Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

A NOTE ON R-MINGLE AND SOBOCIŃSKI'S THREE-VALUED LOGIC

R. ZANE PARKS

The system **R-Mingle** (**RM**) of Dunn [2] is the result of adding the axiom schema $A \to A \to A$ to the system **R** of relevant implication—cf. Belnap [1]. Consider the matrices

→	L			l	&	0	1	2	v	0	1	2
0					0	0	0	0	0	0	1	2
*1					*1	0	1	1	*1	1	1	2
*2	0	0	2	0	*2	0	1	2	*2	2	2	2

The values 1 and 2 are designated. Since axioms of RM always take designated values and $modus\ ponens$ and adjunction preserve this property, we have

Lemma 1. Theorems of RM uniformly take designated values when evaluated by the above matrices.

In [3], Sobociński proved that the system $\bf S$ based on the above matrices for \rightarrow and \sim is axiomatized by the following schemas together with *modus* bonens:

S1.
$$A \rightarrow B \rightarrow B \rightarrow C \rightarrow A \rightarrow C$$

S2.
$$A \rightarrow A \rightarrow B \rightarrow B$$

S3.
$$(A \rightarrow A \rightarrow B) \rightarrow A \rightarrow B$$

S4.
$$A \rightarrow . B \rightarrow . \sim B \rightarrow A$$

S5.
$$\sim A \rightarrow \sim B \rightarrow B \rightarrow A$$

Lemma 1, together with Sobociński's result, yields

Lemma 2. If A is a theorem of the pure theory of implication and negation of the calculus RM, then A is a theorem of S.

In as much as the axioms of S are theorems of RM (proofs are either routine or given in Dunn [2]) and *modus ponens* is a rule of RM, we have

Lemma 3. If A is a theorem of S, then A is a theorem of RM.

Lemmas 2 and 3 yield the following

Theorem. A is a theorem of the pure theory of implication and negation of the calculus RM iff A is a theorem of S.

It might be noted that Sobociński's axiom S4 is independent of Dunn's axioms for \rightarrow and \sim so that these do not capture the pure theory of implication and negation of RM. Consider the matrix

→	0	1	2	3	_~
0	3	3	3	3	3
*1	0	1	0	3	1
*2	0	0	2	3	2
*3	0	0	0	3	0

Dunn's axioms for \rightarrow and \sim uniformly take designated values and *modus* ponens preserves this property, but $A \rightarrow B \rightarrow A$ takes the value 0 when A takes the value 1 and B takes the value 2.

REFERENCES

- [1] Belnap, N. D., Jr., "Intensional models for first degree formulas," *The Journal of Symbolic Logic*, vol. 32 (1967), pp. 1-22.
- [2] Dunn, J. M., "Algebraic completeness results for R-Mingle and its extensions," *The Journal of Symbolic Logic*, vol. 35 (1970), pp. 1-13.
- [3] Sobociński, B., "Axiomatization of a partial system of three-valued calculus of propositions," *The Journal of Computing Systems*, vol. 1 (1952), pp. 23-55.

University of Pittsburgh Pittsburgh, Pennsylvania

^{1.} This has been proved independently by Robert K. Meyer and communicated to A. R. Anderson. The result of the next paragraph is due to Meyer.