A GENERALIZATION OF SIERPIŃSKI'S THEOREM ON STEINER TRIPLES AND THE AXIOM OF CHOICE

WILLIAM J. FRASCELLA

In the language of combinatorial analysis, a finite set F is said to possess a *Steiner triple system* if and only if there exists a family \mathcal{F} of subsets of F such that 1) each element of \mathcal{F} contains exactly three elements of F and 2) every subset of F, containing exactly two elements, is contained in exactly one of the elements of \mathcal{F} . It has been long established that a necessary and sufficient condition for the existence of such a system for a finite set F is that $\overline{F} \equiv 1$ or 3 (mod 6).

In [1], W. Sierpiński has showed that a Steiner triple system always exists for any set which is not finite. The proof of this result depends upon the axiom of choice. In [2], B. Sobociński has proved that the assumption that every non-finite set possesses a Steiner triple system is, in fact, equivalent to the axiom of choice.

The aim of the present paper is to further generalize these two results. We begin by making a

Definition 1: An arbitrary set E is said to possess a Steiner system of order k (where k is a natural number >1) if there exists a family \mathcal{F}_k of subsets of E such that 1) each element of \mathcal{F}_k contains exactly k elements of E and 2) every subset of E, containing exactly k-1 elements, is contained in exactly one member of the family \mathcal{F}_k .

§1. With the aid of the axiom of choice we shall show that every set which is not finite possesses a Steiner system of order n for $n = 2, 3, 4, \ldots$. In addition, we shall establish that the assumption that every set which is not finite possesses a Steiner system of order n, for $n = 3, 4, \ldots$, is equivalent to the axiom of choice. We are not able to demonstrate the necessity of the axiom of choice to establish the existence of a Steiner system of order 2 for any set which is not finite.

To this end we first prove, with the aid of the axiom of choice,

Theorem 1: Let E be any set which is not finite. Then E possesses a Steiner system of order n for n = 3, 4, ...

Received November 27, 1964

Proof: As mentioned above, the theorem has been proved by Sierpiński for n = 3. In the manner of induction we will assume

(1) Theorem 1 is true for n-1, n > 3.

Now the axiom of choice tells us that the non-finite set E has as its cardinal number some aleph. That is,

(2) $\overline{\overline{E}} = \aleph_{\lambda}$.

Thus without loss of generality we may impose a well-ordering on E such that $\overline{\overline{E}} = \overline{\omega}_{\lambda}$, where ω_{λ} is the initial ordinal number of the class of all ordinals whose cardinality is \aleph_{λ} . Hence, we may take E to be the set of all ordinal numbers less than ω_{λ} .

In [1], Sierpiński remarks that the set $P_2 = \{\langle \alpha, \beta \rangle : \alpha < \beta < \omega_{\lambda} \}$ can be given a well-ordering such that $\overline{P}_2 = \omega_{\lambda}$. (Here, as elsewhere in this paper, \langle , \rangle is to be taken as the symbol for an ordered pair. Similarly, $\langle , , \rangle$ is to be taken as an ordered triple, etc.... Also, all small Greek letters are to be regarded as ordinal numbers.) The proof of Theorem 1 will depend upon a generalization of this remark. Its statement will be given the form of a lemma whose demonstration will follow the proof of the theorem.

Lemma 1: The set $P_k = \{ < \alpha_1, ..., \alpha_k > : \alpha_1 < \alpha_2 < ... < \alpha_k < \omega_\lambda \}$ can be given a well-ordering such that $\overline{P}_k = \omega_\lambda$, for k = 2,3,4,...

Now, in virtue of this lemma, we are in a position to index the elements of P_{n-1} and express this set as follows:

(3)
$$P_{n-1} = \{ < \alpha_{\xi}^{(1)}, \ldots, \alpha_{\xi}^{(n-1)} > : \xi < \omega_{\lambda} \}.$$

By (1) we know E possesses a Steiner system of order n-1. Hence there exists a family \mathcal{I}_{n-1} satisfying the properties of Definition 1 for k = n-1.

Before proceeding it is necessary to make some definitions.

Definition 2: Let γ be an ordinal number less than ω_{λ} . Then $F_{\gamma}^{(n-1)}$ is that unique member of the family \mathcal{P}_{n-1} which contains the set $\{\alpha_{\gamma}^{(1)}, \ldots, \alpha_{\gamma}^{(n-2)}\}$.

In addition, suppose that

(4)
$$F_{\gamma}^{(n-1)} = \{\alpha_{\gamma}^{(1)}, \ldots, \alpha_{\gamma}^{(n-2)}, \beta\}$$

and that

(5)
$$\alpha_{\gamma}^{(1)} < \ldots < \alpha_{\gamma}^{(i)} < \beta < \alpha_{\gamma}^{(i+1)} < \ldots < \alpha_{\gamma}^{(n-2)} < \omega_{\lambda}.$$

We now formulate another

Definition 3:1

$$S(F_{\gamma}^{(n-1)}) = \begin{cases} \alpha_{\gamma}^{(n-1)} & \text{if } \alpha_{\gamma}^{(n-1)} \neq \beta \\ \sum_{i=1}^{n-1} \alpha_{\gamma}^{(i)} \end{pmatrix} + 1 & \text{if } \alpha_{\gamma}^{(n-1)} = \beta \end{cases}$$

^{1.} In this paper the symbol Σ will represent the standard addition of either ordinal or cardinal numbers. On the other hand, the symbol \cup , which later appears in (10), represents the standard concept of set-theoretical union.

We are now in a position to construct, after the manner of Sierpiński in [1], with certain modifications, a transfinite sequence of ordinal numbers indexed by all ordinals less than ω_{λ} . Let $\varphi_1 = 1$. Assume δ to be an arbitrary ordinal number such that $1 \leq \delta \leq \omega_{\lambda}$. Now suppose φ_{ξ} has been defined for all $\xi \leq \delta$. Then we let φ_{δ} be the smallest ordinal μ which satisfies the following condition:

(6)
$$\{\alpha_{\mu}^{(1)},\ldots,\alpha_{\mu}^{(n-1)}\} \in \{F_{\varphi_{\xi}}^{(n-1)}\cup S(F_{\varphi_{\xi}}^{(n-1)})\colon \xi < \delta\}.$$

To establish that this construction is non-vacuous it is sufficient to exhibit a μ such that (6) holds. To accomplish this we construct the following sets:

(7)
$$R_i = \left\{ f_i(\varphi_{\xi}) : \xi < \delta \right\}$$

where $f_i(\varphi_{\xi}) = \alpha_{\varphi_{\xi}}^{(i)}$ for i = 1, 2, ..., (n-1). It is clear that for each i we have (8) $\overline{R}_i \leq \delta$

where R_i has the order induced by the indices of the elements of the transfinite sequence already defined. Hence

(9) $\overline{\overline{R}}_i \leq \overline{\delta}$ for $i = 1, 2, \ldots, (n-1)$.

But clearly $\overline{\delta}$ is either a finite cardinal number or an aleph. If we now construct

(10)
$$R = \bigcup_{i=1}^{n-1} R_i$$

it is clear that $\overline{R} \stackrel{=}{\leq} \sum_{i=1}^{n-1} \overline{R}_i$. Now if $\overline{\delta}$ is a finite cardinal number it is immediate that $\overline{R} < \aleph_{\lambda} = \overline{E}$. On the other hand, however, if $\overline{\delta}$ is an aleph, say \aleph_* , we have, in virtue of the fact that $\aleph_* + \aleph_* = \aleph_*$,

(11)
$$\bar{R} \leq \aleph_{\star}$$
.

But since $\delta < \omega_{\lambda}$ and ω_{λ} is an initial number

(12)
$$\aleph_* < \aleph_\lambda$$

and therefore we again arrive at

(13)
$$\bar{R} < \aleph_{\lambda} = \bar{E}$$
.

It is clear, then, that there must exist n-2 elements of E which are not contained in R. That is, there exists $\alpha^{(1)}, \ldots, \alpha^{(n-2)}$ such that

(14)
$$\alpha^{(i)} \in E - R$$
 for $i = 1, 2, \ldots, (n-2)$.

Hence by (7) and (14) no $\alpha^{(i)}$ can be considered an image point of the function f_i for all $\langle i, j \rangle \in \{1, 2, \ldots, (n-2)\} \times \{1, 2, \ldots, (n-1)\}$. Therefore

(15)
$$\alpha^{(i)} \notin \{F_{\varphi_{\xi}}^{(n-1)} : \xi < \delta\} \text{ for } i = 1, 2, \ldots, (n-2).$$

If we suppose $\alpha^{(1)} < \ldots < \alpha^{(n-2)}$ we have

(16)
$$< \alpha^{(1)}, \ldots, \alpha^{(n-2)}, \alpha^{(n-2)} + 1 > \epsilon P_{n-1}$$
.

In virtue of (3) we may write

(17) $\alpha^{(1)} = \alpha_{\mu}^{(1)}; \ldots; \alpha^{(n-2)} = \alpha_{\mu}^{(n-2)}; \alpha^{(n-2)} + 1 = \alpha_{\mu}^{(n-1)}$

for some $\mu < \omega_{\lambda}$.

Therefore

(18)
$$\{\alpha_{\mu}^{(1)},\ldots,\alpha_{\mu}^{(n-1)}\} \in \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)}): \xi < \delta\}.$$

Thus the construction of the transfinite sequence is well formed. We now state and prove an important property of this transfinite sequence.

Lemma 2: The transfinite sequence $\{\varphi_{\xi}\}_{\xi < \omega_{\lambda}}$ is strictly increasing.

Proof: To the contrary suppose we have either of the following:

Case 1: $\eta_1 < \eta_2 < \omega_\lambda$ and $\varphi_{\eta_1} = \varphi_{\eta_2}$

Case 2: $\eta_1 < \eta_2 < \omega_\lambda$ and $\varphi_{\eta_1} > \varphi_{\eta_2}$.

If Case 1 occurs we have by (6), $\varphi_{\eta_2} = \mu_2$ to be the smallest ordinal such that

(19)
$$\{\alpha_{\mu_2}^{(1)},\ldots,\alpha_{\mu_2}^{(n-1)}\} \in \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)}): \xi < \eta_2\}.$$

But since $\eta_1 < \eta_2$, we must have

(20)
$$\left\{\alpha_{\mu_{2}}^{(1)},\ldots,\alpha_{\mu_{2}}^{(n-1)}\right\} \in \left\{F_{\varphi_{\eta_{1}}}^{(n-1)} \cup S(F_{\varphi_{\eta_{1}}}^{(n-1)})\right\}.$$

But by assumption, $\varphi_{\eta_1} = \varphi_{\eta_2}$; hence

(21)
$$\{\alpha_{\mu_2}^{(1)},\ldots,\alpha_{\mu_2}^{(n-1)}\} \in \{F_{\varphi_{\eta_2}}^{(n-1)} \cup S(F_{\varphi_{\eta_2}}^{(n-1)})\}$$

which contradicts the very definitions of $F_{\varphi \eta_2}^{(n-1)}$ and $S(F_{\varphi \eta_2}^{(n-1)})$. Thus Case 1 never obtains.

Suppose Case 2 occurs. By (6) we have $\varphi_{\eta_1} = \mu_1$, the smallest ordinal such that

(22)
$$\{\alpha_{\mu_1}^{(1)},\ldots,\alpha_{\mu_1}^{(n-1)}\} \in \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)}): \xi < \eta_1\}.$$

In the same manner we have $\varphi_{\eta_2} = \mu_2$ to be the smallest ordinal such that

(23)
$$\{\alpha_{\mu_2}^{(1)},\ldots,\alpha_{\mu_2}^{(n-1)}\} \notin \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)}): \xi < \eta_2\}.$$

But (23) and the fact that $\eta_1 < \eta_2$ implies

(24)
$$\{\alpha_{\mu_2}^{(1)},\ldots,\alpha_{\mu_2}^{(n-1)}\} \in \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)}):\xi < \eta_1\}.$$

But (24) and the fact that $\mu_2 < \mu_1$ contradict the definition of φ_{η_1} . Thus *Case 2* never obtains and Lemma 2 is proved.

Finally we are in a position to define a family of subsets of E which will insure the existence of a Steiner system of order n.

Definition 4: $\boldsymbol{\mathcal{G}}_n = \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)}): \xi < \omega_{\lambda}\}.$

To show this is the family in question, let $\alpha^{(1)}$, $\alpha^{(2)}$,..., $\alpha^{(n-1)}$ be any n-1 distinct elements of E. We may assume that

(25)
$$\alpha^{(1)} < \alpha^{(2)} < \ldots < \alpha^{(n-1)} < \omega_{\lambda}$$
.

Clearly we have $\langle \alpha^{(1)}, \ldots, \alpha^{(n-1)} \rangle \in P_{n-1}$. Therefore by (6) there must exist an ordinal number $\mu \leq \omega_{\lambda}$ such that

(26)
$$\alpha_{\mu}^{(i)} = \alpha^{(i)}$$
 for $i = 1, 2, \ldots, (n-1)$.

But since the sequence $\{\varphi_{\xi}\}_{\xi < \omega_{\lambda}}$ is strictly increasing, there exists an ordinal $\delta < \omega_{\lambda}$ such that

(27)
$$\varphi_{\delta} > \mu$$
.

But by the definition of φ_{δ} , there must exist an ordinal $\xi_0 < \delta$ such that

(28)
$$\{\alpha_{\mu}^{(1)},\ldots,\alpha_{\mu}^{(n-1)}\} \subset \{F_{\varphi_{\xi_0}}^{(n-1)} \cup S(F_{\varphi_{\xi_0}}^{(n-1)})\}$$

for otherwise (27) could not hold. Therefore (28) shows every n-1 distinct elements of E is contained in at least one member of the family \mathcal{F}_n .

On the other hand, suppose we have n-1 distinct elements of E contained in two distinct members of the family \mathcal{F}_n . That is, suppose we have $\eta < \xi < \omega_{\lambda}$ such that

(29)
$$\left\{\alpha^{(1)},\ldots,\alpha^{(n-1)}\right\} \subset \left\{F_{\varphi_{\eta}}^{(n-1)} \cup S(F_{\varphi_{\eta}}^{(n-1)})\right\}$$

(30)
$$\{\alpha^{(1)},\ldots,\alpha^{(n-1)}\} \subset \{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)})\}.$$

Again by (6) there must exist an ordinal number $\mu < \omega_{\lambda}$ such that $\alpha^{(i)} = \alpha_{\mu}^{(i)}$ for $i = 1, \ldots, n-1$. By Definition 3, $S(F_{\varphi_{\eta}}^{(n-1)})$ and $S(F_{\varphi_{\xi}}^{(n-1)})$ are the greatest elements (according to magnitude) of the sets $\{F_{\varphi_{\eta}}^{(n-1)} \cup S(F_{\varphi_{\eta}}^{(n-1)})\}$ and $\{F_{\varphi_{\xi}}^{(n-1)} \cup S(F_{\varphi_{\xi}}^{(n-1)})\}$, respectively. But since we assume $\alpha^{(1)} < \ldots < \alpha^{(n-1)}$, we must have

(31)
$$\{\alpha^{(1)},\ldots,\alpha^{(n-2)}\} \subset F_{\varphi_{\eta}}^{(n-1)}$$

and

$$(32) \quad \left\{\alpha^{(1)},\ldots,\alpha^{(n-2)}\right\} \subset F_{\varphi_{\xi}}^{(n-1)}.$$

But since

(33)
$$F_{\varphi_{\eta}}^{(n-1)} \in \mathcal{G}_{n-1}$$
 and $F_{\varphi_{\xi}}^{(n-1)} \in \mathcal{G}_{n-1}$,

we must have

(34)
$$F_{\varphi_{\eta}}^{(n-1)} = F_{\varphi_{\xi}}^{(n-1)}$$

since \mathcal{G}_{n-1} is the Steiner family of order n-1. There now follows two cases:

Case 1:
$$\alpha^{(n-1)} \in F_{\varphi_{\eta}}^{(n-1)} = F_{\varphi_{\xi}}^{(n-1)}$$

Case 2: $\alpha^{(n-1)} \notin F_{\varphi_{\eta}}^{(n-1)} = F_{\varphi_{\xi}}^{(n-1)}$.

If Case 1 occurs, by Definition 3 we must have

$$(35) \quad S(F_{\varphi_{\eta}}^{(n-1)}) = S(F_{\varphi_{\xi}}^{(n-1)}) = \alpha^{(1)} + \alpha^{(2)} + \ldots + \alpha^{(n-1)} + 1.$$

But this contradicts our assumption that the members of \mathcal{G}_n are distinct. If *Case 2* occurs we must have

(36)
$$S(F_{\varphi_{\eta}}^{(n-1)}) = \alpha^{(n-1)} = S(F_{\varphi_{\xi}}^{(n-1)}).$$

But this, too, leads to the same contradiction.

Thus the family \mathcal{F}_n has the properties of Definition 1 and the existence of a Steiner system of order *n* for the set *E* is assured. The induction being completed, Theorem 1 is proved.

We now return to the unfinished business of proving Lemma 1.

Proof of Lemma 1: Since the lemma is true for n = 2 it will be sufficient to proceed by induction. Hence we assume

(37) Lemma 1 to be true for
$$k = n-1$$
 $(n \ge 3)$.

Since $\overline{\overline{E}} = \aleph_{\lambda}$ and the fact that $\aleph \cdot \aleph = \aleph$ for any aleph, \aleph , we have

(38)
$$\overline{(\overline{E \times \ldots \times E})} = \aleph_{\lambda}.$$

But according to the definition of P_n we have

(39)
$$P_n \subset (E \times \ldots \times E)$$

n-times

and hence

(40)
$$\overline{\overline{P}}_n \leq \aleph_{\lambda}$$
.

We now consider the following subsets of P_{n-1} :

(41)
$$P_{n-1}^* = \{ < 0, \alpha^{(2)}, \ldots, \alpha^{(n-1)} > : 0 < \alpha^{(2)} < \ldots < \alpha^{(n-1)} < \omega_\lambda \} \}$$

(42)
$$P_{n-1}^* = P_{n-1} - P_{n-1}^*$$
.

By (37) we have $\overline{\overline{P}}_{n-1} = \aleph_{\lambda}$. Also since, by (42), $P_{n-1}^* \subset P_{n-1}$:

(43)
$$\overline{\overline{P_{n-1}^*}} \leq \aleph_{\lambda}$$
.

But it is possible to map the set E in an one-one manner onto a certain subset of P_{n-1}^* . Let

$$(44) \quad f:E \to P_{n-1}^*$$

where,

$$(45) \quad f(\alpha) = \begin{cases} <1,2,\ldots,(n-2), \alpha > \text{ if } \alpha > n-2 \\ <\alpha + 1, \alpha + 2,\ldots,\alpha + n-1 > \text{ if } \alpha \leq n-2 \end{cases}$$

We remark that f is well constructed, since by the definition of P_{n-1}^* , no n-1 tuple in this set has 0 as its first coordinate. Thus the set E is equinumerous to some subset of P_{n-1}^* . Hence

$$(46) \quad \bar{\bar{P}}_{n-1}^* \stackrel{\geq}{=} \aleph_{\lambda} = \bar{\bar{E}}.$$

Thus (43) and (46) yield

(47)
$$\overline{\overline{P}_{n-1}^*} = \aleph_{\lambda}$$
.

We now construct the following subset of P_n :

(48) $P_n^* = \{ < 0, \alpha_2, \ldots, \alpha_n > : 0 < \alpha_2 < \ldots < \alpha_n < \omega_\lambda \}.$

An one-one correspondence naturally arises between the sets P_n^* and P_{n-1}^* . Namely,

$$(49) \quad g: P_{n-1}^* \to P_n^*$$

where

(50) $g(<\alpha_1,\ldots,\alpha_{n-1}>) = <0,\alpha_1,\ldots,\alpha_{n-1}>.$

The very definitions of the sets P_{n-1}^* and P_n^* insure that the map g is well defined. Hence,

(51) $\overline{\overline{P_{n-1}^*}} = \overline{\overline{P_n^*}}$.

Together with (47) we have

(52)
$$\overline{P_n^*} = \aleph_{\lambda}$$
.

But since $P_n^* \subset P_n$ we conclude

(53) $\overline{\overline{P}}_n \geq \aleph_{\lambda}$.

Therefore (40) and (53) establish

(54) $\bar{\bar{P}}_n = \aleph_{\lambda}$.

Thus we may impose a well-ordering on P_n such that $\overline{P}_n = \omega_{\lambda}$. The induction being completed, Lemma 1 is proved.

§2. In order to further our results, we will establish a functional characterization for a Steiner system of arbitrary order.

Theorem 2: Let E be any set which is not finite. Then E possesses a Steiner system of order n, for n = 2,3,... if and only if there exists a set function f such that

1° The domain of f is the family of all subsets of E which contain exactly n-1 elements.

 2° The range of f is some subset of E.

3° $f(\{a_1, a_2, \ldots, a_{n-1}\}) \notin \{a_1, a_2, \ldots, a_{n-1}\}.$

4° If $f(\{a_1, \ldots, a_{n-1}\}) = b \in E$ then $f(\{a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n-1}\}) = a_i$ for $i = 1, 2, \ldots, n-1$.

Remark: It is important to observe that the proof of Theorem 2 will not employ the axiom of choice.

Proof:

Necessity: Suppose the non-finite set E possesses a Steiner system of order n. Let us now construct

 $(55) \quad \mathcal{A} = \{A \subset E : \overline{\overline{A}} = n-1\}.$

By Definition 1, we know that for every $A \in \mathcal{A}$ there exists a unique element of \mathcal{J}_n which contains A. We represent such an element of \mathcal{J}_n by the symbol F_A . Next, we construct a map

(56)
$$f: \mathcal{A} \to E$$

where

(57) $f(A) = F_A - A$ for each $A \in \mathcal{A}$.

Since $F_A \in \mathcal{G}_n$, it follows that $\overline{F}_A = n$. But also $\overline{\overline{A}} = n-1$ and $A \subset F_A$. Hence $f(A) \in E$. Thus f satisfies properties 1° and 2° of the theorem. Clearly $f(A) = (F_A - A) \notin A$, and property 3° is thereby satisfied.

Now suppose $A \in \mathcal{A}$. Thus we may write

$$(58) \quad A = \{a_1, \ldots, a_{n-1}\}.$$

And suppose

(59) $F_A = \{a_1, \ldots, a_{n-1}, b\}$.

Therefore by (57) we have

(60) f(A) = b.

Now construct the set $A' = \{a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n-1}\}$. By (59) we see $A' \subset F_A$. Hence

$$(61) \quad F_A' = F_A \; .$$

Therefore we have

(62)
$$f(A^{*}) = F_{A^{*}} - A^{*} = F_{A} - A = a_{i}$$
.

Property 4° holding for f, necessity is established.

Sufficiency: Suppose we have given the function f with the stated properties $1^{\circ}-4^{\circ}$. We now define for each $A \in \mathcal{A}$,

(63)
$$F_A^* = A \cup f(A)$$
.

By properties 2° and 3° of f we see that F_A^* is a subset of E consisting of exactly n elements.

We are now in a position to define a family of subsets of E consisting of exactly n elements. Namely,

(64) $\mathcal{G}_n = \{F_A^* : A \in \mathcal{A}\}.$

It remains to show that \mathcal{I}_n establishes a Steiner system of order n.

By property 1° of f and (64) it is clear any subset of E, consisting of exactly *n*-1 elements, is contained in at least one member of the family \mathcal{J}_n . Specifically

(65) $A \subset F_A^*$ for each $A \in \mathcal{A}$.

It remains to show that every $A \in \mathcal{A}$ is contained in, at most, one member of the family \mathcal{F}_n . To the contrary, suppose

(66)
$$A \subseteq F_X^* \in \mathcal{J}_n$$

and

(67)
$$A \subset F_Y^* \in \mathcal{G}_n$$

where

```
(68) F_X^* \neq F_Y^*.
```

Suppose $A = \{a_1, \ldots, a_{n-1}\}$. Then we have

(69)
$$F_x^* = \{a_1, \ldots, a_{n-1}, x\}$$

and

(70) $F_Y^* = \{a_1, \ldots, a_{n-1}, y\}$.

But (69) and (70) together with property 4° of f yields

(71) f(A) = x and f(A) = y.

Hence x = y, which contradicts (68).

Thus the family \mathcal{I}_n has the desired properties and, therefore, E possesses a Steiner system of order n. Sufficiency established, Theorem 2 is proved.

§3. After constructing and characterizing the Steiner system of order n, one naturally raises the question as to whether the existence of a Steiner system of arbitrary order implies the axiom of choice. An answer is obtained in

Theorem 3: The assumption that every non-finite set possesses a Steiner system of order n implies the axiom of choice for any $n \ge 3$.

Remark: The proof of this theorem follows, in substance, the proof given in [2] by B. Sobociński, who has established the result for the case when n = 3.

Proof: Let m be an arbitrary cardinal number which is not finite. As is well known, to m we may associate a certain aleph, $\aleph(m)$, called Hartogs' aleph for m, where $\aleph(m)$ is the least aleph with the property:

(72) ℵ(m) ≰ m.

Since $\aleph(\mathfrak{m})$ is an aleph, there must exist an ordinal number λ such that

(73) $\Re(\mathfrak{m}) = \aleph_{\lambda}$.

Let ω_{λ} represent the initial number of the class of all ordinals whose cardinality is \aleph_{λ} . Elementary results tell us there exists a cardinal number, $\mathfrak{m} + \aleph(\mathfrak{m})$, which is not finite.

Hence, there must exist non-finite sets E, R and P such that

(74)
$$\overline{P} = \Re(\mathfrak{m}) = \aleph_{\lambda}$$

(75)
$$P = \{\alpha : \alpha \text{ is an ordinal } < \omega_{\lambda}\}$$

(76) $\bar{\bar{R}} = \mathfrak{m}$

$$(77) \quad R \cap P = \phi$$

- (78) $E = R \cup P$
- (79) $\overline{\overline{E}} = \overline{\overline{R}} + \overline{\overline{P}} = \mathfrak{m} + \mathfrak{K}(\mathfrak{m}).$

By the hypothesis of Theorem 3, the non-finite set E possesses a Steiner system of order n, where n is a natural number greater than 3. Thus, by Definition 1, there must exist a family \mathcal{F} of subsets of E such that

(80) every element of $\boldsymbol{\mathcal{F}}$ is a subset of E containing exactly n elements

and

(81) every n-1 distinct elements of E is contained in one, and only one, member of the family \boldsymbol{g} .

Remark: As in Lemma 1, P_k will represent the collection:

(82) $\{ < \alpha_1, \ldots, \alpha_k > : \alpha_1 < \ldots < \alpha_k < \omega_\lambda \}$

where the α_i 's are all ordinal numbers and ω_{λ} is the initial number referred to above. The conclusion of Lemma 1 was

(83) $\overline{P}_k = \omega_\lambda$ for $k = 1, 2, \ldots$

An immediate corollary to this result would be

(84)
$$\overline{P}_k = \overline{\omega}_\lambda = \aleph_\lambda$$
 for $k = 1, 2, \ldots$

We now introduce another

Definition 5: For any natural number n, P_n^{\dagger} will represent the family of all subsets of P which contain exactly n elements.

A correspondence naturally arises between P_n^{\dagger} and P_n . For, every element $p \in P_n^{\dagger}$ is of the form $p = \{\alpha_1, \ldots, \alpha_n\}$, where $\alpha_i \in P$ for $i = 1, \ldots, n$. If we assume,

(85) $\alpha_1 < \ldots < \alpha_n$

we may associate to this element $p \in P_n^{\dagger}$ the element $< \alpha_1, \ldots, \alpha_n > \epsilon P_n$. Such an association is clearly an one-one onto correspondence of the sets P_n^{\dagger} and P_n . Hence,

(86)
$$\overline{P_n^{\dagger}} = \overline{P_n}$$
.

Together with (84) we have

(87)
$$\overline{P_n^{\dagger}} = \overline{\omega}_{\lambda} = \aleph_{\lambda}$$
 for $n = 1, 2, ...$

As a matter of fact we have,

(88)
$$\overline{\overline{P_n^{\dagger}}} = \mathfrak{K}(\mathfrak{m})$$
 for $n = 1, 2, \ldots$

This concludes our remark.

Returning to the proof of Theorem 3 we make a

Definition 6: For any $r \in \mathbb{R}$ we define a family of sets F_r as follows: $x \in F_r$ if and only if 1) $x \in \mathcal{F}$ and 2) there exists n-2 distinct elements of P, say $\alpha_1, \ldots, \alpha_{n-2}$, such that a) the ordinal numbers $1, 2, \ldots, n-3$ are contained in the set $\{\alpha_1, \ldots, \alpha_{n-2}\}$ and b) $\{r, \alpha_1, \ldots, \alpha_{n-2}\} \subset x$.

Definition 6 immediately implies

(89) $F_r \subset \mathcal{F}$ for any $r \in R$.

Lemma 3: The family F_r is not empty for every $r \in R$.

Proof: Let $r \in R$. Then by (78), $r \in E - P$. Certainly the set P contains the ordinals $1, \ldots, n-3$, and, at least, one additional ordinal α . Thus $\{r, 1, 2, \ldots, n-3, \alpha\}$ is a subset of E consisting of exactly n-1 elements. By (81), there exists a unique $x \in \mathcal{F}$ such that

(90) $\{r, 1, 2, \ldots, n-3, \alpha\} \subset x.$

Clearly this x satisfies the requirements of Definition 6, and hence

(91) $x \in F_r$.

Thus for each $r \in R$, F_r is not empty. Lemma 3 is proved.

We now wish to exhibit certain distinguished members of the family F_r . To this end we state

Lemma 4: Let $r \in R$. Then there exists an $x \in F_r$ such that $x = \{r, \alpha_1, \ldots, \alpha_{n-1}\}$ where all the α_i 's are elements of the set P.

Remark: Since $x \in F_r$, we are guaranteed that at least n-2 of the α_i 's are elements of P. In fact, we know that the ordinals $1, 2, \ldots, (n-3)$ must be among them.

Proof: To the contrary, we assume

(A) $\gamma \in R$

and

(B) if $\{r, 1, 2, \ldots, (n-3), \alpha, \ell\} \in F_r$, where $\{1, 2, \ldots, (n-3), \alpha\} \subset P$, then $\ell \in R$.

It is now possible to construct a mapping

$$(92) f_1: P - \{1, 2, \ldots, n-3\} \to F_r$$

where

(93) for
$$\alpha \in P - \{1, 2, ..., n-3\}$$
, $f_1(\alpha)$ represents the unique element of \mathcal{F} which contains the n-1 distinct elements $\{r, 1, 2, ..., n-3, \alpha\}$.

It is clear from (93) and Definition 6, that $f_1(\alpha) \in F_r$ and thus f_1 is well-defined. For each $z \in F_r$ we must have $z = \{r, 1, 2, \ldots, n-3, x, y\}$. But by Definition 6, at least one of the elements x, y must be an element of $P - \{1, 2, \ldots, n-3\}$. But by (B), at most one of the elements x, y can belong to P. Hence, z contains a unique element $\alpha \in P - \{1, 2, \ldots, n-3\}$, such that $f_1(\alpha) = z$. Thus f_1 is onto.

Suppose $\alpha, \beta \in P - \{1, 2, ..., n-3\}$ such that $\alpha \neq \beta$. Then we have

$$(94) f_1(\alpha) = \{r, 1, 2, \ldots, (n-3), \alpha, x\} \in F_r \subset \mathcal{G}$$

and

$$(95) f_1(\beta) = \{r, 1, 2, \ldots, (n-3), \beta, y\} \in F_r \subset \mathcal{F}.$$

By (B) we know

 $(96) x, y \notin P.$

Thus, if we suppose $f_1(\alpha) = f_1(\beta)$ we must have by (94) and (95)

(97)
$$x = \beta$$
 and $y = \alpha$.

But this contradicts (96). Therefore,

(98)
$$f_1(\alpha) \neq f_1(\beta)$$

which establishes the fact that f_1 is an one-one onto correspondence of the sets $P - \{1, \ldots, n-3\}$ and F_r . Hence,

(99)
$$\overline{P-\{1,\ldots,n-3\}} = \overline{\overline{F}}_r.$$

But it is clear, since P is not finite, that

(100) $\overline{P-\{1,\ldots,n-3\}} = \overline{\overline{P}} = \Re(\mathfrak{m}).$

Therefore (99) and (100) yield

(101) $\overline{\overline{F}}_r = \aleph(\mathfrak{m}).$

To complete the proof of Lemma 4 we shall need another

Definition 7: Let $r \in R$. Then R_r will denote the set of all $\ell \in R$ such that 1) $\ell \neq r$ and 2) there exists an $x \in F_r$ such that $\ell \in x$.

We note that Definition 7 implies

(102) $R_r \subset R$

while (B) insures that

(103) R_r is not empty.

Now we construct a mapping

(104) $f_2: F_r \rightarrow R_r$

where

(105) for each $x \in F_r$, $f_2(x)$ represents that element of x, which belongs to R, but different from r.

Since $x \in F_r$, by Definition 6 we know x contains the element $r \in R$, the ordinals $1, 2, \ldots, n-3$ and, at least, one additional ordinal α . But (B) insures that x contains, at most, one additional ordinal α . Thus x, which contains r, must contain a unique element of R which is different from r. This shows f_2 to be well defined. Let $\ell \in R_r$. By Definition 7, we know

(106) $l \neq r$

and

(107) there exists an $x \in F_r$ such that $\ell \in x$.

By Definition 6, and using the same argument following (105), we see that x contains a unique element of R different from r. But (106) and (107) imply this element must be ℓ . Thus $f_2(x) = \ell$ and f_2 is shown to be onto. Let $x, y \in F_r$ such that $x \neq y$. And suppose

(108) $f_2(x) = f_2(y) = z$.

But (108) implies that both x and y have the following n-1 elements in common:

(109) $r, 1, 2, \ldots, (n-3), z$.

But since $x, y \in \mathcal{F}$, (81) gives

(110) x = y

contradicting our assumption. Hence we conclude that (108) is not true and the map f_2 is one-one. Thus

(111) $\overline{\overline{F}}_r = \overline{\overline{R}}_r$.

This, together with (101), gives

(112) $\overline{\overline{R}}_r = \Re(\mathfrak{m}).$

But $R_r \subset R$. Therefore we obtain from (112)

(113) $\Re(\mathfrak{m}) \leq \overline{\tilde{R}} = \mathfrak{m}$

which contradicts (72). Thus, the assumption that Lemma 4 is false leads to an absurdity. By the law of the excluded middle, Lemma 4 is proved.

In retrospect, we have been able to establish that for each $r \in R$, there exists an element $x \in F_r$ such that $x = \{r, 1, 2, \ldots, (n-3), \alpha, \beta\}$ where $1, 2, \ldots, (n-3), \alpha$ and β are all elements of P. Continuing we introduce,

Definition 8: Let $r \in R$. Then F_r^* denotes the set of all $x \in F_r$ such that x satisfies the conditions of Lemma 4.

In a natural way, we may construct, for each $r \in R$, a map

(114) $f_3: F_r^* \to P_{n-1}^{\dagger}$

where

(115) for every $x \in F_r^*$, $f_3(x)$ represents the set of n-1 distinct elements of P, which by Definition 8 must be contained in x.

It is clear that f_3 is well defined. Suppose $x, y \in F_r^*$, such that $x \neq y$. Since, $F_r^* \subset F_r$, we must have

(116) $r \in x$ and $r \in y$.

Thus the n-1 remaining elements of x (i.e. those different from r) cannot be identical with the n-1 remaining elements of y. But these sets of remaining elements for x and y are $f_3(x)$ and $f_3(y)$, respectively. Hence

(117) $f_3(x) \neq f_3(y)$,

and therefore f_3 is an one-one correspondence between F_r^* and some subset of P_{n-1}^{\dagger} .

Let $f_3(F_{\tau}^*)$ represent the range of f_3 . Clearly,

(118) $f_3(F_r^*) \subset P_{n-1}^{\dagger}$.

Lemma 1 has showed that P_{n-1} is a well-ordered set. By (86) and (87) it is clear that P_{n-1}^{\dagger} can also be considered a well-ordered set whose order is induced by P_{n-1} . Thus

(119) $f_3(F_r^*)$ is a non-empty subset of the well-ordered set P_{n-1}^{\dagger} for each $r \in \mathbb{R}$

and, therefore, $f_3(F_r^*)$ is, itself, well-ordered This enables us to make the following

Definition 9: For each $r \in R$, $f^*[f_3(F^*_r)]$ is defined to be the initial element of the well-ordered set $f_3(F^*_r)$.

176

Finally we are in a position to construct a mapping

(120)
$$f_4: R \to P_{n-1}^{\dagger}$$

where

(121) for each $r \in R$, $f_4(r) = f^*[f_3(F_r^*)]$.

Definition 9 and (119) show that f_4 is well defined. Now suppose r, $l \in R$ such that

(122) $r \neq l$.

In order to show that $f_4(r) \neq f_4(\ell)$ it will be enough to show that the sets $f_3(F_r^*)$ and $f_3(F_\ell^*)$ have no elements in common. Since, if this were true, it would follow that their respective initial elements, $f_4(r)$ and $f_4(\ell)$, could not be identical. Therefore, suppose there exists a $p \in P_{n-1}^*$ such that

(123) $p \epsilon f_3(F_t^*) \cap f_3(F_t^*)$.

Since $p \in P_{n-1}^{\dagger}$ we may express $p = \{\alpha_1, \ldots, \alpha_{n-1}\}$, where $\alpha_i \in P$ for $i = 1, \ldots, n-1$. But (123) and the definition of the mapping f_3 , given in (115), immediately imply

(124)
$$\{r, \alpha_1, \ldots, \alpha_{n-1}\} \in F_r^* \subset \mathcal{F}$$

and

(125) $\{\ell, \alpha_1, \ldots, \alpha_{n-1}\} \in F_{\ell}^* \subset \mathcal{F}.$

Thus (81) shows $r = \ell$, contradicting (122). Therefore the sets $f_3(F_r^*)$ and $f_3(F_\ell^*)$ are disjoint and, thereby, the mapping f_4 is one-one.

Since f_4 is a well defined one-one map of the set R onto some subset of P_{n-1}^{\dagger} , it naturally follows

(126)
$$\overline{\overline{R}} \leq \overline{P_{n-1}^{\dagger}}$$
.

Thus, from (76) and (87), it follows that

(127) $\mathfrak{m} \leq \aleph_{\lambda} = \aleph(\mathfrak{m}).$

But (72) restricts us further to

(128) $\mathfrak{m} < \mathfrak{K}_{\lambda} = \mathfrak{K}(\mathfrak{m}).$

We have thus shown that in assuming any non-finite set possesses a Steiner system of order n, for n > 3, one can establish the fact that any non-finite cardinal number m is strictly less than some aleph, and, consequently, is itself an aleph. This is nothing other than the establishment of the axiom of choice. Theorem 3 is proved.

§4. With regard to the Steiner system of order 2, we recognize at once that a non-finite set E possesses of Steiner system of order 2 if, and only if, there exists a decomposition of E into disjoint pairs. Thus we may prove, with the aid of the axiom of choice,

Theorem 4: Any non finite set E possesses a Steiner system of order 2.

Proof: It is well known that, with the aid of the axiom of choice, we can establish, for any non-finite cardinal m, the relation:

(129) m + m = m.

Thus, if E is any non-finite set, there must exist a non-finite cardinal \mathfrak{m} such that

(130) $\bar{\bar{E}} = m$.

Therefore, there must also exist non-finite sets S and T such that

(131) $\overline{\overline{S}} = \overline{\overline{T}} = \mathfrak{m}$

 $(132) S \cap T = \phi$

(133) $E = S \cup T$.

By (131) there must exist an one-one onto correspondence

(134) $g: S \rightarrow T$.

We construct a family of pairs of E as follows:

(135) $\mathcal{G} = \{\{s,g(s)\}: s \in S\}$.

Clearly, \mathcal{F} represents a collection of disjoint pairs of E which exhausts E. Hence, by Definition 1, E possesses a Steiner system of order 2. This proves Theorem 4.

Final Remarks: In virtue of Theorem 1, we have shown that the axiom of choice is sufficient to establish the existence of a Steiner system of order n for $n = 3, 4, \ldots$, for any non-finite set E. By Theorem 4 we extended this result to the case where n = 2.

Moreover, since Theorem 3 was established without the aid of the axiom of choice, the existence of a Steiner system of order n for $n = 3, 4, \ldots$, always implies the axiom of choice. Hence, the axiom of choice is necessary to establish the existence of a Steiner system of order n for $n = 3, 4, \ldots$, for any non-finite set E.

It therefore follows that the existence of a Steiner system of order n for $n = 3, 4, \ldots$, for any non-finite set E, is equivalent to the axiom of choice.

We conclude, on the basis of the above discussion, with a simple corollary to Theorem 2:

Corollary: If we designate the function f in Theorem 2 as f_n , where n refers to the order of the Steiner system f_n establishes for E, we then have, for $n = 3, 4, \ldots$, the following equivalent to the axiom of choice:

For every non-finite set E, there exists a function f_n with properties $1^{\circ}-4^{\circ}$ as stated in Theorem 2.

BIBLIOGRAPHY

- [1] W. Sierpiński: Sur un probleme de triades. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie Classe III. Vol. 33-38(1940-1945), pp. 13-16.
- [2] B. Sobociński: A theorem of Sierpiński on triads and the axiom of choice. *Notre Dame Journal of Formal Logic*, v. 5(1964), pp. 51-58.

Seminar in Symbolic Logic University of Notre Dame Notre Dame, Indiana