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EQUATIONAL CLASSES OF RELATIVE STONE ALGEBRAS

T. HECHT and TIBOR KATRISΓAK

In this note, we shall show that the lattice of equational classes of
relative Stone algebras forms a chain. We shall also show that each class
of these algebras can be described by a single equation which joins the
equations characterizing Brouwerian algebras. Furthermore, we shall
characterize each class of relative Stone algebras in terms of prime
filters. In the second part another characterization of the equational
classes of L-algebras will be given.

1. Relative Stone algebras. A Brouwerian algebra is a universal algebra
(A, U, Π, *), where (A, U, Π) is a lattice, and * is a binary operation such
that

x ^ y * z if and only if x Π y ^ z for all elements x, y, z e A.

Every Brouwerian algebra is distributive and has the greatest element
x * x, denoted by 1. It is known, that the class of all Brouwerian algebras
is an equationally one (see [1, Π, §11] or [7] or [8]).

Definition. A relative Stone algebra % is a Brouwerian algebra which
satisfies the equation

(x * y) U (y * x) = 1 for all x, ye A.

Let FΘ denote the set {xe A; x = 1(Θ)} for a congruence relation Θ on a
Brouwerian algebra 8. FΘ forms a filter of U. The following statement
proved in [10] characterizes the congruence relation on a Brouwerian
algebra

Lemma 1. Let % be a Brouwerian algebra. If Θ is a congruence
relation on %, then

x = y(0) if and only ifxθd=yn d for a suitable de FΘ. If F is a filter
of%, then the binary relation Θ(F) defined as follows:

x = y(Θ(F)) if and only ifxΠd^yOd for a suitable de F is a con-
gruence relation on Λ.

By lemma 1 the lattice of congruence relations Θ(A) on a Brouwerian
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algebra 51 is isomorphic to the lattice F(A) of all filters of 51. But F(A) is
distributive. Therefore we can apply to a class of relative Stone algebras
the following known result by B. Jdnsson [5].

Lemma 2. Let each algebra % of an equational class Cfί have a distribu-
tive congruence relations lattice. If a finite algebra %e$ί generates Cfί then
each subdirect irreducible algebra Be Cfί is a homomorphic image of a
subalgebra of% (Be HS(«)).

An equational class of algebras is entirely characterized by its
subdirectly irreducible algebras. If Cfί is such a class and Cfί\ is the
subclass of all subdirectly irreducible algebras from Cfί, then Cfί = HSP(^).
It is known that a chain with the greatest element forms a relative Stone
algebra, the RS-chain algebra. The following lemma (for the proof see [7])
describes the subdirectly irreducible relative Stone algebras.

Lemma 3. A non-trivial1 relative Stone algebra U is subdirectly
irreducible if and only if% forms a chain with a dual atom.2

Lemma 4. A homomorphic image of an RS-chain algebra is an RS-
chain algebra. If (£ is an RS-chain algebra and % c (£ then 51 forms a
subalgebra of <£ if and only if 1 € 51.

The proof is straightforward.
Let <£w denote the RS-chain algebra with n elements, Cfίn the equational

class of all relative Stone algebras generated by (£w and Cfί^ the class of all
relative Stone algebras. By lemmas 2 and 4 ̂ eCfίn if and only if 1 ^ k ^ n.
Therefore

(1) ^c^c.c^c.c^

Lemma 5. Every equational class Cfί of relative Stone algebras is
generated by its finite subdirect irreducible algebras.

Proof. Let (£ be an infinite RS-chain algebra from Cfί. Let the equation
p(#i, . . . , Xn) = q(#i, . . . , xn) fail to hold in (£ (p, q are terms from the
absolutely free relative Stone algebra). Then there exist such elements
al9 . . . , anβ <£ that p(al9 . . . , α») Φ q(α1? . . . , an). By lemma 4, {l, al9 . . . ,
an} is a finite subalgebra of (£. Evidently {1, ax, . . . , an}e J^and p ^ , . . . ,
#») = q(#i, . , xn) does not hold in this finite RS-chain algebra.

Theorem 1. The lattice of all equational classes of relative Stone
algebras is isomorphic to the chain (1) above of the type ω + 1.

Proof. Let Cfί be an equational class of relative Stone algebras. There
are two possibilities:

1. Containing more than one element.

2. An element c in a lattice with 1 is called a dual atom if c ̂  1 and c < x^ 1 imply
thatc = 1.
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(i) There exists a natural number I for which ^ c cfί and <#/+1 (£ Cfί.
(ii) CKnQU( for all natural n.

If 3ίι c ct( and <#/+1 ^ <#, then Ctί contains, by lemma 4, only finite RS-chain
algebras. (ίneCtf implies n ^ I, again by lemma 4. Therefore <#=<#/. If
Cfίn(Z^ί for all n, then CK contains all <SW and, as a consequence all finite
subdirect irreducible relative Stone algebras. Thus <# = <#/ by lemma 5.

Let pw(#i, . . . , xn) (n ^ 2) denote the polynomial defined recursively:

(i) p 2 f e ^ 2 ) = ^ U ( # 2 * # i ) ,

(ii) pn(#i, . , A^) = #WU [#„ * pwr-! (#1? . . . , ^ - J ] .

We can check without difficulties that the RS-chain algebra &n (n ^ 2), as
well as Ctίn, satisfies the following equations:

(En) (xλ * x2) U (x2 * x3) U . . . U (#w *xn+ι) = 1,

(Ew

;) P w (^ 1 ? . . . ,xn) = 1.

The RS-chain algebra (£OT = {αx > α2 > . . . > an > an+1 ^ . . . ^ am} (m > n)
does not satisfy the equations (En) and (E^) (set α, = ̂ ) . Thus we have

Theorem 2. For a Brouwerian algebra %, the following two conditions
are equivalent (n ^ 2):

(1) * e ^ w ,
(2) 51 satisfies the equation (En) (or (E^)).

Now we are going to characterize the algebras from Xn(n ^ 2) in
terms of prime filters. For the class CKOQ of all relative Stone algebras it
was done in [12].

Theorem 3. For a Brouwerian algebra %, the following two conditions
are equivalent (n ^ 1):

(1) «eX,
(2) The family of all prime filters of % including a prime filter of% forms
a chain (by inclusion) with at most n elements.

Proof. Let %eCttn(n ^ 1) and F be a prime filter of %. Evidently 51 is
a relative Stone algebra. The quotient algebra %/F is a chain (see [4,
lemma 1.1]). Since %/Fe3Cn, %/F has at most n elements. Let v\ % -* %/F
be the natural epimorphism. For a prime filter Fr "DF the image v(F') is a
filter of %/F and there exists such an element / ' e%/F that v(F1) = [/')3

holds. By lemma 1 and Fr Ώ F it is clear that the inverse image i^"1{[/f)} -
Fr\ Let now Fu F2 be prime filters of U containing F. There exist
elements fl9f2e %/F with v(Fx) = [/J, v(Fz) = [f2). %/F is a chain and
therefore > ! = v~ι{[fi)} Q F2 = v'ι{[f%)} or F 2 c Fλ. For Fx Φ F2 [fx) Φ [f2)
must hold. Thus we have proved the condition (2).

Let the condition (2) be fulfilled by a Brouwerian algebra %. By [12], Sί

3. [/') = {#etl/J?; *:>/'}.
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is a relative Stone algebra. Let 9 denote the set of all prime filters of 8.
$1 is a distributive lattice with 1 and by the known "Stone's theorem" [1) =

/\F holds. By lemma 1, /\Θ(F) is the identical congruence relation on

U. Therefore U is a subdirect product of relative Stone algebras U/Θ(F) =
%/F(Fe9). Above we have proved that freU/F(Fe9) if and only if
^""Ht/')} i s a prime filter containing F. By our assumption, U/F (Fe9) is
a chain with at most n elements which implies U/F e Ctfn for all F e 9 and
consequently % e 3ln.

2. L-algebras An universal algebra (A, u, Π, *, 0) is called a Hey ting
algebra if (A, u, Π, *> is a Brouwerian algebra and 0 is the smallest
element of A. An L-algebra is a Heyting algebra for which (A, u, Π, *> is a
relative Stone algebra (see [4]). It is easy to see that both classes of
Heyting and L-algebras are equational ones. All the results of section 1
are true also for the L-algebras. Especially, a chain C with the greatest
element and the smallest element is an L-algebra, the chain L-algebra. An
L -algebra % is subdirect irreducible if and only if U forms a chain
L-algebra with a dual atom. Let 2?n denote the equational class of all
L-algebras generated by the chain L-algebra Hn with n elements. Let $Όo
denote the class of all L-algebras. Repeating the proof of Theorem 1 we
can obtain an analogous result for L-algebras: The lattice of all equational
classes of L-algebras forms a chain

ίθλ OP ' C~ OP C~ (~ OP- C C~ GP

of type ω + 1. Furthermore for a Heyting algebra U: Ue $n(n ^ 2) if and
only if'$1 satisfies the equation (En) (or (En)).

For our next considerations we need some new conceptions concerning
Brouwerian, Heyting and L-algebras. A Brouwerian algebra satisfies the
following equations (see [1])

(3) (x Π y) * z - x * (y * z) ,

(4) x * (y Π z) = (x * y) Π (x * z).

In a Heyting algebra the elements a * 0 will be denoted by α*. An
element a of a Heyting algebra % will be called closed (dense) if a =
α** (α* = 0). The set C(A) = {ae A; a = α**} forms a Boolean algebra, the
Boolean algebra of closed elements. The set D(A) = {ae A; α* = 0} forms a
filter, the filter of dense elements. It is easy to see that D(A) forms a
Brouwerian algebra (more precisely the Brouwerian subalgebra of %). For
each element x of a Heyting algebra U there exists a suitable dense element
de D(A) for which

(5) x= x**Π d

holds.
It is known that C(A) is a sublattice of .91 if % is an L-algebra.

Moreover, for a closed element y of an L-algebra the element x * y is also
closed and
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(6) x * y = x* U y

is true (see [10, lemma 4.2]). In [2], [6] and [11], the L-algebras were
characterized as follows:

Theorem 4. A Heyting algebra U is an L-algebra if and only if the
following conditions are fulfilled:

(i) C(A) is a subalgebra ofU,
(ii) D(A) is a relative Stone algebra.

We wish to give an analogous characterization of L-algebras from
$n{n>ΐ).

Lemma 6. Let $ be an equational class of Heyting algebras. Then the
class of all Brouwerian algebras D (A) for Si € $ is an equational one.

Proof. Let £ denote the class of all algebras D(A) for %eM. It
satisfies to prove that direct products, epimorphic images and subalgebras
of members from £ are again algebras from £. Let D(Aa)e£ for ae I and

A = ΠAα. Evidently 91 e tf. Then a = (aa)a€\e D(A) if and only if aae 0{Aa) for

all of € I. Thus D(A) = Π D ( A C , ) € ^ .

Let now D(A2)e£ be an epimorphic image of D{Aι)e£. By lemma 1,
there exists such a filter F of D(Aλ) that Ό(Aγ)/F is isomorphic to D(A2).
Consider AjFetf. x = y(Θ(F)) implies #** = y**(Θ(F)) and consequently
#** Π d = y** Π d for a suitable d e F . Since F c D(AJ, we obtain*** = y**.
Denote x —» x the natural epimorphism from Ax onto Aχ/F. If *e Ό{AjF),
then ΛΓ**€-F for *€* and because F c DίAj, we have #** = 1. Hence
tfeDfAj. Evidently Λ eDίAi) implies lceΌ{AjF). Therefore Ό{AjF) is
isomorphic to D(A1)/F.

Let, finally, @ be a Brouwerian subalgebra of D(A) e £. %r = ® U {θ} is
a Heyting subalgebra of 3le ί̂f. Hence ®'e tf. It is easy to see that D(G') =
& and, consequently, ®e <#.

Lemma 7. J^.j is ^ e class of all D(A) for Ke < ŵ(n ^ 2).

Proo/. Let Ĵ f denote the class of all algebras D(A) for#€ %n (n ^ 2).
By lemma 6, <# is an equational class of relative Stone algebras. 9βn is
generated by the chain L-algebra &n. D(Cn) = 1&n-l and (£w-i, considered as
an RS-chain algebra, generates CKn^. Thus J^w-1 c Jίf. If ®w = D(A) for an
algebra 51 e #„, then (in+1 = ®n U {θ} would be an L-subalgebra of 91 and, thus,
<£W+I€i£w which would be a contradiction. Hence the subdirect irreducible
algebras from <#are (£/ for 1 ^ I ^ n - 1 and this implies 3Cn-± = 3(.

Theorem 5. Let %, be a Heyting algebra. Then U e <£n (n ̂  2) if and only
if the following conditions are fulfilled:

(i) C(A) is a subalgebra of A.
(ii) D(A) €#«-i.

Proof. Since <£?„ c ^Όo, the necessity follows by Theorem 4 and
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lemma 7. Now we can assume that n ^ 2 and a Hey ting algebra $1 satisfies
the conditions (i) and (ii). Evidently % e 5?oo, by Theorem 4. We shall prove
the algebra % satisfies the equation (Ew). For the elements xl9 . . . , xn+1eA
there exist such dense elements dl9 . . . , dn+1e D(A) that

Xi = x**ndi (1 < i < n + 1).

Now *, * * ί + ι = (*?• n d, ) * (**_* n d ί + 1) = [(*** n d{) * ***] n [(*** n df ) *

d. +i] = [* * (*** * xt+i)] Π [^?* * (d, * d ί + 1)] for 1 < i < n, by (4) and (5).
Thus,

(xx * *2) U (x2 * #3) U . . . U (#„ * xn+1) = [(AT?* Π rfL) * (Λ:2** Π d2)] U . . . U [(Λ:**U

4 ) * (̂ *+*i n dn+1)] = [(d, * (x** * ^2**)) n (x** * (d, * da))] u . . . u [{dn * fe** *

< * i ) ) Π ( 4 * * ( * * * + 1 ) ) ] .

By (6), we have d, * (jcf * * ^Jlft) = df u (Λ:^* * *££) = xf U Λ ; ^ for all 1 ^
z ^ w. If we put

a{ = xt U Λ:**! and 6, = #** * (d, * d, + 1)

for 1 *ζ i ^ n, then we obtain

(iii) (xι * x2) U . . . U (*„ * Λ:W+1) = (αx Π 6X) u . . . U (αw Π &n).

Since δ, ^ d{ * <if +1€ D(A) (1 ^ i ^ n) and D(A)e ^ w - i , we can conclude by
Theorem 2 and (ii)

(iv) δj. U . . . U bn ^ (dx * d2) U . . . U (dn^ * dn) = I and
61 U . . . U δw_i U α« ^ (ί?i * 4 ) U . . . U ( 4 _ ! * dn) = 1.

Evidently α, U ai+ι = (x* u #J+ί) U (.r*+1 U Λ ; ^ ) = 1 (1 ^ z ^ n - 1) because
x*+ι U Λ f̂ i = 1 follows from (i). Hence

(v) cλ U . . . U cn = 1, if cι = aiy ci+ι = ai+ι for some 1 ^ i ^ n - 1 and
Cj e {(Xj, δ ; } f o r 1 ^ j ^ n and i Φ j Φ i + 1.

Since di * <i/+1 ^ 0 (1 ^ i *ζ n), we obtain

xf = 4 * * 0 < 4 * * (df * ^.+1) - bi

and, as a cconsequence,

(vi) α, -! U 6,- ^ (Λ:^! U Λ:**) U ΛΓ* ^ xf* U ΛΓ? = 1 for 2 ^ i ^ n.

Therefore,

(vii) Cx U . . . U cn = 1, if Cj = aι, ci+1 = bi+1 for some 1 ^ i ^ n - 1 and
Cj e {#/, 6/} for 1 ^ j ** n and i Φ j Φ i + 1.

It is known that a Heyting algebra is distributive. Applying the distribu-
tivity law on the right hand side of (iii) and considering (iv)-(vii), we obtain,

(xι * x2) U (x2 * x3) U . . . U (xn * ΛJ,+1) = 1,

what was to be proved.
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