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PARALLEL 1-FLATS IN 2-ARRANGEMENTS

MICHAEL C. GEMIGNANI

The terminology and numbering of propositions in [1] will be followed
throughout this paper.

Suppose a topological space X with geometry G forms a 2-arrangement.
The purpose of this paper is to answer the following questions:

I. If fis any 1-flat of X and y is any element of X, is there necessarily
some 1-flat g which contains y and is parallel to f, that is, such that g = f,
orgNf=p?

II. If the answer to I is affirmative, are there any ¢‘‘distinguished”’
1-flats which contain y and are parallel to f ?

Lemma 1. The answer to 1 is affirmative if and only if whenever y ¢ f,
X+ U{xlxe filw, ), we 1.

Proof: If y¢f and g is any 1-flat parallel to f which contains 3, then since
fNg=¢, any point of g - {y} is not contained in U {x|xef,(w, y), we f}.
On the other hand, if X # U {x|x¢ fi(w, y), we f}, then choose zeX -
U{xlxe filw, y), we f}. Then f(y, z) is a 1-flat which contains y and is
parallel to f.

The discussion
which follows concerns
the following situation:
X and G form a 2-ar-
rangement; Y€ Int X and
f is a 1-flat which does
not contain y,.

Let w, be a cut
point of . We can to-
tally order f by =(2.26).
Set U = {ueflw, = u}
and V = {vef|v = weh
Since yoe IntX, 3¢ 74
IntC(S) where C(S) is a
2-simplex (4.10.1 and
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4.6). For eachueU and ve V, y, disconnects fi(¥,, ) and f;(¥,, v) each into
two components (Fig. 1). That component of f,(vo, ) - {9o} wWhich contains
u will be denoted by a(x). The analogous components of f,(v,, v) - {0} Wwill be
denoted by a(v) and b(v) (cf. 2.22 and 2.23).

Since yo& IntC(S), if u # v, then f,(y,, ) U f1(30, v) disconnects X into
four convex open components A(u, v), B(u, v), C(u, v), and D(u, v), where
FrA(u, v) = a(u) U b)) U {yo}, FrB(u, v) = a(m) U b(®) U {ve}, FrC(u, v) =
a(u) U a(v) U{vo}, and FrD(u, v) = a(v) Ua() U{y,}. This follows from 4.12,
3.25, and the following lemma.

Lemma 2. If kis any 1-flat which disconnects X into components M and N,
then Fe M = Fr N=h.

Proof: If xeh and W is any neighborhood of x, then if W does not intersect
both M and N, then % - {x} still disconnects X. But % is a minimal dis-
connecting subset of X (2.12). We continue our discussion with the following
lemmas.

Lemma 3. dC(S) is compact and closed.

Proof: It S = {x,, x1, x5}, then dC(S) = %%, UXX, UX%,. Each segment is
compact (2.29) and closed; hence dC(S) is compact and closed.

Lemma 4. If u' > u, then ClA@u’, v) is properly contained in ClA(u, v).

Proof: The 1-flat f,(y,,
u) disconnects X into
components M(u), which
contains v, and N(u).
The analogous compo-
nents of X - f,(y,,v) and
X - f1(9, u") will be
M(v) and N(v), and M(u')
and N(u'), respectively
(Fig. 2). Then Cl A(u,
v) = (M(v) "N(w)) Ua(u) U a(u)\a(u')

b(v) U {yo} and CIA (', f v U "
v) = (M) N N@') U / \
a@w' U b) U {y}. A

simple argument shows Figure 2

that a(x") € M(v); hence

ClA@u',v) C ClA(u, v).

Since u¢ Cl A(w, v) - Cl A(u', v), the containment is proper. Similarly, if
v> o', then Cl A, v') is properly contained in Cl A(w, v); moreover,
corresponding statements can be proved in like manner about ClIC(u, v).
We therefore have:

b(v)

Yo M(v)D N(u')

M(v) N N(u)

Lemma 5. I[f u=u' and v = v', then ClA(u', v") C ClA(u, v) and CIC(u', v') C
Cl C(u, v). If one of the first inequalities is stvict, then the containment in
both instances is proper.
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Lemma 6. If ueU and v eV, then ClA(u, v) NdC(S) and ClC(u, v) N dC(S)
are both non-empty.

Pyoof: Both b(v) NdC(S) and a(u) NdC(S) are non-empty (3.24.1 and a
straightforward argument).

Partially order U X V by =<' where (u, v) =' (u', v") if v« =u'and v = v'.
Take a maximal chain W in U X V. Then since dC(S) is compact, using
Lemmas 5 and 6 we have Ny ClA(u, v) NdC(S) and Ny CIC(x, v) N dC(S) are
both non-empty. Choose z e Ny Cl A(u, v) NdC(S) and 2" €Ny CIC(u, v) N dC(S).
Now if X = U {x|x¢ fi(yo, w), we f}, then fi(yo, 2) N f and f,(yo, 2") N f must
each consist of a single
point e and e', respec-
tively. We will see later
that we can have e =e'.

If e +e', then e and e'

must both be end points b(e)

of f, or else we could

get a contradiction to

the maximality of W. P

Assume e #e', but X =

U{xlxefl(yo,w), wsf}

Then f =ee'; hence X = Yo

U {xlxsfl(yo, w), we
ee'l. Now y, is a cut
point of each f(y,, w).
Choose p £b(e) (Fig. 3).
Then it follows that
fi(p, e") 0 fi(p, e) must
consist of at least p
and y,, a contradiction.
Consequently, if e #e'.
then X # U {x|x ¢ fi(yo, Figure 3
w), weee'l. We have

therefore established:

Theorem 1. If e #e', then X+ U{x|xe fi(yo, w), we f}. Consequently,
there is some 1-flat g which contains y, and is pavallel to f.

Relative to Question I posed at the beginning of this paper, we may say:
If f is any 1-flat of X and y is any element of IntX, then if f has either two
end points or no end points, then there is a 1-flat g which contains y and is
parallel to f.

Since no 1-flat in an open 2-arrangement can have any end points, we
also have:

Corollary. If X and G form an open 2-avvangement, then for any 1-flat
fand yex, theve is a 1-flat g which contains y and is parallel to f.

If yeBdX and f is any 1-flat in X - {y}, there may not be any 1-flat
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which contains y and is parallel to f. For example, if S = {x,, x;, %,}is a
linearly independent subset of X, then C(S) with geometry G¢() forms a
2-arrangement. There is no 1-flat which contains x, which is parallel to
any other 1-flat of Ggs).

We now continue the discussion which led to Theorem 1 and its
Corollary. In particular we will examine the non-empty set Ny ClA(u, v) N
dC(S); analogous results will hold for Ny CIC(x, v) N dC(S). Recall that
Vo€ IntC(S), where C(S) is a 2-simplex. If S = {xy, %1, %}, then Ny Cl A(u, v) N
dC(S) =Ny Cl A(u, v) N (XX, U1, U X5%0) = (N CLA (1, 0) N xo%) U (N ClA(%, v) N
%:%,) U (N, ClA(u, v) N%,%,). Each set in this latter union is a closed convex
subset of a segment.

Lemma 7. A closed convex subset W of a segment Xy is either a segment,
a point, or the empty set.

Proof: Suppose W does not consist of a single point and W # @. Totally
order xy by = with x =y. Letu = l.u.b.W and v = g.1.b.W(2.28). Since W
is closed and connected, W = {zexy| v = z = u}; hence W = uv(2.27).

Suppose that % is a 1-flat, zo£%, and p is any point of 2 - {z,}. Then we
define ray(z, p) to be the component of % - {zo} which contains p together
with the point z,.

Lemma 8. Ifpe ClA(u, v) - {yo}, then ray(yo, p) C ClA(u, v).

Proof: Since f,(y,, p) N ClA(u, v) is connected (since it is the intersection
of two convex sets), this intersection is contained in ray(y,, p). But if ¢ is a
point of £,(y,, p) not in this intersection, then y, € 7p; hence ¢ cannot be in the
same component of £,(yo, p) - {¥o} as p.

Lemma 9. If xeNyClA(u, v) N %x, and yeNyCl A(u, v) N %, x,, then either
VX, UX % UXox 07 Y%, U %% is a subset of Ny, Cl A(u, v) N dC(S).

Pyoof: The detailed
proof is quite lengthy
and involves a number
of different cases. It
uses Lemma 8 and is
essentially contained in
Figs. 4a, b, and c.

It follows then that
Ny ClA(u, v) N dC(S) is
the union of at most
three segments S, S,,
and S; which form a
simple (non-closed)
polygonal path joining
two points a and a' of
dC(S). Moreover, we
may suppose that f(y,,
a) is the limiting posi- Figure 4a.
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tion of the f,(v,, ) and
f1(30, @’) is the limiting
position of the f,(v,, v)
(Fig. 5). (It may be, of
course, that a=a'.) It
would, in fact, be easy
to show that if F'of G
is given Topology II as
described in [2], then
the nets {f,(yo, W}, ue U,
and {fl<y0> U)}7 vE V’
converge to f,(¥,, @) and
fi(90, @"), respectively.

If 1(yo, @) is par-
allel to f, then we call
f1(%, @) the upper par-
allel to f through y,; if
f1(vo, @') is parallel to
f, it will be called the
lower parallel to f
through y,. Straightfor-
ward arguments show
that the same flats f; (o,
@) and f,(y,, a') are ob-
tained regardless of
which cut point w, of f
and which 2-simplex
C(S) is used, that is,
filye, @) and fi(y, @)
are independent of w,
and C(S). If fy(3,, @) is
not parallel to f, then
filve, @ N f is an end
point of f; a similar
conclusion applies to
fi(y0,a’). Thus, we can
say:

Theorem 2. If X and G
form a 2-avrangement,
yelIntX and f is a 1-flat
of X with two end points,
then there is neither an
upper orv lower pavallel
to f through y. If X and
G form an open 2-av-
rangement, fis a 1-flat

NyClA (u, v)
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Ny ClA(u, v)on one side of fi(x, y)

Figure 4c

NyClA (u, v) N d((S)

fl(yO) a')

F1(%o, @)

Figure 5
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of X, and y £ f, then f has both an upper and lower parallel through y (though
these parallels might be the same 1-flat.

The following example shows that it is possible to have e = e’ (cf. the
discussion preceding Theorem 1); thus we may have X = U {x| x £ f,(v,, w),
wef}. We can thus conclude that a 2-arrangement need not satisfy either a
hyperbolic or euclidean parallel postulate.

Example: Let P be a point not in R?, the usual coordinate plane. Let X =
R*U{P}. As a subbasis for a topology on X we take the open sets of R® and
all sets of the form {(x, )| a < x} U {P}, where a is a real number. Suppose
z and z’ are points of X. We define fi(z, z') as follows: If z, z'e R?, we let
fi(z, 2") be the usual line in R? if this line is not parallel to the x-axis, and
this usual line together with P if that line is parallel to the x-axis. If
z=P and z'¢ R%, we let f,(z, 2') be the line in R* which contains 2z’ and is
parallel to the x-axis together with P. Then X=U{z|zef.((0, 1), w),
we £1((0,0), P)} even though the structure defined is a 2-arrangement.

REFERENCES

[1] Gemignani, M., ‘‘Topological geometries and a new characterization of R”,”’

The Notve Dame Journal of Formal Logic, vol, VII (1966), pp. 57-100,
[2] Gemignani, M., ““On topologies for F’}* Fundamenta Mathematicae, vol. LIX
(1966), pp. 153-157,

Smith College
Northampton, Massachusetts





