Notre Dame Journal of Formal Logic Volume XI, Number 4, October 1970

A NOTE ON THE INTUITIONIST FAN THEOREM

W. RUSSELL BELDING

The purpose of this note is to point out that the Intuitionist Fan Theorem as stated in the literature mentioned is classically false. A classical counterexample to the Theorem is given. It is pointed out that the modified Fan Theorem does not give rise to a classical contradiction mentioned in Heyting [5].

The usual statement of the Fan Theorem* is, following [5],

If S is an Intuitionist fan and φ an integer valued function defined for every element δ of S then a natural number N can be computed for $\langle S, \varphi \rangle$ such that for any element δ of S, $\varphi(\delta)$ is determined by the first N components of δ .

We refer to this as the weak theorem. The counter example we presently introduce leads us to modify the above statement to the strong theorem,

If S is an Intuitionist fan and φ an integer valued function defined for every element δ of S such that $\varphi(\delta)$ is determined by a finite number of components of δ , then a natural number N can be computed such that for any element δ of S, $\varphi(\delta)$ is determined by the first N components of δ .

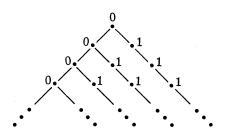
Consider the fan S whose elements are infinitely proceeding sequences (ips) $\{d_n\}$. The spread law SL is as follows:

- (i) 0 is an admissible 1-sequence,
- (ii) 0, 1 are admissible n-components for any $n \ge 2$, that is, given an admissible (n 1)-sequence d_1, \ldots, d_{n-1} , we may choose $d_n = 0$ or $d_n = 1$ subject to
- (iii) if $d_{n-1} = 1$ then $d_n = 1$ for any $n \ge 2$.

The complementary law CL, assigns to any admissible *n*-sequence d_1 , d_2, \ldots, d_n , the number d_n . Clearly S is a fan and may be represented by the following tree:

*See: [1] p. 430; [2], p. 462; [3], p. 143; [4], p. 15; and [5], p. 42.

Received May 6, 1969



Any ips $\{d_n\}$ of S is obtained by tracing a descending path in the tree. Define the integer valued function f on S as follows:

$$f(\lbrace d_n \rbrace) = \begin{cases} 1, \text{ if } \lbrace d_n \rbrace = \lbrace 0 \rbrace \\ m + 1, \text{ otherwise} \end{cases}$$

where *m* is the number of zero components in $\{d_n\}$. Clearly *f* is defined for every element of *S* but a number *N* cannot be stated such that $f(\{d_n\})$ is determined by the first *N* components of $\{d_n\}$.

This example $\langle S, f \rangle$ is a counterexample to the weak statement of the Fan Theorem in [1-5]. (In this case the proof in [5] cannot assert the *F*-sequences 0; 0, 0; 0, 0, 0; etc. to be *K*-barred by *C*.) The proof in [5] is a proof of the strong statement by invoking *Brouwer's principle*: $\varphi(\delta)$ must be effectively determined by a finite number of components of δ .

Heyting [5], pp. 104-105, wishes to show that

$$(\forall x) \sim \sim p(x) \rightarrow \sim \sim (\forall x) p(x)$$

is not an intuitionist thesis by exhibiting the following counterexample to the thesis. Consider the fan and function $\langle S, f \rangle$ described above. Let x be any element of S and p(x) the proposition "f assigns a number to x." The thesis $(\forall x) \sim \sim p(x)$ is easily established by assuming $(\exists x) \sim p(x)$, deriving a contradiction, hence $\sim (\exists x) \sim p(x)$ and consequently $(\forall x) \sim \sim p(x)$, because

$$\sim (\exists x) \sim p(x) \rightarrow (\forall x) \sim \sim p(x)$$

is an Intuitionist thesis (see [5], p. 103). In order to show that $\sim \sim (\forall x) p(x)$ does not hold he derives $\sim (\forall x) p(x)$ by assuming $(\forall x) p(x)$, and then applying the Fan Theorem and deriving the contradiction we have already pointed out. However, the Fan Theorem cannot be invoked on the weak assumption $(\forall x) p(x)$. If q(x) is the proposition "f assigns a number to x on the basis of a finite number of components of x", then $(\forall x) q(x)$ is sufficient to invoke the Fan Theorem to prove $\sim (\forall x) q(x)$; but then $(\forall x) \sim \sim q(x)$ does not hold as $\sim q(\{0\})$ is true. Consequently neither of the (classical) contradictions

$$(\forall x) \sim \sim p(x) \& \sim (\forall x) p(x) \text{ or } (\forall x) \sim \sim q(x) \& \sim (\forall x) q(x)$$

arise.

I am indebted to Dr. Konrad Schultz of Berlin, Germany, for kindly telling me of my mistake in not taking Brouwer's principle into account in an earlier version of this note.

W. RUSSELL BELDING

REFERENCES

- [1] Beth, E. W., *The Foundations of Mathematics* (Second edition), North-Holland, Amsterdam (1965).
- Brouwer, L. E. J., "On domains of definitions of functions," Mathematische Annalen, 97 (1927), pp. 60-75; reprinted in A Source Book in Mathematical Logic (Van Heijenoort, ed.), Harvard University Press, Cambridge (1967).
- [3] Brouwer, L. E. J., "Historical background, principles, and methods of intuitionism," South African Journal of Science, 49 (1952), pp. 139-146.
- [4] Brouwer, L. E. J., "Points and spaces," *Canadian Journal of Mathematics*, 6 (1954), pp. 1-17.
- [5] Heyting, A., Intuitionism, (Second edition), North-Holland, Amsterdam (1966).

Victoria University of Wellington Wellington, New Zealand