Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

NECESSITY AND TICKET ENTAILMENT

R. ZANE PARKS and JOHN R. CHIDGEY

In [1], Anderson introduces the system P_I , i.e. the implicational fragment of the system P of "ticket entailment," for which the following axiom schemas are given:

 $\begin{array}{ll} \mathsf{P}_{I}\mathbf{1}. & A \to A \\ \mathsf{P}_{I}\mathbf{2}. & A \to B \to . & B \to . & C \to . & A \to . \\ \mathsf{P}_{I}\mathbf{3}. & A \to B \to . & C \to A \to . & C \to B \\ \mathsf{P}_{I}\mathbf{4}. & (A \to . & A \to B) \to . & A \to B. \end{array}$

 $\rightarrow E$ (modus ponens) is the sole primitive inference rule of P_I . A theory of necessity cannot be developed in P_I (as in E_I , i.e. the implicational fragment of E) via the definition

 $\mathsf{N}A =_{df} A \to A \to A$

since $A \to A \to A$ (i.e. $NA \to A$) is not provable in P_I . In [2], the question is raised whether there is any function f of a single variable A definable in P_I which makes f(A) look like "necessarily A," i.e. such that

 $\begin{array}{ll} (1) & \vdash f(A) \to A \\ (2) & \neg A \to f(A) \end{array}$

- (3) if $\vdash A$ then $\vdash f(A)$
- (4) if $\vdash A \rightarrow B$ then $\vdash f(A) \rightarrow f(B)$.

In [3, \$6], the question is raised again with slightly different conditions on f: (1)-(3) above, and

(5) $\vdash A \rightarrow B \rightarrow f(A) \rightarrow f(B)$.

This last formulation of the question is answered by the following

Theorem. There is no function f definable in P_1 satisfying conditions (1)-(3) and (5).

Proof. Assume on the contrary that there is such a function. Consider the matrix (with designated values 2 and 3)

Received January 29, 1971

224

	0	1	2	3
0	3	3	3	3
0 1 *2	0	2	0	3
*2	0	3	2	3
*3	0	0	0	3

It is easy to verify that this matrix satisfies $P_1 I - P_1 4$ and $\rightarrow E$. If *f* is to be definable in terms of \rightarrow , there must also be a matrix

$$\begin{array}{c|c}
A & f(A) \\
\hline
0 & l \\
1 & m \\
2 & n \\
3 & p
\end{array}$$

such that each of l, m, n, and p is a member of $\{0, 1, 2, 3\}$ and such that the two matrices together satisfy (1), (3), and (5). f(A) must be distinct from A to satisfy (2), so f(A) must be an entailment. Since entailments never take the value 1, we have it that

(6)
$$l, m, n, p \in \{0, 2, 3\}.$$

It is immediate that

- (7) $n \neq 3$
- (8) $m \neq 3$

if we are to have (1). Now, consider the following row of a truth-table for (5)

A '3' must be entered in the starred column to insure that (5) takes a designated value for this assignment of values to A and B. Given (6), (7), and (8), we can have a '3' here only if n = 0. But this falsifies (3), since $A \rightarrow A$ is a theorem of \mathbf{P}_{l} and $f(A \rightarrow A)$ is not (for A = 2, $A \rightarrow A = 2$, so $f(A \rightarrow A) = 0$). Thus there is no such f.

REFERENCES

[1] Anderson, Alan Ross, "Entailment shorn of modality," (abstract). *The Journal of Symbolic Logic*, vol. 25 (1960), p. 388.

- [2] Anderson, Alan Ross, "A problem concerning entailment," (abstract). The Journal of Symbolic Logic, vol. 27 (1962), p. 382.
- [3] Anderson, Alan Ross, and Nuel D. Belnap, Jr., Entailment, Forthcoming.

University of Pittsburgh Pittsburgh, Pennsylvania

and

226

University of Manchester Manchester, England