A GENERALIZATION OF SIERPIŃSKI'S THEOREM ON STEINER TRIPLES AND THE AXIOM OF CHOICE

WILLIAM J. FRASCELLA

In the language of combinatorial analysis, a finite set F is said to possess a Steiner triple system if and only if there exists a family \mathcal{F} of subsets of F such that 1) each element of \mathcal{F} contains exactly three elements of F and 2) every subset of F, containing exactly two elements, is contained in exactly one of the elements of $\mathcal{7}$. It has been long established that a necessary and sufficient condition for the existence of such a system for a finite set F is that $\bar{F} \equiv 1$ or $3(\bmod 6)$.

In [1], W. Sierpiński has showed that a Steiner triple system always exists for any set which is not finite. The proof of this result depends upon the axiom of choice. In [2], B. Sobocinski has proved that the assumption that every non-finite set possesses a Steiner triple system is, in fact, equivalent to the axiom of choice.

The aim of the present paper is to further generalize these two results. We begin by making a
Definition 1: An arbitrary set E is said to possess a Steiner system of order k (where k is a natural number >1) if there exists a family \mathcal{H}_{k} of subsets of E such that 1) each element of \mathcal{H}_{k} contains exactly k elements of E and 2) every subset of E, containing exactly $k-1$ elements, is contained in exactly one member of the family \mathcal{H}_{k}.
81. With the aid of the axiom of choice we shall show that every set which is not finite possesses a Steiner system of order n for $n=2,3,4, \ldots$. In addition, we shall establish that the assumption that every set which is not finite possesses a Steiner system of order n, for $n=3,4, \ldots$, is equivalent to the axiom of choice. We are not able to demonstrate the necessity of the axiom of choice to establish the existence of a Steiner system of order 2 for any set which is not finite.

To this end we first prove, with the aid of the axiom of choice,
Theorem 1: Let E be any set which is not finite. Then E possesses a Steiner system of order n for $n=3,4, \ldots$.

Proof: As mentioned above, the theorem has been proved by Sierpiński for $n=3$. In the manner of induction we will assume
(1) Theorem 1 is true for $n-1, n>3$.

Now the axiom of choice tells us that the non-finite set E has as its cardinal number some aleph. That is,
(2) $\overline{\bar{E}}=\aleph_{\lambda}$.

Thus without loss of generality we may impose a well-ordering on E such that $\overline{\bar{E}}=\bar{\omega}_{\lambda}$, where ω_{λ} is the initial ordinal number of the class of all ordinals whose cardinality is \aleph_{λ}. Hence, we may take E to be the set of all ordinal numbers less than ω_{λ}.

In [1], Sierpiński remarks that the set $P_{2}=\left\{\langle\alpha, \beta\rangle: \alpha<\beta<\omega_{\lambda}\right\}$ can be given a well-ordering such that $\bar{P}_{2}=\omega_{\lambda}$. (Here, as elsewhere in this paper, $<,>$ is to be taken as the symbol for an ordered pair. Similarly, $\langle,,>$ is to be taken as an ordered triple, etc. Also, all small Greek letters are to be regarded as ordinal numbers.) The proof of Theorem 1 will depend upon a generalization of this remark. Its statement will be given the form of a lemma whose demonstration will follow the proof of the theorem.
Lemma 1: The set $P_{k}=\left\{\left\langle\alpha_{1}, \ldots, \alpha_{k}>: \alpha_{1}<\alpha_{2}<\ldots<\alpha_{k}<\omega_{\lambda}\right\}\right.$ can be given a well-ordering such that $\bar{P}_{k}=\omega_{\lambda}$, for $k=2,3,4, \ldots$.

Now, in virtue of this lemma, we are in a position to index the elements of P_{n-1} and express this set as follows:
(3) $P_{n-1}=\left\{\left\langle\alpha_{\xi}^{(1)}, \ldots, \alpha_{\xi}^{(n-1)}\right\rangle: \xi<\omega_{\lambda}\right\}$.

By (1) we know E possesses a Steiner system of order $n-1$. Hence there exists a family \mathcal{F}_{n-1} satisfying the properties of Definition 1 for $k=n-1$.

Before proceeding it is necessary to make some definitions.
Definition 2: Let γ be an ordinal number less than ω_{λ}. Then $F_{\gamma}^{(n-1)}$ is that unique member of the family \mathcal{F}_{n-1} which contains the set $\left\{\alpha_{\gamma}^{(1)}, \ldots, \alpha_{\gamma}^{(n-2)}\right\}$.

In addition, suppose that
(4) $F_{\gamma}^{(n-1)}=\left\{\alpha_{\gamma}^{(1)}, \ldots, \alpha_{\gamma}^{(n-2)}, \beta\right\}$
and that
(5) $\alpha_{\gamma}^{(1)}<\ldots<\alpha_{\gamma}^{(i)}<\beta<\alpha_{\gamma}^{(i+1)}<\ldots<\alpha_{\gamma}^{(n-2)}<\omega_{\lambda}$.

We now formulate another
Definition 3: ${ }^{1}$

$$
S\left(F_{\gamma}^{(n-1)}\right)=\left\{\begin{array}{l}
\alpha_{\gamma}^{(n-1)} \quad \text { if } \alpha_{\gamma}^{(n-1)} \neq \beta \\
\left(\sum_{i=1}^{n-1} \alpha_{\gamma}^{(i)}\right)+1 \text { if } \alpha_{\gamma}^{(n-1)}=\beta
\end{array}\right.
$$

[^0]We are now in a position to construct, after the manner of Sierpinski in [1], with certain modifications, a transfinite sequence of ordinal numbers indexed by all ordinals less than ω_{λ}. Let $\varphi_{1}=1$. Assume δ to be an arbitrary ordinal number such that $1<\delta<\omega_{\lambda}$. Now suppose φ_{ξ} has been defined for all $\xi<\delta$. Then we let φ_{δ} be the smallest ordinal μ which satisfies the following condition:
(6) $\left\{\alpha_{\mu}^{(1)}, \ldots, \alpha_{\mu}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\delta\right\}$.

To establish that this construction is non-vacuous it is sufficient to exhibit a μ such that (6) holds. To accomplish this we construct the following sets:
(7) $R_{i}=\left\{f_{i}\left(\varphi_{\xi}\right): \xi<\delta\right\}$
where $f_{i}\left(\varphi_{\xi}\right)=\alpha_{\varphi_{\xi}}^{(i)}$ for $i=1,2, \ldots,(n-1)$. It is clear that for each i we have (8) $\bar{R}_{i} \leqq \delta$
where R_{i} has the order induced by the indices of the elements of the transfinite sequence already defined. Hence
(9) $\overline{\bar{R}}_{i} \leqq \bar{\delta}$ for $i=1,2, \ldots,(n-1)$.

But clearly $\bar{\delta}$ is either a finite cardinal number or an aleph. If we now construct
(10) $R=\bigcup_{i=1}^{n-1} R_{i}$
it is clear that $\overline{\bar{R}} \leqq \sum_{i=1}^{n-1} \overline{\bar{R}}_{i}$. Now if $\bar{\delta}$ is a finite cardinal number it is immediate that $\overline{\bar{R}}<\aleph_{\lambda}=\overline{\bar{E}}$. On the other hand, however, if $\bar{\delta}$ is an aleph, say \aleph_{*}, we have, in virtue of the fact that $\aleph_{*}+\aleph_{*}=\aleph_{*}$,
(11) $\overline{\bar{R}} \leqq \aleph_{*}$.

But since $\delta<\omega_{\lambda}$ and ω_{λ} is an initial number
(12) $\aleph_{*}<\aleph_{\lambda}$
and therefore we again arrive at
(13) $\overline{\bar{R}}<\aleph_{\lambda}=\overline{\bar{E}}$.

It is clear, then, that there must exist $n-2$ elements of E which are not contained in R. That is, there exists $\alpha^{(1)}, \ldots, \alpha^{(n-2)}$ such that
(14) $\alpha^{(i)} \in E-R$ for $i=1,2, \ldots,(n-2)$.

Hence by (7) and (14) no $\alpha^{(i)}$ can be considered an image point of the function f_{j} for all $\langle i, j>\epsilon\{1,2, \ldots,(n-2)\} \times\{1,2, \ldots,(n-1)\}$. Therefore
(15) $\alpha^{(i)} \notin\left\{F_{\varphi_{\xi}}^{(n-1)}: \xi<\delta\right\}$ for $i=1,2, \ldots,(n-2)$.

If we suppose $\alpha^{(1)}<\ldots<\alpha^{(n-2)}$ we have
(16) $<\alpha^{(1)}, \ldots, \alpha^{(n-2)}, \alpha^{(n-2)}+1>\epsilon P_{n-1}$.

In virtue of (3) we may write

$$
\begin{equation*}
\alpha^{(1)}=\alpha_{\mu}^{(1)} ; \ldots ; \alpha^{(n-2)}=\alpha_{\mu}^{(n-2)} ; \alpha^{(n-2)}+1=\alpha_{\mu}^{(n-1)} \tag{17}
\end{equation*}
$$

for some $\mu<\omega_{\lambda}$.
Therefore

$$
\begin{equation*}
\left\{\alpha_{\mu}^{(1)}, \ldots, \alpha_{\mu}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\delta\right\} . \tag{18}
\end{equation*}
$$

Thus the construction of the transfinite sequence is well formed. We now state and prove an important property of this transfinite sequence.
Lemma 2: The transfinite sequence $\left\{\varphi_{\xi}\right\}_{\xi<\omega_{\lambda}}$ is strictly increasing.
Proof: To the contrary suppose we have either of the following:
Case 1: $\eta_{1}<\eta_{2}<\omega_{\lambda}$ and $\varphi_{\eta_{1}}=\varphi_{\eta_{2}}$
Case 2: $\eta_{1}<\eta_{2}<\omega_{\lambda}$ and $\varphi_{\eta_{1}}>\varphi_{\eta_{2}}$.
If Case 1 occurs we have by (6), $\varphi_{\eta_{2}}=\mu_{2}$ to be the smallest ordinal such that

$$
\begin{equation*}
\left\{\alpha_{\mu_{2}}^{(1)}, \ldots, \alpha_{\mu_{2}}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\eta_{2}\right\} \tag{19}
\end{equation*}
$$

But since $\eta_{1}<\eta_{2}$, we must have

$$
\begin{equation*}
\left\{\alpha_{\mu_{2}}^{(1)}, \ldots, \alpha_{\mu_{2}}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\eta_{1}}}^{(n-1)} \cup S\left(F_{\varphi_{\eta_{1}}}^{(n-1)}\right\} .\right. \tag{20}
\end{equation*}
$$

But by assumption, $\varphi_{\eta_{1}}=\varphi_{\eta_{2}}$; hence

$$
\begin{equation*}
\left\{\alpha_{\mu_{2}}^{(1)}, \ldots, \alpha_{\mu_{2}}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\eta_{2}}}^{(n-1)} \cup S\left(F_{\varphi_{\eta_{2}}}^{(n-1)}\right)\right\} \tag{21}
\end{equation*}
$$

which contradicts the very definitions of $F_{\varphi_{\eta_{2}}}^{(n-1)}$ and $S\left(F_{\varphi_{\eta_{2}}}^{(n-1)}\right)$. Thus Case 1 never obtains.

Suppose Case 2 occurs. By (6) we have $\varphi_{\eta_{1}}=\mu_{1}$, the smallest ordinal such that

$$
\begin{equation*}
\left\{\alpha_{\mu_{1}}^{(1)}, \ldots, \alpha_{\mu_{1}}^{(n-1)}\right\} \nsubseteq\left\{F_{\xi}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\eta_{1}\right\} . \tag{22}
\end{equation*}
$$

In the same manner we have $\varphi_{\eta_{2}}=\mu_{2}$ to be the smallest ordinal such that

$$
\begin{equation*}
\left\{\alpha_{\mu_{2}}^{(1)}, \ldots, \alpha_{\mu_{2}}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\eta_{2}\right\} . \tag{23}
\end{equation*}
$$

But (23) and the fact that $\eta_{1}<\eta_{2}$ implies
(24) $\left\{\alpha_{\mu_{2}}^{(1)}, \ldots, \alpha_{\mu_{2}}^{(n-1)}\right\} \nsubseteq\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\eta_{1}\right\}$.

But (24) and the fact that $\mu_{2}<\mu_{1}$ contradict the definition of $\varphi_{\eta_{1}}$. Thus Case 2 never obtains and Lemma 2 is proved.

Finally we are in a position to define a family of subsets of E which will insure the existence of a Steiner system of order n.

Definition 4: $\quad \mathcal{I}_{n}=\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right): \xi<\omega_{\lambda}\right\}$.
To show this is the family in question, let $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(n-1)}$ be any $n-1$ distinct elements of E. We may assume that
(25) $\alpha^{(1)}<\alpha^{(2)}<\ldots<\alpha^{(n-1)}<\omega_{\lambda}$.

Clearly we have $<\alpha^{(1)}, \ldots, \alpha^{(n-1)}>\epsilon P_{n_{-1}}$. Therefore by (6) there must exist an ordinal number $\mu<\omega_{\lambda}$ such that

$$
\begin{equation*}
\alpha_{\mu}^{(i)}=\alpha^{(i)} \text { for } i=1,2, \ldots,(n-1) \tag{26}
\end{equation*}
$$

But since the sequence $\left\{\varphi_{\xi}\right\}_{\xi<\omega_{\lambda}}$ is strictly increasing, there exists an ordinal $\delta<\omega_{\lambda}$ such that
(27) $\varphi_{\delta}>\mu$.

But by the definition of φ_{δ}, there must exist an ordinal $\xi_{0}<\delta$ such that

$$
\begin{equation*}
\left\{\alpha_{\mu}^{(1)}, \ldots, \alpha_{\mu}^{(n-1)}\right\} \subset\left\{F_{\varphi_{\xi_{0}}}^{(n-1)} \cup S\left(F_{\varphi_{\xi_{0}}}^{(n-1)}\right)\right\} \tag{28}
\end{equation*}
$$

for otherwise (27) could not hold. Therefore (28) shows every $n-1$ distinct elements of E is contained in at least one member of the family \mathcal{F}_{n}.

On the other hand, suppose we have $n-1$ distinct elements of E contained in two distinct members of the family \mathcal{F}_{n}. That is, suppose we have $\eta<\xi<\omega_{\lambda}$ such that
(29) $\left\{\alpha^{(1)}, \ldots, \alpha^{(n-1)}\right\} \subset\left\{F_{\varphi_{\eta}}^{(n-1)} \cup S\left(F_{\varphi_{\eta}}^{(n-1)}\right)\right\}$

$$
\begin{equation*}
\left\{\alpha^{(1)}, \ldots, \alpha^{(n-1)}\right\} \subset\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right)\right\} \tag{30}
\end{equation*}
$$

Again by (6) there must exist an ordinal number $\mu<\omega_{\lambda}$ such that $\alpha^{(i)}=\alpha_{\mu}^{(i)}$ for $i=1, \ldots, n-1$. By Definition 3, $S\left(F_{\varphi_{\eta}}^{(n-1)}\right)$ and $S\left(F_{\varphi_{\xi}}^{(n-1)}\right)$ are the greatest elements (according to magnitude) of the $\operatorname{sets}\left\{F_{\varphi_{\eta}}^{(n-1)} \cup S\left(F_{\varphi_{\eta}}^{(n-1)}\right)\right\}$ and $\left\{F_{\varphi_{\xi}}^{(n-1)} \cup S\left(F_{\varphi_{\xi}}^{(n-1)}\right)\right\}$, respectively. But since we assume $\alpha^{(1)}<\ldots<\alpha^{(n-1)}$, we must have

$$
\begin{equation*}
\left\{\alpha^{(1)}, \ldots, \alpha^{(n-2)}\right\} \subset F_{\varphi_{\eta}}^{(n-1)} \tag{31}
\end{equation*}
$$

and
(32) $\left\{\alpha^{(1)}, \ldots, \alpha^{(n-2)}\right\} \subset F_{\varphi_{\xi}}^{(n-1)}$.

But since
(33) $F_{\varphi_{\eta}}^{(n-1)} \in \mathcal{F}_{n-1}$ and $F_{\varphi_{\xi}}^{(n-1)} \in \mathcal{I}_{n-1}$,
we must have
(34) $F_{\varphi_{\eta}}^{(n-1)}=F_{\varphi_{\xi}}^{(n-1)}$
since \mathcal{F}_{n-1} is the Steiner family of order $n-1$.
There now follows two cases:
Case 1: $\alpha^{(n-1)} \in F_{\varphi_{\eta}}^{(n-1)}=F_{\varphi_{\xi}}^{(n-1)}$
Case 2: $\alpha^{(n-1)} \notin F_{\varphi_{\eta}}^{(n-1)}=F_{\varphi_{\xi}}^{(n-1)}$.
If Case 1 occurs, by Definition 3 we must have

$$
\begin{equation*}
S\left(F_{\varphi}^{(n-1)}\right)=S\left(F_{\varphi_{\xi}}^{(n-1)}\right)=\alpha^{(1)}+\alpha^{(2)}+\ldots+\alpha^{(n-1)}+1 \tag{35}
\end{equation*}
$$

But this contradicts our assumption that the members of \mathcal{F}_{n} are distinct.
If Case 2 occurs we must have

$$
\begin{equation*}
S\left(F_{\varphi_{\eta}}^{(n-1)}\right)=\alpha^{(n-1)}=S\left(F_{\varphi_{\xi}}^{(n-1)}\right) \tag{36}
\end{equation*}
$$

But this, too, leads to the same contradiction.
Thus the family \mathcal{F}_{n} has the properties of Definition 1 and the existence of a Steiner system of order n for the set E is assured. The induction being completed, Theorem 1 is proved.

We now return to the unfinished business of proving Lemma 1.
Proof of Lemma 1: Since the lemma is true for $n=2$ it will be sufficient to proceed by induction. Hence we assume
(37) Lemma 1 to be true for $k=n-1 \quad(n \geqq 3)$.

Since $\overline{\bar{E}}=\aleph_{\lambda}$ and the fact that $\kappa \cdot \aleph=\aleph$ for any aleph, \aleph, we have

$$
\begin{equation*}
\overline{\overline{(E \times \ldots \times E)}}=\aleph_{\lambda} . \tag{38}
\end{equation*}
$$

But according to the definition of P_{n} we have

$$
\begin{equation*}
P_{n} \subset(\underset{n-\text { times }}{E \times \ldots} \ldots) \tag{39}
\end{equation*}
$$

and hence
(40) $\quad \overline{\bar{P}}_{n} \leqq \aleph_{\lambda}$.

We now consider the following subsets of P_{n-1} :
(41) $P_{n-1}^{*}=\left\{<0, \alpha^{(2)}, \ldots, \alpha^{(n-1)}>: 0<\alpha^{(2)}<\ldots<\alpha^{(n-1)}<\omega_{\lambda}\right\}$
(42) $\quad P_{n-1}^{*}=P_{n-1}-P_{n-1}^{*}$.

By (37) we have $\overline{\bar{P}}_{n-1}=\aleph_{\lambda}$. Also since, by (42), $P_{n-1}^{*} \subset P_{n-1}$:
(43) $\overline{\overline{P_{n-1}^{*}}} \leqq \aleph_{\lambda}$.

But it is possible to map the set E in an one-one manner onto a certain subset of P_{n-1}^{*}. Let
(44) $f: E \rightarrow P_{n-1}^{*}$
where,
(45) $f(\alpha)=\left\{\begin{array}{l}<1,2, \ldots,(n-2), \alpha>\text { if } \alpha>n-2 \\ <\alpha+1, \alpha+2, \ldots, \alpha+n-1>\text { if } \alpha \leqq n-2 .\end{array}\right.$

We remark that f is well constructed, since by the definition of P_{n-1}^{*}, no $n-1$ tuple in this set has O as its first coordinate. Thus the set E is equinumerous to some subset of P_{n-1}^{*}. Hence

$$
\begin{equation*}
\overline{\overline{P_{n-1}^{*}}} \geqq \aleph_{\lambda}=\overline{\bar{E}} . \tag{46}
\end{equation*}
$$

Thus (43) and (46) yield
(47) $\overline{\overline{P_{n-1}}}=\aleph_{\lambda}$.

We now construct the following subset of P_{n} :

$$
\begin{equation*}
P_{n}^{*}=\left\{<0, \alpha_{2}, \ldots, \alpha_{n}>: 0<\alpha_{2}<\ldots<\alpha_{n}<\omega_{\lambda}\right\} . \tag{48}
\end{equation*}
$$

An one-one correspondence naturally arises between the sets P_{n}^{*} and P_{n-1}^{*}. Namely,
(49) $g: P_{n-1}^{*} \rightarrow P_{n}^{*}$
where
(50) $g\left(\left\langle\alpha_{1}, \ldots, \alpha_{n-1}\right\rangle\right)=\left\langle 0, \alpha_{1}, \ldots, \alpha_{n-1}\right\rangle$.

The very definitions of the sets P_{n-1}^{*} and P_{n}^{*} insure that the map g is well defined. Hence,
(51) $\overline{\overline{P_{n-1}}}=\overline{\overline{P_{n}^{*}}}$.

Together with (47) we have
(52) $\quad \overline{\overline{P_{n}^{*}}}=\aleph_{\lambda}$.

But since $P_{n}^{*} \subset P_{n}$ we conclude
(53) $\quad \overline{\bar{P}}_{n} \geqq \aleph_{\lambda}$.

Therefore (40) and (53) establish

$$
\begin{equation*}
\overline{\bar{P}}_{n}=\aleph_{\lambda} \tag{54}
\end{equation*}
$$

Thus we may impose a well-ordering on P_{n} such that $\bar{P}_{n}=\omega_{\lambda}$. The induction being completed, Lemma 1 is proved.
§2. In order to further our results, we will establish a functional characterization for a Steiner system of arbitrary order.

Theorem 2: Let E be any set which is not finite. Then E possesses a Steiner system of order n, for $n=2,3, \ldots$ if and only if there exists a set function f such that
1° The domain of f is the family of all subsets of E which contain exactly $n-1$ elements.
2° The range of f is some subset of E.
$3^{\circ} f\left(\left\{a_{1}, a_{2}, \ldots, a_{n-1}\right\}\right) \notin\left\{a_{1}, a_{2}, \ldots, a_{n-1}\right\}$.
4° If $f\left(\left\{a_{1}, \ldots, a_{n-1}\right\}\right)=b \in E$ then $f\left(\left\{a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n-1}\right\}\right)=a_{i}$ for $i=1,2, \ldots, n-1$.
Remark: It is important to observe that the proof of Theorem 2 will not employ the axiom of choice.

Proof:
Necessity: Suppose the non-finite set E possesses a Steiner system of order n. Let us now construct

$$
\begin{equation*}
d=\{A \subset E: \overline{\bar{A}}=n-1\} . \tag{55}
\end{equation*}
$$

By Definition 1, we know that for every $A \in \mathcal{d}$ there exists a unique element of \mathcal{F}_{n} which contains A. We represent such an element of \mathcal{I}_{n} by the symbol F_{A}. Next, we construct a map
(56) $f: \mathcal{A} \rightarrow E$
where
(57) $f(A)=F_{A}-A$ for each $A \in \mathcal{A}$.

Since $F_{A} \in \mathcal{H}_{n}$, it follows that $\overline{\bar{F}}_{A}=n$. But also $\overline{\bar{A}}=n-1$ and $A \subset F_{A}$. Hence $f(A) \in E$. Thus f satisfies properties 1° and 2° of the theorem. Clearly $f(A)=\left(F_{A}-A\right) \& A$, and property 3° is thereby satisfied.

Now suppose $A \in \mathcal{A}$. Thus we may write

$$
\begin{equation*}
A=\left\{a_{1}, \ldots, a_{n-1}\right\} \tag{58}
\end{equation*}
$$

And suppose
(59) $F_{A}=\left\{a_{1}, \ldots, a_{n-1}, b\right\}$.

Therefore by (57) we have
(60) $f(A)=b$.

Now construct the set $A^{\prime}=\left\{a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n-1}\right\}$. By (59) we see $A^{\prime} \subset F_{A}$. Hence
(61) $\quad F_{A}{ }^{\prime}=F_{A}$.

Therefore we have

$$
\begin{equation*}
f\left(A^{\prime}\right)=F_{A},-A^{\prime}=F_{A}-A=a_{i} \tag{62}
\end{equation*}
$$

Property 4° holding for f, necessity is established.
Sufficiency: Suppose we have given the function f with the stated properties $1^{\circ}-4^{\circ}$. We now define for each $A \in \mathcal{d}$,
(63) $F_{A}^{*}=A \cup f(A)$.

By properties 2° and 3° of f we see that F_{A}^{*} is a subset of E consisting of exactly n elements.

We are now in a position to define a family of subsets of E consisting of exactly n elements. Namely,

$$
\begin{equation*}
\mathcal{I}_{n}=\left\{F_{A}^{*}: A \in \mathcal{d}\right\} . \tag{64}
\end{equation*}
$$

It remains to show that \mathcal{F}_{n} establishes a Steiner system of order n.
By property 1° of f and (64) it is clear any subset of E, consisting of exactly $n-1$ elements, is contained in at least one member of the family \mathcal{F}_{n}. Specifically
(65) $A \subset F_{A}^{*}$ for each $A \in \mathcal{A}$.

It remains to show that every $A \in \mathcal{d}$ is contained in, at most, one member of the family \mathcal{F}_{n}. To the contrary, suppose
(66) $A \subset F_{X}^{*} \in \mathcal{F}_{n}$
and

$$
\begin{equation*}
A \subset F_{Y}^{*} \in \mathcal{I}_{n} \tag{67}
\end{equation*}
$$

where
(68) $\quad F_{X}^{*} \neq F_{Y}^{*}$.

Suppose $A=\left\{a_{1}, \ldots, a_{n-1}\right\}$. Then we have
(69) $\quad F_{X}^{*}=\left\{a_{1}, \ldots, a_{n-1}, x\right\}$
and
(70) $\quad F_{Y}^{*}=\left\{a_{1}, \ldots, a_{n-1}, y\right\}$.

But (69) and (70) together with property 4° of f yields
(71) $f(A)=x$ and $f(A)=y$.

Hence $x=y$, which contradicts (68).
Thus the family \mathcal{F}_{n} has the desired properties and, therefore, E possesses a Steiner system of order n. Sufficiency established, Theorem 2 is proved.
§3. After constructing and characterizing the Steiner system of order n, one naturally raises the question as to whether the existence of a Steiner system of arbitrary order implies the axiom of choice. An answer is obtained in

Theorem 3: The assumption that every non-finite set possesses a Steiner system of order n implies the axiom of choice for any $n \geq 3$.

Remark: The proof of this theorem follows, in substance, the proof given in [2] by B. Sobociński, who has established the result for the case when $n=3$.

Proof: Let \mathfrak{m} be an arbitrary cardinal number which is not finite. As is well known, to \mathfrak{m} we may associate a certain aleph, $\mathfrak{\aleph}(\mathfrak{m})$, called Hartogs' aleph for \mathfrak{m}, where $\mathfrak{N}(\mathfrak{m})$ is the least aleph with the property:
(72) $\aleph(m)$ 寺 \mathfrak{m}.

Since $\mathcal{\aleph}(\mathfrak{m})$ is an aleph, there must exist an ordinal number λ such that
(73) $\boldsymbol{\aleph}(\mathfrak{m})=\aleph_{\lambda}$.

Let ω_{λ} represent the initial number of the class of all ordinals whose cardinality is \aleph_{λ}. Elementary results tell us there exists a cardinal number, $\mathfrak{m}+\aleph(\mathfrak{m})$, which is not finite.

Hence, there must exist non-finite sets E, R and P such that

$$
\begin{align*}
& \text { (74) } \tag{74}\\
& \overline{\bar{P}}=\mathfrak{\aleph}(\mathfrak{m})=\aleph_{\lambda} \\
& \text { (75) } \\
& P=\left\{\alpha: \alpha \text { is an ordinal }<\omega_{\lambda}\right\} \\
& \text { (76) } \\
& \overline{\bar{R}}=\mathfrak{m} \tag{79}\\
& \text { (77) } \\
& R \cap P=\phi \\
& \text { (78) } \\
& E=R \cup P \\
& \text { (79) } \\
& \overline{\bar{E}}=\overline{\bar{R}}+\overline{\bar{P}}=\mathfrak{m}+\aleph(\mathfrak{m}) .
\end{align*}
$$

By the hypothesis of Theorem 3, the non-finite set E possesses a Steiner system of order n, where n is a natural number greater than 3 . Thus, by Definition 1, there must exist a family \mathcal{F} of subsets of E such that
(80) every element of \mathcal{F} is a subset of E containing exactly n elements
and
(81) every $n-1$ distinct elements of E is contained in one, and only one, member of the family \mathcal{F}.

Remark: As in Lemma 1, P_{k} will represent the collection:

$$
\begin{equation*}
\left\{<\alpha_{1}, \ldots, \alpha_{k}>: \alpha_{1}<\ldots<\alpha_{k}<\omega_{\lambda}\right\} \tag{82}
\end{equation*}
$$

where the α_{i} 's are all ordinal numbers and ω_{λ} is the initial number referred to above. The conclusion of Lemma 1 was
(83) $\bar{P}_{k}=\omega_{\lambda}$ for $k=1,2, \ldots$.

An immediate corollary to this result would be

$$
\begin{equation*}
\overline{\bar{P}}_{k}=\bar{\omega}_{\lambda}=\aleph_{\lambda} \text { for } k=1,2, \ldots \tag{84}
\end{equation*}
$$

We now introduce another
Definition 5: For any natural number n, P_{n}^{\dagger} will represent the family of all subsets of P which contain exactly n elements.

A correspondence naturally arises between P_{n}^{\dagger} and P_{n}. For, every element $p \in P_{n}^{\dagger}$ is of the form $p=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, where $\alpha_{i} \in P$ for $i=1, \ldots, n$. If we assume,
(85) $\alpha_{1}<\ldots<\alpha_{n}$
we may associate to this element $p \in P_{n}^{\dagger}$ the element $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in P_{n}$. Such an association is clearly an one-one onto correspondence of the sets P_{n}^{\dagger} and P_{n}. Hence,
(86) $\overline{\overline{P_{n}^{\dagger}}}=\overline{\overline{P_{n}}}$.

Together with (84) we have

$$
\begin{equation*}
\overline{\overline{P_{n}^{\dagger}}}=\bar{\omega}_{\lambda}=\aleph_{\lambda} \text { for } n=1,2, \ldots \tag{87}
\end{equation*}
$$

As a matter of fact we have,

$$
\begin{equation*}
\overline{\overline{P_{n}^{\dagger}}}=\aleph(\mathfrak{m}) \text { for } n=1,2, \ldots \tag{88}
\end{equation*}
$$

This concludes our remark.
Returning to the proof of Theorem 3 we make a
Definition 6: For any $r \in R$ we define a family of sets F_{r} as follows: $x \in F_{r}$ if and only if 1) $x \in \mathcal{F}$ and 2) there exists $n-2$ distinct elements of P, say $\alpha_{1}, \ldots, \alpha_{n-2}$, such that a) the ordinal numbers $1,2, \ldots, n-3$ are contained in the set $\left\{\alpha_{1}, \ldots, \alpha_{n-2}\right\}$ and b) $\left\{r, \alpha_{1}, \ldots, \alpha_{n-2}\right\} \subset x$.

Definition 6 immediately implies
(89) $F_{r} \subset \mathcal{F}$ for any $r \in R$.

Lemma 3: The family F_{r} is not empty for every $r \in R$.
Proof: Let $r \in R$. Then by (78), $r \in E-P$. Certainly the set P contains the ordinals $1, \ldots, n-3$, and, at least, one additional ordinal α. Thus $\{r, 1,2, \ldots, n-3, \alpha\}$ is a subset of E consisting of exactly $n-1$ elements. By (81), there exists a unique $x \in \mathcal{F}$ such that
(90) $\{r, 1,2, \ldots, n-3, \alpha\} \subset x$.

Clearly this x satisfies the requirements of Definition 6, and hence
(91) $x \in F_{r}$.

Thus for each $r \in R, F_{r}$ is not empty. Lemma 3 is proved.
We now wish to exhibit certain distinguished members of the family F_{r}. To this end we state

Lemma 4: Let $r \in R$. Then there exists an $x \in F_{r}$ such that $x=$ $\left\{r, \alpha_{1}, \ldots, \alpha_{n-1}\right\}$ where all the α_{i} 's are elements of the set P.

Remark: Since $x \in F_{r}$, we are guaranteed that at least $n-2$ of the α_{i} 's are elements of P. In fact, we know that the ordinals $1,2, \ldots,(n-3)$ must be among them.

Proof: To the contrary, we assume
(A) $r \in R$
and
(B) if $\{r, 1,2, \ldots,(n-3), \alpha, l\} \in F_{r}$, where $\{1,2, \ldots,(n-3), \alpha\} \subset P$, then $\ell \in R$.

It is now possible to construct a mapping
(92) $f_{1}: P-\{1,2, \ldots, n-3\} \rightarrow F_{r}$
where
(93) for $\alpha \in P-\{1,2, \ldots, n-3\}, f_{1}(\alpha)$ represents the unique element of \mathcal{F} which contains the $n-1$ distinct elements $\{r, 1,2, \ldots, n-3, \alpha\}$.

It is clear from (93) and Definition 6, that $f_{1}(\alpha) \in F_{r}$ and thus f_{1} is well-defined. For each $z \in F_{r}$ we must have $z=\{r, 1,2, \ldots, n-3, x, y\}$. But by Definition 6, at least one of the elements x, y must be an element of $P-\{1,2, \ldots, n-3\}$. But by (B), at most one of the elements x, y can belong to P. Hence, z contains a unique element $\alpha \in P-\{1,2, \ldots, n-3\}$, such that $f_{1}(\alpha)=z$. Thus f_{1} is onto.

Suppose $\alpha, \beta \in P-\{1,2, \ldots, n-3\}$ such that $\alpha \neq \beta$. Then we have
(94) $f_{1}(\alpha)=\{r, 1,2, \ldots,(n-3), \alpha, x\} \in F_{r} \subset \mathcal{G}$
and
(95) $f_{1}(\beta)=\{r, 1,2, \ldots,(n-3), \beta, y\} \in F_{r} \subset \mathcal{F}$.

By (B) we know
(96) $x, y \notin P$.

Thus, if we suppose $f_{1}(\alpha)=f_{1}(\beta)$ we must have by (94) and (95)
(97) $x=\beta$ and $y=\alpha$.

But this contradicts (96). Therefore,
(98) $f_{1}(\alpha) \neq f_{1}(\beta)$
which establishes the fact that f_{1} is an one-one onto correspondence of the sets $P-\{1, \ldots, n-3\}$ and F_{r}. Hence,
(99) $\overline{\overline{P-\{1, \ldots, n-3\}}}=\overline{\bar{F}}_{r}$.

But it is clear, since P is not finite, that
(100) $\overline{\overline{P-\{1, \ldots, n-3\}}}=\overline{\bar{P}}=\aleph(\mathfrak{m})$.

Therefore (99) and (100) yield
(101) $\overline{\bar{F}}_{r}=\boldsymbol{\aleph}(\mathfrak{m})$.

To complete the proof of Lemma 4 we shall need another
Definition 7: Let $r \in R$. Then R_{r} will denote the set of all $\ell \in R$ such that 1) $\ell \neq r$ and 2) there exists an $x \in F_{r}$ such that $\ell \in x$.

We note that Definition 7 implies
(102) $R_{r} \subset R$
while (B) insures that
(103) R_{r} is not empty.

Now we construct a mapping
(104) $f_{2}: F_{r} \rightarrow R_{r}$
where
(105) for each $x \in F_{r}, f_{2}(x)$ represents that element of x, which belongs to R, but different from r.
Since $x \in F_{r}$, by Definition 6 we know x contains the element $r \in R$, the ordinals $1,2, \ldots, n-3$ and, at least, one additional ordinal α. But (\mathbf{B}) insures that x contains, at most, one additional ordinal α. Thus x, which contains r, must contain a unique element of R which is different from r. This shows f_{2} to be well defined. Let $\ell \in R_{r}$. By Definition 7, we know
(106) $\ell \neq r$
and
(107) there exists an $x \in F_{r}$ such that $\ell \in x$.

By Definition 6, and using the same argument following (105), we see that x contains a unique element of R different from r. But (106) and (107) imply this element must be ℓ. Thus $f_{2}(x)=\ell$ and f_{2} is shown to be onto. Let $x, y \in F_{r}$ such that $x \neq y$. And suppose
(108) $f_{2}(x)=f_{2}(y)=z$.

But (108) implies that both x and y have the following $n-1$ elements in common:
(109) $r, 1,2, \ldots,(n-3), z$.

But since $x, y \in \mathcal{F}$, (81) gives
(110) $x=y$
contradicting our assumption. Hence we conclude that (108) is not true and the $\operatorname{map} f_{2}$ is one-one. Thus
(111) $\overline{\bar{F}}_{r}=\overline{\bar{R}}_{r}$.

This, together with (101), gives
(112) $\overline{\bar{R}}_{r}=\aleph(\mathfrak{m})$.

But $R_{r} \subset R$. Therefore we obtain from (112)
(113) $\aleph(\mathfrak{m}) \leqq \overline{\bar{R}}=\mathfrak{m}$
which contradicts (72). Thus, the assumption that Lemma 4 is false leads to an absurdity. By the law of the excluded middle, Lemma 4 is proved.

In retrospect, we have been able to establish that for each $r \in R$, there exists an element $x \in F_{r}$ such that $x=\{r, 1,2, \ldots,(n-3), \alpha, \beta\}$ where $1,2, \ldots,(n-3), \alpha$ and β are all elements of P. Continuing we introduce,
Definition 8: Let $r \in R$. Then F_{r}^{*} denotes the set of all $x \in F_{r}$ such that x satisfies the conditions of Lemma 4.

In a natural way, we may construct, for each $r \in R$, a map
(114) $f_{3}: F_{r}^{*} \rightarrow P_{n-1}^{\dagger}$
where
(115) for every $x \in F_{r}^{*}, f_{3}(x)$ represents the set of $n-1$ distinct elements of P, which by Definition 8 must be contained in x.
It is clear that f_{3} is well defined. Suppose $x, y \in F_{r}^{*}$, such that $x \neq y$. Since, $F_{r}^{*} \subset F_{r}$, we must have
(116) $r \in x$ and $r \in y$.

Thus the $n-1$ remaining elements of x (i.e. those different from r) cannot be identical with the $n-1$ remaining elements of y. But these sets of remaining elements for x and y are $f_{3}(x)$ and $f_{3}(y)$, respectively. Hence
(117) $f_{3}(x) \neq f_{3}(y)$,
and therefore f_{3} is an one-one correspondence between F_{r}^{*} and some subset of P_{n-1}^{\dagger}.

Let $f_{3}\left(F_{r}^{*}\right)$ represent the range of f_{3}. Clearly,
(118) $f_{3}\left(F_{r}^{*}\right) \subset P_{n-1}^{\dagger}$.

Lemma 1 has showed that P_{n-1} is a well-ordered set. By (86) and (87) it is clear that P_{n-1}^{\dagger} can also be considered a well-ordered set whose order is induced by P_{n-1}. Thus
(119) $f_{3}\left(F_{r}^{*}\right)$ is a non-empty subset of the well-ordered set P_{n-1}^{\dagger} for each $r \in R$
and, therefore, $f_{3}\left(F_{r}^{*}\right)$ is, itself, well-ordered This enables us to make the following
Definition 9: For each $r \in R, f^{*}\left[f_{3}\left(F_{r}^{*}\right)\right]$ is defined to be the initial element of the well-ordered $\operatorname{set} f_{3}\left(F_{r}^{*}\right)$.

Finally we are in a position to construct a mapping (120) $f_{4}: R \rightarrow P_{n-1}^{\dagger}$
where
(121) for each $r \in R, f_{4}(r)=f^{*}\left[f_{3}\left(F_{r}^{*}\right)\right]$.

Definition 9 and (119) show that f_{4} is well defined. Now suppose $r, \ell \in R$ such that
(122) $r \neq \ell$.

In order to show that $f_{4}(r) \neq f_{4}(\ell)$ it will be enough to show that the sets $f_{3}\left(F_{r}^{*}\right)$ and $f_{3}\left(F_{\ell}^{*}\right)$ have no elements in common. Since, if this were true, it would follow that their respective initial elements, $f_{4}(\gamma)$ and $f_{4}(\ell)$, could not be identical. Therefore, suppose there exists a $p \in P_{n-1}^{\dagger}$ such that
(123) $p \in f_{3}\left(F_{r}^{*}\right) \cap f_{3}\left(F_{\ell}^{*}\right)$.

Since $p \in P_{n-1}^{\dagger}$ we may express $p=\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}$, where $\alpha_{i} \in P$ for $i=$ $1, \ldots, n-1$. But (123) and the definition of the mapping f_{3}, given in (115), immediately imply

$$
\begin{equation*}
\left\{r, \alpha_{1}, \ldots, \alpha_{n-1}\right\} \in F_{r}^{*} \subset \mathcal{F} \tag{124}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\ell, \alpha_{1}, \ldots, \alpha_{n-1}\right\} \in F_{\ell}^{*} \subset \mathcal{F} \tag{125}
\end{equation*}
$$

Thus (81) shows $r=\ell$, contradicting (122). Therefore the sets $f_{3}\left(F_{r}^{*}\right)$ and $f_{3}\left(F_{\ell}^{*}\right)$ are disjoint and, thereby, the mapping f_{4} is one-one.

Since f_{4} is a well defined one-one map of the set R onto some subset of P_{n-1}^{\dagger}, it naturally follows
(126) $\overline{\bar{R}} \leqq \overline{\overline{P_{n-1}^{\dagger}}}$.

Thus, from (76) and (87), it follows that
(127) $\mathfrak{m} \leqq \aleph_{\lambda}=\boldsymbol{\aleph}(\mathfrak{m})$.

But (72) restricts us further to
(128) $\mathfrak{m}<\aleph_{\lambda}=\mathfrak{\aleph}(\mathfrak{m})$.

We have thus shown that in assuming any non-finite set possesses a Steiner system of order n, for $n>3$, one can establish the fact that any nonfinite cardinal number \mathfrak{m} is strictly less than some aleph, and, consequently, is itself an aleph. This is nothing other than the establishment of the axiom of choice. Theorem 3 is proved.
§4. With regard to the Steiner system of order 2, we recognize at once that a non-finite set E possesses of Steiner system of order 2 if, and only if, there exists a decomposition of E into disjoint pairs. Thus we may prove, with the aid of the axiom of choice,
Theorem 4: Any non finite set E possesses a Steiner system of order 2.

Proof: It is well known that, with the aid of the axiom of choice, we can establish, for any non-finite cardinal \mathfrak{m}, the relation:
(129) $\mathfrak{m}+\mathfrak{m}=\mathfrak{m}$.

Thus, if E is any non-finite set, there must exist a non-finite cardinal \mathfrak{m} such that
(130) $\overline{\bar{E}}=\mathfrak{m}$.

Therefore, there must also exist non-finite sets S and T such that
(131) $\overline{\bar{S}}=\overline{\bar{T}}=\mathfrak{m}$
(132) $S \cap T=\phi$
(133) $E=S \cup T$.

By (131) there must exist an one-one onto correspondence
(134) $g: S \rightarrow T$.

We construct a family of pairs of E as follows:
(135) $\mathcal{F}=\{\{s, g(s)\}: s \in S\}$.

Clearly, \mathcal{J} represents a collection of disjoint pairs of E which exhausts E. Hence, by Definition 1, E possesses a Steiner system of order 2. This proves Theorem 4.
Final Remarks: In virtue of Theorem 1, we have shown that the axiom of choice is sufficient to establish the existence of a Steiner system of order n for $n=3,4, \ldots$, for any non-finite set E. By Theorem 4 we extended this result to the case where $n=2$.

Moreover, since Theorem 3 was established without the aid of the axiom of choice, the existence of a Steiner system of order n for $n=$ $3,4, \ldots$, always implies the axiom of choice. Hence, the axiom of choice is necessary to establish the existence of a Steiner system of order n for $n=$ $3,4, \ldots$, for any non-finite set E.

It therefore follows that the existence of a Steiner system of order n for $n=3,4, \ldots$, for any non-finite set E, is equivalent to the axiom of choice.

We conclude, on the basis of the above discussion, with a simple corollary to Theorem 2:

Corollary: If we designate the function f in Theorem 2 as f_{n}, where n refers to the order of the Steiner system f_{n} establishes for E, we then have, for $n=3,4, \ldots$, the following equivalent to the axiom of choice:

For every non-finite set E, there exists a function f_{n} with properties $1^{\circ}-4^{\circ}$ as stated in Theorem 2.

BIBLIOGRAPHY

[1] W. Sierpiński: Sur un probleme de triades. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie Classe III. Vol. 33-38(1940-1945), pp. 13-16.
[2] B. Sobociński: A theorem of Sierpiński on triads and the axiom of choice. Notre Dame Journal of Formal Logic, v. 5(1964), pp. 51-58.

Seminar in Symbolic Logic
University of Notre Dame
Notre Dame, Indiana

[^0]: 1. In this paper the symbol Σ will represent the standard addition of either ordinal or cardinal numbers. On the other hand, the symbol \cup, which later appears in (10), represents the standard concept of set-theoretical union.
