Notre Dame Journal of Formal Logic
Volume XIII, Number 2, April 1972
NDJFAM

NECESSITY AND TICKET ENTAILMENT

R. ZANE PARKS and JOHN R. CHIDGEY

In [1], Anderson introduces the system P_{I}, i.e. the implicational fragment of the system P of "ticket entailment," for which the following axiom schemas are given:
$\mathbf{P}_{1} 1 . A \rightarrow A$
$\mathrm{P}_{\mathbf{I}}$ 2. $A \rightarrow B \rightarrow . B \rightarrow C \rightarrow . A \rightarrow C$
Pl3. $A \rightarrow B \rightarrow . C \rightarrow A \rightarrow . C \rightarrow B$
PI4. $(A \rightarrow . A \rightarrow B) \rightarrow . A \rightarrow B$.
$\rightarrow \mathbf{E}$ (modus ponens) is the sole primitive inference rule of \mathbf{P}_{I}. A theory of necessity cannot be developed in P_{I} (as in E_{I}, i.e. the implicational fragment of E) via the definition

$$
\mathrm{N} A=_{d f} A \rightarrow A \rightarrow A
$$

since $A \rightarrow A \rightarrow A \rightarrow A$ (i.e. $N A \rightarrow A$) is not provable in P_{I}. In [2], the question is raised whether there is any function f of a single variable A definable in \mathbf{P}_{I} which makes $f(A)$ look like "necessarily A," i.e. such that
(1) $\vdash f(A) \rightarrow A$
(2) $\dashv A \rightarrow f(A)$
(3) if $\vdash A$ then $\vdash f(A)$
(4) if $\vdash A \rightarrow B$ then $\vdash f(A) \rightarrow f(B)$.

In $[3, \S 6]$, the question is raised again with slightly different conditions on f : (1)-(3) above, and
(5) $\vdash A \rightarrow B \rightarrow f(A) \rightarrow f(B)$.

This last formulation of the question is answered by the following
Theorem. There is no function f definable in $\mathbf{P}_{\boldsymbol{I}}$ satisfying conditions (1)-(3) and (5).

Proof. Assume on the contrary that there is such a function. Consider the matrix (with designated values 2 and 3)

\rightarrow	0	1	2	3
0	3	3	3	3
1	0	2	0	3
$* 2$	0	3	2	3
$* 3$	0	0	0	3

It is easy to verify that this matrix satisfies $\mathbf{P}_{I} 1-\mathbf{P}_{I} 4$ and $\rightarrow \mathbf{E}$. If f is to be definable in terms of \rightarrow, there must also be a matrix

A	$f(A)$
0	l
1	m
2	n
3	p

such that each of l, m, n, and p is a member of $\{0,1,2,3\}$ and such that the two matrices together satisfy (1), (3), and (5). $f(A)$ must be distinct from A to satisfy (2), so $f(A)$ must be an entailment. Since entailments never take the value 1 , we have it that
(6). $l, m, n, p \in\{0,2,3\}$.

It is immediate that
(7) $n \neq 3$
(8) $m \neq 3$
if we are to have (1). Now, consider the following row of a truth-table for (5)

A	B	$A \rightarrow B \rightarrow . f(A) \rightarrow f(B)$		
2	1	3	n	m

A ' 3 ' must be entered in the starred column to insure that (5) takes a designated value for this assignment of values to A and B. Given (6), (7), and (8), we can have a ' 3 ' here only if $n=0$. But this falsifies (3), since $A \rightarrow A$ is a theorem of P_{I} and $f(A \rightarrow A$) is not (for $A=2, A \rightarrow A=2$, so $f(A \rightarrow A)=0$). Thus there is no such f.

REFERENCES

[1] Anderson, Alan Ross, "Entailment shorn of modality," (abstract). The Journal of Symbolic Logic, vol. 25 (1960), p. 388.
[2] Anderson, Alan Ross, "A problem concerning entailment," (abstract). The Journal of Symbolic Logic, vol. 27 (1962), p. 382.
[3] Anderson, Alan Ross, and Nuel D. Belnap, Jr., Entailment, Forthcoming.

University of Pittsburgh
Pittsburgh, Pennsylvania
and
University of Manchester
Manchester, England

