one,
member of the family 9.

Remark: As in Lemma 1, Pk will represent the collection:

(82) {<al9...9ak>\a1<...<ak< ωλ}

where the α, 's are all ordinal numbers and ωχ is the initial number re-
ferred to above. The conclusion of Lemma 1 was

(83) Pk =ωλ for k = 1,2,... .
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An immediate corollary to this result would be

(84) Pk = ω λ = Nλ for k = 1,2,....

We now introduce another

Definition 5: For any natural number n, Pi will represent the family of all
subsets of P which contain exactly n elements.

A correspondence naturally arises between Pi and Pn. For, every ele-
ment pePn is of the form p = {au . . . , ctn}, where a{ e P for i = 1,..., n. If
we assume,

(85) (* !<. . .<<*„

we may associate to this element p e Pi the element <al9... ,an > e Pn.
Such an association is clearly an one-one onto correspondence of the sets
Pi and Pn. Hence,

(86) P j = ̂

Together with (84) we have

(87) P[=ωλ = Kλ for n = l,2,... .

As a matter of fact we have,

(88) Pi = K(m) for n = 1,2,... .

This concludes our remark.
Returning to the proof of Theorem 3 we make a

Definition 6: For any r e R we define a family of sets Fr as follows: x e Fr

if and only if 1) x e 3 and 2) there exists n-2 distinct elements of P, say
ai, - , an-2 9 such that a) the ordinal numbers 1,2,..., n-3 are contained in
the set {al9 ...,an r.2}and b) {r,au . . . ,a n ^ 2 } c x.

Definition 6 immediately implies

(89) Fr c 9 for any r e R.

Lemma 3: The family Fr is not empty for every r e R.

Proof. Let r e R. Then by (78), reE—P. Certainly the set P contains the
ordinals l,...,n-3, and, at least, one additional ordinal a. Thus
{r,l,2,... ,n-3,a} is a subset of E consisting of exactly w-i elements. By
(81), there exists a unique x e 3 such that

(90) {r,l,2,...,n-3,a}(z x.

Clearly this x satisfies the requirements of Definition 6, and hence

(91) x e Fr.

Thus for each r e R, Fr is not empty. Lemma 3 is proved.
We now wish to exhibit certain distinguished members of the family Fr .

To this end we state
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Lemma 4: Let r e R. Then there exists an x e Fr such that x =

{r,«i,. . , αw-i} where all the ai9s are elements of the set P.

Remark: Since xeFr, we are guaranteed that at least n-2 of the a^s are
elements of P. In fact, we know that the ordinals 1,2,... ,(n-3) must be
among them.

Proof: To the contrary, we assume

(A) reR

and

(B) if {r,l,2, . . . ,{n-3),a,L} e Fr, where

{l,2,... ,{n-3), a} c P, then fίeR.

It is now possible to construct a mapping

(92)f1:P-{l,2,...,n-3} - Fr

where

(93) for a eP—{l,2,... ,n-3}, fχ(ά) represents the unique element of-9 which
contains the n-1 distinct elements {r,l,2,... ,n-3,ot}.

It is clear from (93) and Definition 6, that/Jo?) eFr and thus/x is well-de-
fined. For each z eFr we must have z = {r,Ί,2,... ,n-3,x,y}. But by Defi-
nition 6, at least one of the elements x, y must be an element of
P—{l,2,... ,n-3}. But by (B), at most one of the elements x,y can belong
to P. Hence, z contains a unique element aeP—{l,2i..., n- 3}, such that
f^otj^z. Thus fx is onto.

Suppose a,β eP—{l£,... ,n-3J such that a φ β. Then we have

(94) f,{a) = {r,l,2,...,(n-3),a ,x\ e Fr a 9

and

(95)/x(β) ={r,l,2,...,{n-φ,β,y}eFr c 9.

By (B) we know

(96)*o>"t P-

Thus, if we suppose fι(a) = ft(β) we must have by (94) and (95)

(97) x = β and y = a.

But this contradicts (96). Therefore,

(98)Λ(α) +Λ03)

which establishes the fact that/ x is an one-one onto correspondence of the
sets P—{l,.. .,n-3J and Fr. Hence,

(99)P-{2,...,n-3} = *V.
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But it is clear, since Pis not finite, that

(100) P-{l,...,n-3}=P = K(m).

Therefore (99) and (100) yield

(101) Fr = K(m).

To complete the proof of Lemma 4 we shall need another

Definition 7: L e t r e R . T h e n R r will denote the set of all H e R such t h a t
1) H ϊ r and 2) there exists a n x e Fr such t h a t H e x .

We note that Definition 7 implies

(102) Rr c R

while (B) insures that

(103) Rr is not empty.

Now we construct a mapping

(104) f2:Fr - Rr

where

(105) for each x e Fr, f2 (x) represents that element of x, which belongs to
R, but different from r.

Since xeFr, by Definition 6 we know x contains the element r e R, the
ordinals 1,2,..., n-3 and, at least, one additional ordinal a. But (B) insures
that x contains, at most, one additional ordinal a. Thus x, which contains r,
must contain a unique element of R which is different from r. This shows
f2 to be well defined. Let He Rr. By Definition 7, we know

(106) ί t r

and

(107) there exists a n x e Fr such t h a t H e x .

By Definition 6, and using the same argument following (105), we see that x
contains a unique element of R different from r. But (106) and (107) imply
this element must be ί. Thus/2(#) = ft and/ 2 is shown to be onto. Let
x,y e Fr such that x + y. And suppose

(108) f2(x) =f2(y) =z.

But (108) implies that both x and y have the following n-1 elements in com-
mon:

(109) r,2,2,...,(w-3M.

But since x,y e J , (81) gives

(110) x =y

contradicting our assumption. Hence we conclude that (108) is not true and
the map/ 2 is one-one. Thus
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(111) Fr=Rr.

This, together with (101), gives

(112) Rr = K(m).

But Rr c R. Therefore we obtain from (112)

(113) N(m) ^R = m

which contradicts (72). Thus, the assumption that Lemma 4 is false leads
to an absurdity. By the law of the excluded middle, Lemma 4 is proved.

In retrospect, we have been able to establish that for each r eR, there
exists an element x e Fr such that x = {r,l,2,..., (n-3),a,β} where
1,2,..., (n-3), a and β are all elements of P. Continuing we introduce,

Definition 8: Let r e R. Then F? denotes the set of all x e Fr such that x
satisfies the conditions of Lemma 4.

In a natural way, we may construct, for each r eR, & map

(114) f3:F*^Ply

where

(115) for every x e F*, f3{x) represents the set ofn-1 distinct elements of
P, which by Definition 8 must be contained in x.

It is clear that/ 3 is well defined. Suppose xy e F*, such that x ϊy. Since,
F* c i s , we must have

(116) rex and re y.

Thus the ft-I remaining elements of x (i.e. those different from r) cannot be
identical with the n-1 remaining elements of y. But these sets of remaining
elements for x andy are f3(x) and /3(y), respectively. Hence

(117) /,(*) φ/3(3>),

and therefore f3 is an one-one correspondence between Ff and some subset

of Pl^.
Let f3(F*) represent the range of /3. Clearly,

(118) MF*) c ^ ,

Lemma 1 has showed that P w - 1 is a well-ordered set. By (86) and (87) it is
clear that P\_γ can also be considered a well-ordered set whose order is
induced by P n _ x . Thus

(119) fz(F*) is a non-empty subset of the well-ordered set P^mml for each
r eR

and, therefore, f3(F*) is, itself, well-ordered This enables us to make the
following

Definition 9: For each r e R, f*[fs(F*)] is defined to be the initial element
of the well-ordered setf3(F?).
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Finally we are in a position to construct a mapping

(120) UR->PU

where

(121) for each r e R, Mr) = / * [ / 3 ( ^ * ) ] .

Definition 9 and (119) show that/ 4 is well defined. Now suppose r, ίe R

such that

(122) rH.

In order to show that/4(r) Φ /4(4) it will be enough to show that the sets
f3(F?) and /3(F£ ) have no elements in common. Since, if this were true, it
would follow that their respective initial elements, Λ(r) and /4W, could not
be identical. Therefore, suppose there exists a/? cP^-i such that

(123) pefs(Ff) Π / 3 (Ff) .

Since p e P^i we may express p = { α 1 , . . . , α w - 1 } , where <*{ e P for i =
l,...,n-l. But (123) and the definition of the mapping/3, given in (115),
immediately imply

(124) {r,αi, . . . ,α β . i}e F* c 9

and

(125) {*,<*!,...,αβ-i}e F* c J .

Thus (81) shows r = 4, contradicting (122). Therefore the sets/3(F*) and
/3CF*) are disjoint and, thereby, the mapping / 4 is one-one.

Since / 4 is a well defined one-one map of the set R onto some subset of
P^l9 it naturally follows

(126) RZPLi

Thus, from (76) and (87), it follows that

(127) m ^Kλ = K(m).

But (72) restricts us further to

(128) m<K λ = N(m).

We have thus shown that in assuming any non-finite set possesses a
Steiner system of order n, for n> 3, one can establish the fact that any non-
finite cardinal number m is strictly less than some aleph, and, conse-
quently, is itself an aleph. This is nothing other than the establishment of
the axiom of choice. Theorem 3 is proved.

§4. With regard to the Steiner system of order 2, we recognize at
once that a non-finite set E possesses of Steiner system of order 2 if, and
only if, there exists a decomposition of E into disjoint pairs. Thus we may
prove, with the aid of the axiom of choice,

Theorem 4: Any non finite set E possesses a Steiner system of order 2.
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Proof: It is well known that, with the aid of the axiom of choice, we can
establish, for any non-finite cardinal m, the relation:

(129) m + m = m.

Thus, if E is any non-finite set, there must exist a non-finite cardinal m
such that

(130) E = m.

Therefore, there must also exist non-finite sets S and T such that

(131) S = T= m

(132) S Π T = φ

(133) E =S U T.

By (131) there must exist an one-one onto correspondence

(134) g:S~>T.

We construct a family of pairs of E as follows:

(135) 9= {{s,g{s)}:seS}.

Clearly, 9 represents a collection of disjoint pairs of E which exhausts E.
Hence, by Definition 1, E possesses a Steiner system of order 2. This
proves Theorem 4.

Final Remarks: In virtue of Theorem 1, we have shown that the axiom of
choice is sufficient to establish the existence of a Steiner system of order
nior n = 3,4,..., for any non-finite set E. By Theorem 4 we extended this
result to the case where n = 2.

Moreover, since Theorem 3 was established without the aid of the
axiom of choice, the existence of a Steiner system of order n for n =
3,4,..., always implies the axiom of choice. Hence, the axiom of choice is
necessary to establish the existence of a Steiner system of order n for n =
3,4,..., for any non-finite set E.

It therefore follows that the existence of a Steiner system of order n
for n = 3,4,..., for any non-finite set Ef is equivalent to the axiom of
choice.

We conclude, on the basis of the above discussion, with a simple
corollary to Theorem 2:

Corollary: If we designate the function / in Theorem 2 as /„, where n re-
fers to the order of the Steiner system /„ establishes for E, we then have,
for n = 3,4,..., the following equivalent to the axiom of choice:

For every non-finite set E, there exists a function fn with properties

1 °-4°as stated in Theorem 2.
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