NOTE ON AN INEQUALITY OF TIBOR RADO

MICHAEL ANDERSON

In his papers [1], [2] and [3] on non-computable functions Tibor Rado has mentioned the inequality $\mathbf{S}(n) \leqslant(n+1) \Sigma(5 n) 2^{\Sigma(5 n)}$, where $S(n)$ is the maximum number of shifts that can be made by an n card (state) Turing machine-under certain restrictive conditions-and $\Sigma(n)$ is the maximum number of strokes which can be printed by an n card Turing machine. It is the purpose of this note to show that in fact $\mathbf{S}(n) \leqslant(n+1) \Sigma(3 n) 2^{\Sigma(3 n)}$.*

Throughout his papers and, in particular, in defining the functions he is concerned with, Rado uses two-symbol Turing machines which do not have a stay shift i.e., the machine must shift to the right or to the left after each print. The program of each machine is displayed in the form of a set of numbered cards. Each card has two rows of information; the first row having the instructions for the case when the machine scans a blank, the second row having the instructions for the case when the machine scans a stroke. Each row has three pieces of information: the first piece, a 1 or a 0 , determines whether the machine will print a stroke or a blank; the second piece, a 1 or a 0 , determines whether the machine will shift to the right or to the left; and the third piece, a non-negative integer, determines what card will be used for the next set of instructions. If the last number of the set of instructions is 0 , the machine stops. The 1 card is the first card used by the machine.

We are now prepared to define Rado's functions $\Sigma(n), \mathbf{S}(n)$, and the range function $\mathrm{R}(n)$. $\Sigma(n)$ is the maximum number of strokes left by an n card Turing machine starting with a blank tape and stopping after a finite number of shifts. $\mathbf{S}(n)$ is similarly defined as the maximum number of shifts an n card Turing machine can make beginning on a blank tape and stopping after a finite number of shifts. $\mathrm{R}(n)$ is the maximum number of distinct cells an n card Turing machine can scan beginning with a blank tape and stopping after a finite number of shifts.

Rado has stated that $\mathbf{S}(n) \leqslant(n+1) \Sigma(5 n) 2^{\Sigma(5 n)}$. This is a result of the fact that $\mathbf{S}(n) \leqslant(n+1) \mathbf{R}(n) 2^{\mathbf{R}(n)}$, since the number of shifts a machine makes

[^0]before stopping is less than or equal to the total number of possible configurations, and that $\mathrm{R}(n) \leqslant \Sigma(5 n)$. It will be shown that $\mathrm{R}(n) \leqslant \Sigma(3 n)$ and thus that $\mathbf{S}(n) \leqslant(n+1) \Sigma(3 n) 2^{\Sigma 〔 3 n)}$. First we state the following lemma.

Lemma: Given an n card Turing machine which eventually stops when given a blank tape and which has a range of k cells on this tape, a Turing machine of less than $3 n$ cards can be constructed which eventually stops when given a blank tape and which prints out at least $k-1$ strokes on this tape.

A sketch of the proof will be given. Call the given machine m and from the cards of this machine construct the cards of another Turing machine, m, as follows: For each card of m we have three, two, or one card of \bar{m} depending on whether the card takes m to the stop state in none, one, or two of the scanning alternatives. For c_{q} and c_{q}^{\prime} not 0 , the construction is as follows.

$p_{q} s_{q} c_{q}$ $p_{\dot{q}}^{\dot{q}} S_{q}^{\dot{q}} c_{q}^{\dot{q}}$	\rightarrow		\bar{q}_{2} 1 s_{q}	

If c_{q} (or $c_{q}{ }^{\prime}$) is 0 , the $\bar{q}_{2}\left(\bar{q}_{3}\right)$ card is omitted and the state instruction for the alternative of scanning a blank (stroke) in \bar{q}_{1} is left a 0.

By associating the configuration of m after m shifts with the configuration of \bar{m} after $2 m$ shifts and proceeding by induction, it can be shown that \bar{m} stops. Also \bar{m} has a range of $2 k-1$ cells and prints a stroke on each of the $k-1$ extra cells of its range. The number of cards used for \bar{m} is less than or equal to $3 n-1$ (there is at least one stop instruction in m) and thus \bar{m} is the machine we are looking for.

Theorem: $\mathbf{R}(n) \leqslant \Sigma(3 n)$
Proof: Assume $\mathbf{R}(n)>\Sigma(3 n)$. Then $\mathbf{R}(n) \geqslant \Sigma(3 n)+1$. Thus by the lemma we can construct a stopping machine with less than $3 n$ cards ($\leqslant 3 n-1$) which prints out at least $\mathrm{R}(n)-1(\geqslant \Sigma(3 n))$ strokes. But then $\Sigma(3 n-1) \geqslant \Sigma(3 n)$ which is a contradiction since $\Sigma(n)$ is a strictly increasing function. Thus $\mathbf{R}(n) \leqslant \Sigma(3 n)$.
Corollary: $\mathbf{S}(n) \leqslant(n+1) \Sigma(3 n) 2^{\Sigma(3 n)}$

BIBLIOGRAPHY

[1] T. Rado: "On Non-Computable Functions." Bell System Technical Journal, vol. XLI, No. 3, May, 1962. Pages 1-10.
[2] T. Rado: "On Non-Computable Functions." Bell System Monograph 4199, 1962.
[3] T. Rado: "On a Simple Source for Non-Computable Functions." Proceedings of the Symposium on Mathematical Theory of Automata. Polytechnic Institute of Brooklyn, April 24-26, 1962.

Seminar in Symbolic Logic
University of Notre Dame
Notre Dame, Indiana

[^0]: *I obtained this result while attending Prof. Hans Zassenhaus' Seminar in Experimental Number Theory at Ohio State University, Columbus, Ohio, during the Summer of 1966.

