Notre Dame Journal of Formal Logic
Volume XI, Number 4, October 1970

GENERALIZED REALS

F. G. ASENJO

Real numbers fill the line, thanks to a postulational dictum-the axiom of completeness of the line. But since dimension depends on structure and not on cardinality, such an axiom is justified only by the simplicity it yields. In principle, there is no limit to the number of points that can be fitted on the line.

We shall assume that standard reals have already been introduced and shall refer to them as reals of the first kind, or simply reals; their set will oe designated R. To the field R we now apply the operation of ultraproduct with R itself as an index set and with ultrafilter U containing all the cocountable subsets of R as well as all the upper halves of R (all sets of reals greater than, or greater than or equal to, a given r in R). The ultraproduct R_{2} thus obtained is the quotient field of the set of all functions of R into $R-$ denoted by A-modulo U. Members of R_{2} will be called reals of the second kind, or r-reals. R_{2} is a totally ordered non-Archimedean field containing infinites and infinitesimals. The monad $\mu(r)$ of a r-real r is the set of elements of R_{2} infinitely close to r. For definitions see [3, p. 57].

Theorem 1. R_{2} is of cardinality $2^{c}=c_{2}$, which is also the cardinality of nny monad.

Proof: Because the cardinality of R_{2} is the cardinality of any of its monads [2, p. 200], it suffices to show that R_{2} has cardinality c_{2}. To do this, consider any one-to-one function f on R into R. The set P_{f} of f 's permutations is of cardinality c_{2} [4, p. 193]. We wish to show that there is a subset of P_{f}, also of cardinality c_{2}, composed exclusively of functions which are pairwise different modulo U. This will prove the theorem, since the cardinality of P_{f} / U is less than or equal to the cardinality of $A / U=R_{\mathbf{2}}$. Let us consider, then, all chains (ordered by inclusion) of members of U in the Boolean algebra of all subsets of R. There must be c_{2} of these chains because each is of cardinality c and the cardinality of U is c_{2}. There is no minimal element in any of these chains (otherwise the empty set would be in U). If for any permutations f_{1} and f_{2} of $f, f_{1}=f_{2}(\bmod U)$, then there is a set u in U such that for all ξ in $u, f_{1}(\xi)=f_{2}(\xi)$. Also, for every η in every subset v of u in $U, f_{1}(\eta)=f_{2}(\eta)$. Therefore, as we move along a chain of
members of U in the direction of the empty set ϕ we obtain smaller subsets v of R for all of whose elements $\eta, f_{1}(\eta)=f_{2}(\eta)$, all of these subsets having c elements and hence c_{2} permutations. Further, no matter how far we move along these chains in the direction of ϕ we can always count c_{2} of them, for given an arbitrary antichain of cardinality c_{2} the finite intersection property of the ultrafilter can only yield antichains of the same cardinality. Regardless of how far we go in the direction of ϕ, then, there are always c_{2} members of U which are pairwise incomparable with respect to inclusion. Let us now take an arbitrary antichain of cardinality c_{2} and form the family F of subsets of f that we obtain by successively restricting f to each of the members of the antichain. The members of F are all different in a settheoretic sense (not modulo U), and each has a set of c_{2} permutations, providing altogether $c_{2} \cdot c_{2}=c_{2}$ set-theoretically different permutations. For each of these permutations $p(\xi)$ let us define $p(\nu)=f(\nu)$ for all ν outside the corresponding member of U. If the new family of permutations of f thus obtained does not contain c_{2} of them which are different modulo U, then further along the c_{2} chains in the direction of ϕ one must be able to find antichains of cardinality less than c_{2}. Since this is impossible, a set of c_{2} different permutations of f modulo U exists and the theorem is proved.

Theorem 2. The subset of multiples of an infinitesimal is not cofinal with the monad of all infinitesimals $\mu(0)$.

Proof: It suffices to recall that the convergent sequences

$$
\cdots>\frac{1}{n(\log n)^{2}}>\frac{1}{n^{2}}>\frac{1}{2^{n}}>\ldots
$$

for every pair of finite natural numbers n and m satisfy

$$
\frac{1}{n(\log n)^{2}}>\frac{m}{n^{2}}, \frac{1}{n^{2}}>\frac{m}{2^{n}}, \text { etc. }
$$

This implies that there are infinitesimals x and y such that $y>m x$ for every finite natural number m (define, for example, $x=1 / 2^{n}$ and $y=1 / n^{2}$ for all ξ in the interval $n \leqslant \xi<n+1$). Further, it is well known that given a sequence that converges to zero there are always sequences that converge less rapidly, which implies that there are no 'maximal' elements z in $\mu(0)$ in the sense that $m z$ would be greater than any other w in $\mu(0)$ for finite natural numbers m greater than some m_{0}. Therefore, the theorem holds.

To R_{2} we again apply the operation of ultraproduct with R_{2} itself as an index set. The ultrafilter U_{2} contains all the co-countable subsets of R_{2} as well as the complements of every subset of R_{2} of cardinality c (let us call them co-c subsets); in U_{2} we also include all the upper halves of R_{2}. The ultraproduct R_{3} thus obtained is a set of cardinality $2^{c_{2}}=c_{3}$, and its members will be called reals of the third kind, $r r$-reals. $R r$-reals can be represented by families of r-reals $x=\left\{x_{\xi}\right\}_{\xi \in R}$, and in R_{3} we find infinitesimals and infinites of a second kind in addition to those of the first kind that are carried over from R_{2}. Given a $r r$-real number x, we must distinguish between its monad of the first kind $\mu(x)$-empty for infinites of the second
kind-and its monad of the second kind $\mu_{2}(x)$. The first one is the image of $\mu\left(x_{0}\right)$ in R_{2} under the natural injection φ that maps any r-real r into the equivalence class modulo U_{2} that contains the constant function $y=\left\{y_{\xi} \mid y_{\xi}=r\right.$ for all $\xi\}_{\xi \in R}$, and where x_{0} is that unique element of R_{2} (if it exists) whose image under φ is infinitely close to x in R_{3}. On the other hand, $\mu_{2}(x)$ is the set of all z in R_{3} such that $z-x$ is an infinitesimal of the second kind.

Iterating the operation of ultraproduct, we obtain reals of kind $k+1$ by forming the ultraproduct of R_{k}, with R_{k} as an index set and with ultrafilter U_{k} containing all the co-countable, co-c, co- c_{1}, \ldots, co- c_{k-1} subsets of R_{k} (where $2^{c n}=c_{n+1}$) as well as the upper halves of R_{k}. The cardinality of R_{k+1} is $2^{c k}=c_{k+1} ; R_{k+1}$ contains infinitesimals and infinites of k kinds, and centered on each real x of the first kind there is a sequence of monads of k different kinds nested in the sense that every element of $\mu_{n+1}(x)$ is closer to x than every element of $\mu_{n}(x)$. Of course, infinites of kind k come after all the other infinites, and they only have monads of kind $k . R_{k+1}$ is a totally ordered non-Archimedean field in which the set of reals of kind k is not dense. If x is a real of kind $n<k+1$ and y is a real of kind $k+1$, then $x+y$ is of kind $k+1$ (otherwise, $x+(y-x)=y$ with $y-x$ of a kind less than $k+1$). The measure of an interval determined by two reals of kind $k+1$ that belong to the same monad of kind k is an infinitesimal of kind k.

The presence of sequences of monads of various kinds centered around members of R_{k+1} is a necessary topological feature of sets of generalized reals and is a consequence of the fact that the Archimedean property imposes well-known restrictions on the cardinality of totally ordered fields. However, a pseudo-Archimedean property holds in R_{k+1}, that is, the property that if $x<y$ in R_{k+1} (x and y positive) there are infinite natural numbers of kind k such that $n x>y$ (as can be easily seen by extending some well-known properties of infinite sequences). Following the process described here, one can fill the line with points of real abscissae of various kinds, thus indefinitely increasing the cardinality of the line as a set of points, except if an axiom of completeness of the line is introduced at some stage.

Since a complete totally ordered field is Archimedean and therefore isomorphic to a subset of the reals of the first kind, the Dedekind completion of R_{k} (denoted R_{k}^{*}) is not a field. R_{k}^{*} is a double semigroup with identities and therefore is not algebraically interesting. However, both R_{k} and R_{k}^{*} have interesting, although intricate, set-theoretic structures, as the following considerations will make obvious.

The order type of R_{2} is $\lambda_{2}=\lambda_{2}\left(\theta^{*}+1+\theta\right)$ [2, p. 200] where θ is a dense order type without first and last element-the order type of the positive part of the quotient set R_{2} / R_{2}^{0} where R_{2}^{0} is the set of finite r-reals $-\theta^{*}$ is the inverse of θ and λ_{2}^{0} is the order type of R_{2}^{0}. It should be pointed out that the equation that gives the order type of R^{\prime} involves a regressus ad infinitum. Since

$$
\begin{equation*}
\mu=\lambda_{2}^{0} \theta+1+\lambda_{2}^{0} \theta * \tag{1}
\end{equation*}
$$

is the order type of any monad of R_{2} and

$$
\begin{equation*}
\lambda_{2}^{0}=\mu \lambda \tag{2}
\end{equation*}
$$

λ being the order type of R, one finds inside any monad of $R_{2} c$ times the order type of this same monad. By iterating the substitutions of (2) in (1) and (1) in (2) successively (\aleph_{0} times, since substitution is a denumerably recursive process), it becomes clear that the order type for a monad of R_{2} is unusually complex and the order type for the various monads of R_{k} even more so.

Finally, one word on a possible use for generalized reals. Denjoy described the problem of a complete arithmetization of the class Z_{2} of countable infinite ordinals as equivalent to the problem of "analytically formulating rules by which a determined, unique real number x_{α} would correspond to each ordinal of Z_{2} " [1, p. 210]. This statement can be extended so that the arithmetization of the classes Z_{3}, Z_{4}, etc., becomes equivalent to the one-to-one mapping of their elements into sets of r-reals, $r r$-reals, etc., respectively, a mapping whose characterization depends on solving the arithmetization of Z_{2}.

REFERENCES

[1] Denjoy, A., L'Enumeration Transfini, Paris (1954).
[2] Luxemburg, W. A. J., (ed.), Applications of Model Theory to Algebra, Analysis and Probability, New York (1969).
[3] Robinson, A., Non-Standard Analysis, Amsterdam (1966).
[4] Sierpiński, W., Cardinal and Ordinal Numbers, Warsaw (1958).

University of Pittsburgh
Pittsburgh, Pennsylvania

