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GENERALIZABILITY OF THE PROPOSITIONAL
AND PREDICATE CALCULI TO
INFINITE-VALUED CALCULI

HERMANN F. SCHOTT

INTRODUCTION: A logical calculus which is to be applied in the develop-
ment of axiomatic systems must provide an adequate vocabulary of defined
logical terms which, when incorporated in suitable theorems, will permit
the explication of the needed logical concepts. Some authors, e.g. Woodger
[7] and Carnap [l], have utilized for this purpose modifications of
Whitehead and RusselΓs [6] extensive list of defined terms. An infinite-
valued logic intended for similar applications must likewise have an
adequate vocabulary of complex logical terms. Such a vocabulary may be
readily devised by generalizing the definitions of PM [6] (or some other
sufficiently complex two-valued logical system) provided that the theorems
in which the defined terms occur can all be generalized to theorems in the
new logic. The question thus arises as to whether there is any infinite-
valued logic in which every theorem of PM has a valid generalization.
More precisely: Is there an infinite-valued logic into which PM generalizes
in the sense defined below in 1.18? The principle theses of the present
paper answer this question in the affirmative for the propositional and
first-order pure functional calculi in terms of an infinite-valued logic in
which two binary connectives represent each binary connective of PM
(equivalence excluded). The question of the generalizability of that part of
PM which utilizes higher functional calculi is left open.

1. GENERALIZING AND DEGNERATING CALCULI.

1.1 Explication. A language is taken to be a set of wff defined by a given
set of symbols and rules of formation.

1.2 Explication. The symbols of a language constitute a mutually exclusive
set of sets of symbol tokens in that language. A token of a symbol a is an
element of the set a.

1.3 Definition. A token in cA is a symbol token in language ^ or an
unbroken, finite, ordered sequence the terms of which are symbol tokens
in cA.
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1.4 Definition, A token in <A is similar to another token in <?4 iff, for
each symbol token of cA in the one there is a token of the same symbol of
o4 in the other.

1.5 Definition. A formula in cA is a set each element of which is a token in
cA which is similar in <A to every other element of the set and not similar
in J to any token in J which is not an element of the set. It follows that
the symbols of cA constitute a subset of the formulae in cA. A token of'a
formula is an element of the set which constitutes the formula.

Note: When no ambiguity is likely to result repeated references to the
language, cA in the preceding definitions, are generally omitted.

1.6 Definition. A token x is part of a token y iff x is identical with y, a
term of y or a subsequence of y.

1.7 Definition. A token x occurs at position n in a token y iff x is part of y
and the first term of x is the nth term of y.

1.8 Definition. A formula a occurs at position win a formula β iff a token
of a occurs at position n in each token of β.

1.9 Definition. A formula a occurs in β iff for some n a occurs at position
n in β.

1.10 Definition. The occurrence of a in β at position n is the set y of
tokens of a such that each member of y occurs at position n in a token of β.

1.11 Definition. A formula a is the result of replacing the occurrences of
formula δ at positions nί} n2, . . . , ^ in β by occurrences of y iff there are
tokens x oί a, y of 0, fi, ^2, . . . , vk of y, and ^ 1 ? w2, . . . , wk oϊ δ such that
for 1 < i ^ & each tv occurs at position mi in x and each w* occurs at
position n{ of 3; and those parts of x of which no part of any v{ is a part are
similar, in the order in which they occur to those parts of y of which no
part of any wι is a part.

1.12 Definition. A formula a consists of βl9 β2, . . . , βn iff the β, are
occurrences of formulae in a such that each token of a is the sum, in the
sense of PM*160 and/or *161, of n tokens one selected from each of the β{

in the order listed.

1.13 Definition. Formulas a and β occur in corresponding positions in y
and δ iff there is a number n such that a occurs at position n in y and β
occurs at position n in δ.

1.14 Definition. A token is wf in J iff it is a token of cA constructed in
accordance with the rules of formation of <A. A formula^ is wf in cA iff its
tokens of cA are wf. A wffoί <A is a formula^ which is w/ in ^ .

1.15 Definition. A language £ is a generalization of a language ĉ  iff there
is a mapping of cA onto <# such that: (i) every symbol in £ is an image of
one and only one symbol in J and (ii) for every wff Q of £ there is one and
only one wff P of <A such that each symbol in £ which occurs in Q is an
image of a symbol in cA occurring in a corresponding position in P.
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1.16 Definition. A calculus X in a language ^ is a set of wff of cA, the
theorems of X, which is completely specified by (i) a finite set of schemes
the union of the instances of which is a subset of theorems, the axioms of
X, and (ii) one or more rules of inference of X whereby new theorems of X
can be obtained from established theorems.

1.17 Definition. A calculus Y in language £ degenerates into a calculus X
in language cA iff £ is a generalization of cA by a mapping such that for
every theorem Q of Y there is a theorem P of X such that each symbol
which occurs in Q is an image of a symbol occurring in a corresponding
position in P.

1.18 Definition. A calculus X in language^ generalizes into a calculus Y
in language £ iff £ is a generalization of J and by a mapping such that for
every theorem P of X there is a theorem Q of Y such that each symbol
which occurs in Q is an image of a symbol occurring in a corresponding
position in P.

2. CHARACTERIZATION OF THE LANGUAGES.

The languages and the calculi which are being compared are, for
clarity as well as brevity, displayed wherever practical in parallel columns
with the generalized language or. calculus on the right. Statements about
the languages or the calculi are frequently arranged in the form of single
sentences with such alternate or additional words as apply specifically to
the generalized language or calculus appearing within parentheses.

2.1 Designation. Prototype tokens of the logical symbols of language
S(Sς) are listed below followed by the terms used to designate the symbol
occurrences. The same terms written with initial capitals are used to
designate the symbols themselves. Thus Implicator is a symbol of S. Its
tokens resemble the horseshoe-shaped mark appearing below. Each of its
occurrences in a formula is called an implicator. In fact, Implicator is the
union of the set of implicators.

* SQ

~ negator Ί negator
dot . dot

—• strong implicator
z> implicator _ , . ,. J.

-5 weak implicator
.. . v strong disjunctor

V disjunctor , * . J ,
+ weak disjunctor
x strong conjunctor

& conjunctor . .
Λ weak conjunctor

The logical symbols of S(Sς) other than Dot and Negator constitute
the binary connectives of S(Sς ).

2.2 Designation. The nonlogical symbols of S(Sς) are an unspecified
number of propositional variables (the same in both languages).
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2.3 Definition. The rules of formation of S{ Sς) are the following:

(i) Propositional variables are wf and constitute the elementary wffs.
(ii) A formula consisting of a negator followed by a wff occurrence is wf

and constitutes the negation of the wff.
(iii) A formula consisting of a dot followed by two wff occurrences
separated by a (strong/weak) implicator is wf and constitutes the {strong/
iveak) implication of the wff occurring second by the wff occurring first,
(iv) A formula consisting of a dot followed by two wff occurrences
separated by a (strong/weak) disjunctor is wf and constitutes the {strong/
iveak) disjunction of the wff occurring first with the wff occurring second.

(v) A formula consisting of a dot followed by two wff occurrences
separated by a (strong/weak) conjunctor is wf and constitutes the {strong/
weak) conjunction of the wff occurring first with the wff occurring second.

2.4 Definition. The term junction will be used as a metalanguage variable
ranging over the designata of the six terms: (strong/weak) disjunction,
(strong/weak) conjunction. As with other variables, when junction is used
more than once in a single sentence form the intended sentences are
obtained by substituting the same term for each such use.

2.5 Definition, (i) If P is a wff of ${ <% ) then the junctior of P is P. (ii) If
Pi, P2, . , Pn are wff of S(Sς) then the junction of Pl9 P2, . . . , Pn is the
junction of P1 with the junction of P2, . . . , Pn.

2.6 Designation. The logical symbols of language S^{Sjς) are the logical
symbols of S{Sς) plus the following

3 existential quantifier V [strong] existential operator
V universal operator Λ [weak] universal operator

Note: Since each of the operators is represented by a single operator in
SJQ the modifiers, enclosed in brackets above, are generally omitted.

2.7 Designation. The nonlogical symbols of language Sj(Sjς ) are:

(i) the propositional variables of £{Sς);
(ii) a set of individual variables^

(iii) for each positive integer n less than some unspecified number, a set of
n-place predicate variables.

2.8 Definition: A formula in S${£gς) is an existential quantifier or a
universal quantifier, respectively, iff it consists of an existential operator
followed by an occurrence of an individual variable.

2.9 Definition. The rules of formation for Sy(Syς) are the following:

(i) to (v): a reiteration of 2.3 (i) to (v);
(vi) A formula which consists of the occurrence of an n-place predicate

variable followed by n occurrences of individual variables is wf and is an
elementary wff.
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(vii) A formula consisting of the occurrence of an existential or universal
quantifier followed by the occurrence of a wff is wf.

2.10 Definition. An occurrence β is the scope of a in a wff γ of SjiSyς)
iff a is an occurrence of a universal or an existential quantifier and γ con-
sists of a followed by β.

2.11 Definition. A free occurrence of an individual variable a in a formula
β is an occurrence of a in some formula γ which occurs in β but not in a
quantifier nor in the scope any quantifier in which β occurs.

2.12 Definition. A bound occurrence of an individual variable a in a
formula β is an occurrence of a in the scope of a quantifier which occurs in
β and in which a occurs.

2.13 Definition. An individual variable a occurs free in a formula β iff
there is a free occurrence of a in β.

2.14 Definition. An individual variable a occurs bound in a formula β iff
there is a bound occurrence of a in β.

2.15 Definition. The relation represents performs a many-one mapping of
the symbols of S and S$ onto the symbols of Sς and S9ς, respectively,
in the following way:

(i) Each nonlogical symbol of Sς or S9ς represents a typographically
similar symbol of S or, respectively, Sς;

(ii) Negator represents Negator;
(iii) Strong Implicator and Weak Implicator represent Implicator;
(iv) Strong Disjunctor and Weak Disjunctor represent Disjunctor;
(v) Strong Conjunctor and Weak Conjunctor represent Conjunctor;

(vi) Dot represents Dot;
(vii) [Strong] Existential Operator represents Existential Operator;
(ix) [Weak] Universal Operator represents Universal Operator.

2.16 Definition. A formula β in Sς or in Sjς is said to be a generaliza-
tum of a formula a in S ov in S$ iff each symbol occurring in β represents
a symbol occurring in a in a corresponding position.

2.17 Theorem. Sς is a generalization of S and Syς is a generalization
of S9.

Proof: Represents, as defined in 2.15, satisfies the requirements of 1.15(i)
while generalizatum of, as defined in 2.16, together with the rules of
formation for S and Sς as set forth in 2.3 and those for Sj&nά Sjς as set
forth in 2.9 satisfy the requirements of 1.15(ii).

2.18 Conventions. In such metalanguage formulations as axiom and theo-
rem schemes the symbols P, Q, and ft with and without subscripts and the
formulae F(x), F(y), G(x), are used as metavariables, i.e. variables of the
metalanguage, ranging over wff of S, Sy, Sς, and Syς while the symbols
x9 y, and z with and without subscripts are used as metavariables ranging
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over individual variables. The logical symbols of g, etc. are designated by

symbols of like design, however, a pair of successive dots is sometimes

designated by a colon and a sequence of n dots by a single dot with the

numeral was a superscript.

2.19 Definition. A wff P is a. junction iff there are wffs Q and R such that P

is the junction of Q with R.

3. THE CALCULI.

3.1 Definition. The axioms of calculus ĈjCβ) are all of the wffs of S(Sg)

which are instances of the axiom schemes Al through A8b (GA1 through

GA8b).

3.2 Definition. The axioms of calculus Jiffi^®) are all of the wffs of

£9(3IQ) which are instances of the axiom schemes Al through A14b

(GA1 through GA14b).

Note: The axiom schemes are selected and arranged so that the instances

of each scheme in the right hand column are generlizata of the instances of

the scheme appearing opposite it in the left hand column. The axioms are

not all independent and those schemes in the left hand column marked with

asterisks are readily derivable from the others.

3.3 Definition. The rule of inference for calculus (̂'Jt®) is the following:

R1 (GR1). If P is a theorem and the implication (weak implication) of Q by

P is a theorem, then Q is a theorem.

3.4 Definition. The rules of inference for calculus ^(JG3^) are the follow-

ing:

RΊ (GR1). If P is a theorem and the implication (weak implication) of Q by

P is a theorem, then Q is a theorem.

R2 (GR2). If P is a theorem then any wff of Sy(Syς) consisting of an

occurrence of a universal quantifier followed by an occurrence of P is a

theorem.

R3 (GR3). Let P; be, for 1 = i i n, the result of replacing all occurrences

of the individual variable x in a wff P of Sy(Syς) by occurrences of the

variable yi9 and let yl9 y2, . . . , yn be all of the individual variable

occurring free in P, then, if 3xP (VxP) is a theorem, there is an i,

1 = i = n, such that P̂  is a theorem.

3.5 Designation. The axiom schemes refered to in definitions 3.1 and 3.2

are listed below:

Axiom Schemes ioτfi and ^ Axiom Schemes for ftg and Jί^

Al .PZ).Q^P GA1 .P->.Q->P

A2 : P z> Q D :Q D R Z> . P D R GA2 : P -> Q -> :Q -» i? -> . P -* i?

A3a : P V Q D : P D Q =) ζ) GA3a : P v Q - > : P - + ς ) - > ζ )

A3b . : P D Q D Q D .Q V P GA3b . : P — Q — Q -> .Q v P



GENERALIZABILITY 113

A4 :~Pz)~Q D .Q D p GA4 T\P -*ΊQ -> .Q-> P

*A5a :P D Q D .~P V Q GA5a : P H Q - ^ .ΊP v Q

*A5b : ~ P V ^ D . P D Q GA5b :ΊP v Q -* .P -β Q

*A6a : P V Q D - P D Q GA6a : P + Q -> .ΊP -> Q

*A6b : ~ P ̂ Q D . P V Q GA6b : Ί P -> Q -> . P + Q

A7a :P& Qz)~.~PV ~Q GA7a :P Λ Q -> Ί . Ί P vΊQ

A7b . - .~P V ~ Q 3 .P & Q GA7b . Ί .ΊP v 1Q -> .P Λ Q

*A8a : P & Q = ) ~ . P D ~ Q GA8a : P x Q-> Ί . P - > Ί Q

*A8b . - . P D ~Q =) .P& Q GA8b .ΊP -> ΊQ -> .P x Q

Axiom Schemes for Jί% Axiom Schemes for Jί^

A9 .P( y) D 3Λ:F(Λ:) GA9 .F( y) -» V^F(ΛΓ)

where F(^) is the result of replacing all free occurrences of x in F(x) by

occurrences of y and no free occurrence of x in F(x) is in the scope of any

quantifier in which y occurs.

A10 3xF(x) D lyF(y) GA10 .VxF(x) — V^(3;)

where F(y) is the result of replacing all free occurrences of x in F(x) by

occurrences of y and -F(ΛΓ) is the result of replacing all free occurrences of

y in ^(3;) by occurrences of x.

All yfx .P D F(ΛΓ) D .P DV^F(A ) GA11 .ΛΛΓ .P -> F(Λ ) — .P — ΛxF(x)

where x does not occur free in P.

*A12 :P D 3Λ;F(Λ:) D 3Λ: .P D F(Λ ) GA12 : P - * V ^ ) - * VΛ: .P -» JP(^)

where ΛΓ does not occur free in P.

*A13 3χF(x) & 3^F(Λ:) Z> GA13 :VxF(x) x VΛΓ^Λ:) —

Ix .F{x) & FOf) VΛ; ,F(X) X F(X)

A14a .3xP D -VΛ - P GA14a .VΛ P ->ΊAJVΊP

A14b -VΛΓ-PD3ΛΓP GA14b .ΊΛtfΊP -> Vx P

3.6 Remark. A comparison of the axiom schemes given above for $g and

Ji^<& with the axiom schemes and definitions of Rose and Rosser [5] and of

Hay [4] reveals a correspondence between symbols indicated in the

following table:

fi$ and Jiq^ -> - 3 V + ' Λ X Ί V Λ

Rose and Rosser C AN A B K L N

Hay D v + Λ . ~ 3 ( )

Our Strong Implicator (-3), for which the cited authors have no special

symbol, corresponds to the Cτ of Dienes [3]. The rules of formation of the

Polish notation which is used by Rose and Rosser require that the capital

letters representing binary connectives occur in the positions assigned to

dots in Sς and Syς.

3.7 Citation. References to [6], [2], [5] and [4] will be cited by use of the

authors' original numbers with the bold prefixes PM, C, R and H, re-

spectively.
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3.8 Theorem. Calculi JI and Jί<g each contain the statement calculus R2
and R3.

Proof: Al, A2, A4, R1 (GA1, GA2, GA4, GR1) correspond to RA1, RA2,
RA4, R Rule C, respectively, while a theorem corresponding to RA3 is
derivable from A2, A3a and A3b by R1 (from GA2, GA3a and GA3b by GR1).
Because of this metatheorem, theorems of R2 and R3 will frequently be
cited in proof of theorems of Jι$u&) and ̂ (^(g).

3.9 Theorem. Calculus f. contains the classical two-valued calculus.

Proof'. The three Lukasiewicz axiom schemes for the two-valued proposi-
tional calculus are (1) R3.32, (2) Al, (3) a theorem scheme derivable from
A6b, A2 and R2.16.

3.10 Theorem. Conversely, calculus Jί is contained in the classical two-
valued calculus.

Proof. The axiom schemes of Jι can be derived from any of the equivalent
sets of axioms of the classical two-valued propositional calculus, e.g. the
axiom schemes Al to A8b correspond, respectively, to the following
theorems of PM: *2.02, *2.06, *1.62, a theorem derivable from *2.06,
*2.68, *1.4, *2.17, *1.01, * 1.01, *2.53, *2.54, *3.1, *3.11, *4.63 and *4.63.

3.11 Theorem. Calculus £<g is contained in the infinite-valued statement
calculus of R2.3.

Proof. All of the axioms of Jk<& correspond to axioms or definitions of R
excepting GA3a,b which follow from RA3 and the definition of A, and GA5a,b
which introduce a new connective. Complete correspondence is obtained if
a new symbol say D is introduced into R which is defined as AN and hence
corresponds to our Strong Implicator.

3.12 Theorem. Calculus Ji% contains the pure first-order functional two-
valued calculus CF l p.

Proof: Calculus C F l p has in addition to the schemes embodying the
propositional calculus only the axiom schemes C*305, which is All, and
C*306, which is readily derived from A9, R3.4, A2, and A4 by RΊ.

3.13 Remark. All of the axioms of fi^ are theorems of CF l p : Axiom
schemes A9 to A13 correspond respectively to C*330, C*378, C*305, C*382
and an instance of the law of conjunctive tautology combined with C*301 and
C34.5. However, no rule equivalent to R3, which might be called the rule of
exhaustive instantiation, appears in Church's formulation. This rule is
only applicable to theorems containing neither individual nor functional
constants, hence we compare Sy to C F l p rather than to CF1.

3.14 Remark. The condition in R3 that all of the free variables of ixP be
among the yι is necessitated by A9, and the condition that just one
additional variables be among the y{ suffices because of R2.
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3.15 Theorem. The generalized functional calculus Jί%<& contains the in-
finite-valued predicate calculus axiomatized by Hay [4].

Proof. The propositional calculus and auxilliary definitions of H are
equivalent to those of R and hence by 3.8 and 3.11 to those of Ji~$%* The
axiom schemes HA5, HA6, HA7 and HA9 correspond, respectively, to GA13,
GA9, GA10 and GA12. Axiom scheme HA8 corresponds to the lemma L4,
below, which is derivable in Jί^% as follows: (The citations within paren-
theses are to proof schemes, the others to axiom or theorem schemes
needed in the proofs)

LI ΛxF(x) -> F(y) (HP-2), GA9, R3.4, GA2, GA4, GR1
L2 .Ax .F(x) -» Q — ΛxF(x) — Q (C*332), LI, R2.1
L3 Λx .F(x) — G(x) -> ΛxF(x) — (C*333), L2, GA11, GR2, GA11, GA2

AxG(x)
L4 Λx .F(x) -> Q -> XxF(x) -* Q R3.5, GR2, L3, GA11, R3.3, GA14a

where x does not occur free in Q. Rules HI and H2 correspond to GR1
and GR2.

3.16 Remark. Proof that the calculus of H is contained in Jχw requires a
derivation of GA11 in H.. Since H is complete and GA11 is valid under the
truth functions assigned to the connectives in H, such a derivation must be
possible.

3.17 Definition. Unlike the other logical connectives, equivalence in
S(Sς ) and in Sj(Syς) is treated as an abbreviation in the metalanguage:

.P = Q for :P D Q & .Q D P and .P «—>Q for :P -* Q x .Q -• P

3.18 Theorem. If P and Q are wff of S or S9 , P
f and Q' are wff of Sς or

^ , Pr is a generalizatum of P and Qτ is a generalizatum of Q, then
.P' <—>Q' is a generalizatum of .P =Q.

Proof: Follows directly from the definitions 2.15, 2.16 and 3.17.
Thus in a sense the symbols—-> can be said to represent the symbol =.

3.19 Theorem. The conservation of equivalence over a transformation by
the replacement of equivalent parts is affirmed by an auxilliary rule of
inference:

R4 (GR4) If M, N, P and Q are wff of S( Sς) or S^(S9Q ) and if Q is the

result of replacing zero or more occurrences of M in P by occurrences of
N and if M = N (M<-*N) is a theorem of JLCM or JUffiw), then P =
Q(P<^>Q) is a theorem and, if P is a theorem, Q is also a theorem.

Proof: By 3.9 the proofs of C*158 and C*159 constitute proof of R4 for jb
and by 3.12 the proofs of C*341 and C*342 constitute proof of R4 for ^ .
Rule GR4 may be proved by the methods of C34 using LI of 3.15, R3.38,
GA1, GA2, GR1, GR2 and the following lemmas of $$&:

L5 Λx .F(x)<-^G{x) — ΛxF(x)<->AxG(x)
(C*334), R3.34, L3, GA2, R3.28
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L6 :P*->Q<-> .IP^-^IQ (PM84.11), R3.5, R3.36, R3.28, R3.10, GA4
L7 .Ax .F{x) <-> G(x) -> . VxF(x) <-> VxG(x)

L6, GR2, R3.14, L3, L5, L6, GA14ab
L8 .P -> :P -* .Q<->R -* :P -> .S<-» T -* .P -> :Q v S <—» .β v T

(PMM.39), R2.19, R3.35, R3.28, R3.30, R3.10; R3.35, R2.8, R3.10
L9 .P -> :P — .Q<-> β — :P — .S < ^ T -» .P — :Q + S <-> .β + T

(L8), R3.25 in place of R2.19
L10 .P -» :P -> .Q <—> R -* :P -> .S <—> Γ - ^ , P ^ : Q Λ S <-» .β Λ T

(L9), R3.28
L l l .P -> :P -> .Q^-^R -> :P -> .S<-^Γ — .P — :Q xS+->.R x Γ

(L9), R3.28
L12 :P<^Q^> . Ί P < - ^ Ί Q (PMM.11), R3.5, R3.36, R3.28, R3.10
L13 .P -^ :P -> .Q<—>β -> :P -> ,S<-^T -* .P -> :Q -3 S<-^.R -3 Γ

(PMM.39),
R2.19, R3.35, R3.28, R3.30, R3.10; GA5ab, L10, R3.35, R2.8, R2.7

114 .P -» :P -> .Q^-^R -> :P -> .S<-^Γ -> .P -> :Q ^ S ^ - > . β -» Γ
(L13), R3.25 for R2.19; GA6ab and R3.4 for GA5ab

L15 :P -* .Q<-^R -> :P — .ΊQ<-^Ίβ L10, R2.8, R2.7

No generalizatum of C*340 is obtained since no suitable generalizatum of
the tautology employed in Case 1 of Church's proof is available. However a
generalized version of C*341 may be derived using the proof scheme of
C*340 but with the weaker theorems L8, L9, L10, Lll, L13 and L14,
expanding Case 1 to the six subcases required by the primitive status of the
six binary connectives of ^ and Jiψ, and expanding case 3 to the two
subcases required by the primitive status of the quantification operators of
£3[(β using GR1 and GR2 in place of C*300 and C*301. The generalization
C*342 follows using R3.34 and GR1. GR4 incorporates both generalizations.

The following definitions serve to simplify the diction in some
metatheorems and proofs:

3.20 Definition. A wff P is a transformation of a wff Q iff P=Q(P^->Q)
is a theorem and the same propositional and predicate variables occur, and
the same individual variables occur free, in P as in Q.

3.21 Definition. A wff P is transformed into a wff Q iff there exists a
proof that Q is a transformation of P.

3.22 Theorem. If P is a transformation of Q, then P is a theorem iff Q is
a theorem.

Proof: Follows from 3.17, 3.20, R3.3, R3.4 and R1 (GR1) for all four
calculi.

4. PROLOGEMINA.

In this section such object language theorem schemes and meta-
language lemmas are presented as are required to prove the generaliz-
ability of the propositional and pure first order functional calculi. There is
also a metatheorem on degeneration.
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4.1 Lemma. The following are theorem schemes for the calculi as

indicated:

Theorem Schemes for Jι and J&% Theorem Schemes for Ji% and $%<&

GTla :P-> Q < - > . Ί P + Q

T1 'P->Q-~PVQ GA6ab, R3.4
T l . P D < ? = . ~ P V Q Q T l b : P H Q < ^ B Ί P V Q

GA5ab, R3.4
GT2a .1. P + Q -> . Ί P x ΊQ

T2 ~ P V Q Ξ ~ P & ~ Q GA6ab, GA8ab, R3.4
* V V ' V GT2b . Ί . P v Q - . Ί P Λ Ί Q

GA7a, R3.4
GT3a . Ί . P x Q -* . Ί P + ΊQ

T3 ~P&Q^~PV~Q GA2a,R3.4
l ΰ * ^ V GT3b . Ί . P A Q - > . Ί P v Ί Q

GA2b, R3.4
T4 ~~p = p GT4 .ΊlP^-^P R3.4

T5 i P V Q ^ . ρ v P GT5 : P + Q ^ - ^ . Q + P R 3 . l l

T6 .:PV Q & .PV R = .PV .Q& R GTβ . \ P + Q A . P + β < - >
.P+.QΛR R3.44

T7 .'.PVQVR = .PV.QVR GT7 . \ P + Q + # < - ^
. P + . Q + β R3.29

T8 :P8ιQ = .Q&P GT8 : P Λ Q < - ^ . Q Λ P R3.12
T9 , ' .P& Q& β = .P& .Q& Λ GT9 / . P A Q A ft<->

.P A .Q A R R3.20
T10 .PV~P GT10 . P + Ί P R2.10, GA6b
T i l P D O D P & O G T l l a . P - > . « - > . P A Q R3.22
T i l . P D . Q D . P & Q G T l l b . i > - . < ? - • . P x Q R3.36

T12 • P & O D P G T 1 2 a : P A « " P R 3 1 4

T12 . P M 3 P G T 1 2 b .p χ Q _ p R 3 3 4

T13 . P D . P V Q GT13 .P - * .P v Q R2.4

T14 : P & Q 3 . P & Q GT14 : P x Q -> .P A Q
R3.52, R3.5, GA8a, GA7b

Theorem Schemes for fί^ Theorem Schemes for Ji^

T15 .~lxF(x) = Vx~F(x) GT15 .ΊVxF(x)*-^AxlF(x)
GA14ab, R3.4

T16 .~ VxF(x) = 3ΛΓ ~F{X) GT16 .1 AxF(x) <-> VxjF(x)
GA14ab, R3.4, GR4

T17 .VxF(x)-* F(y) GT17 .AxF(x)-* F(y) LI
GT18a :P + ΛxF(x)*-> Ax .P

(C*335), LI, R3.23,
GR2, L3, R3.36, GTla, GT4

T18 :P V VxF(x) = Vx .P V F(x)
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GTlδb :PvAxF(x)*->
Ax .P v F{x)

LI, R2.18, GR2, GA11,
L3, GRlδa, GTla,

GT3ab, R3.36
GT19a :P + VxF(x)<^

Vx .P + F(x)
GA9, R3.23, GR2, L4,

T19 :P V lxF(x) = Vx .P V F{x) GA12, GTla, R3.36
GT19b :P v VxF(x)<^>

Vx .P v F(x)
GT20a, GT2b, GT15, L6

GT20a : P Λ AXF(X)

Ax .PA F(X)

LI, R3.14.13, GR2,
T20 :P& V*F(#) =Vx .Ph F(x) GA11, R3.19; LI, R3.17,

GR2, GA11; R3.36
GT20b iP x A*F(x)<-^>

Ax .P x FU)
GT19a, GT3a, GT15, L6

GT21a : P Λ VXF(X)<-^

Vx .P Λ F(x)
T21 :P& 3 ^ Λ Γ ) = 3# .P& F(X) GT18b, GT15, GT3b, L6

GT21b :Pχ VxF(x)^>
Vx .P x F{x)

GT18a, GT15, GT3a, L6

Note: By 4.3, below, any wff of S or S$ is a theorem of Jι or ^ if its
generalizatum is a theorem of Ji$ or ^ ^ hence proof citations are
indicated only for the theorems of ^ and Jiy®.

4.2 Lemma. The junction of Pl9 . . . , P f . i , P, , P +i, . . . , Pn is a trans-
formation of the junction of Pi, Pu . . . , P/_i, -Pf+i, . . . Pn and also of the
junction of the junction of Pu . . . , P f ^zί/z ί^e junction of Pi+1, . . . , Pn.

Proof. Follows from the definitions 2.4 and 2.5 together with T5(GT5) and
T7(GT7), T8(GT8) and T9(GT9), R2.2 and R2.21, and R3.10 and R3.30.

4.3 Lemma. Every theorem ofjί^or of Tk%<$>is a generalizatum of one and
only one theorem of JSίorfί^.

Proof: (1) Every axiom of $g or £̂ <g is a generalizatum of some axiom of
fί or JG|f as is evident from the structure of the axiom schemes and the
definitions 2.15 and 2.16. (2) From (1), isomorphism of GR1 with R1 and
GR2 with R2, and the many-one character of the relations represents and
generalizatum of it follows that every theorem of ftg or Jig® is a generaliza-
tum of some theorem of £1 or ftg. (3) A given wff of Sς or Sjς can be a
generalizatum of only one wff of S or Sy by virtue of 2.15 and 2.16.

4.4 Definition. A wff of S or Sy(Sς or S3ς) is in positive form iff
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Implicator does not (Weak Implicator and Strong Implicator do not) occur in
it and Negator, if it occurs in it, occurs only immediately preceding
occurrences of elementary wff.

4.5 Definition. A wff of Sς or S3ς is in weak positive form iff it is in
positive form and Strong Disjunctor and Strong Conjunctor do not occur
in it.

4.6 Lemma. Each wff of S(Sς)or Sj{Syς) can be transformed into a
unique wff in positive form in which the same elementary wffs occur with
the same frequency, order and grouping.

Proof. By zero or more applications of R4 with Tl (GR4 with GTla or
GTlb) a sequence of wffs is obtained, beginning with the given wff, P, and
ending with a wff, Q, such that each of the wffs is a transformation of the
preceeding one with one less (weak or strong) implicator and such that Q is
free of (strong or weak) implicators. By means of zero or more applica-
tions of R4 with T2, T3, T4, T15 or T16 (GR4 with GT2a, GT2b, GT3a, GT4,
GT15 or GT16) a sequence of one or more wffs is obtained, beginning with
Q and ending with a wff, R, such that each of the wffs except Q is a transfor-
mation of its predecessor in which a pair negators has been eliminated, a
negator preceeding a quantifier has been replaced by a negator following a
quantifier, or a negator preceeding a dot has been replaced by two negators
following the dot, and such that in R no negator immediately preceeds
another negator, a quantifier or a dot. R is thus a transformation of P in
positive form and no permutation, duplication, elimination or regrouping of
elementary wffs has occurred in the process.

4.7 Lemma. For every wff, P, of S or S<j in positive form there is one
and only one wff, P τ , of Sς or S$ς such that Pf is a generalizatum of P
and is in weak positive form.

Proof: A direct consequence of definitions 2.15, 2.16, 4.4 and 4.5.

4.8 Definition. The positive form of a wff, P, of S or S9(Sς or S9Q) is
that wff which is a transformation of P, which is in positive form and in
which the elementary wffs occur with the same frequency, order and
grouping as in P.

4.9 Lemma. A wff of Sς or S$ς which is in weak positive form and
which is a generalizatum of the positive form of some wff P of S or S$
can be transformed into a unique generalizatum of P of which it is the
positive form.

Proof Let^o, Al9 , . . , 4 be a sequence of wffs of S or Sy such that A n

is the positive form of Ao and for each i9 1 < i < n9 Ai is a transformation
of A2 «! in that the first wff occurring in which an implicator occurs is
transformed by applying R4 with Tl or, if no implicator occurs in Aimml in
that the first wff in A{-γ beginning with a negator followed by a dot or a
quantifier is transformed by applying R4 with T2, T3, T4, T15 or T16. Let
Bo, Bh . . . , Bn be a sequence of wffs of Sς or Syς such that Bo is a
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generalization of An in weak positive form and for each i, 1 ̂  ί i n, Bi is a
transformation of Bί_1 by GT16, GT15, GT4, GT3a, GT3b, GT2a, GT2b,
GTlb, or GTla so chosen that for each i, 0 ύ i % n, Bi is a generalization of
Λi-i This is always possible since each GT theorem is a generalizatum of
one of the T theorems. Although there are two generalizata of some T
theorems among the GT theorems only one is applicable to a given A'_i>
hence the B sequence is completely determined by Bo and the A sequence.
The A sequence is completely determined by Ao and the instructions given
for its construction. Bo is determined by An in accordance with 4.7. Also
by 4.7, if a different A sequence had been specified the same generalizatum,
Bn, of Ao would have been obtained.

4.10 Definition. A wff Q of S or Sy is the weakest generalizatum of a wff
P of Sς or S9ς iff the positive form of Q is in weak positive form and Q
is a generalizatum of P.

4.11 Definition. A wff of S or S$ is in conjunctive normal form iff it is
in positive form and if no wff occurring in it is a disjunction of wff any of
which is a conjunction.

4.12 Definition. A wff of Sς or S9ς is in weak conjunctive normal form
iff it is in weak positive form and no wff occurring in it is a weak
conjunction.

4.13 Definition. A wff of Sς or S$ς is in strong positive form iff it is in
positive form and neither Weak Disjunctor nor Weak Conjunctor occur in it.

4.14 Lemma. A wff of Sς or of Sjς which is in strong positive form and
a generalizatum of the positive form of some wff P of S or S9 can be
transformed into a unique generalizatum of P of which it is the positive
form.

Proof: The proof is exactly the same as that of 4.9 excepting only that Bo

is to be in strong positive form.

4.15 Theorem. The calculi Ji® and Jί^% degenerate respectively into the
calculi % andfi%.

Proof: By virtue of 4.3 and 2.17 the relations defined in 2.15 and 2,16
satisfy the requirements of 1.18.

5. GENERALIZABILITY OF THE PROPOSITIONAL CALCULUS.

5.1 Postulate. If P is a disjunction {weak disjunction) of wffs of Sς(Sς)
each of which is either an elementary wff or the negation of an elementary
wff, then P is a theorem ofJι{Ί£i<$) only if there occurs in P the negation of at
least one elementary wff which also occurs in P as one of the terms of the
disjunction (weak disjunction).

Justification: Although this follows from the truth table for disjunction
(truth function for weak disjunction) and the mutual independence of the
truth values assigned to the elementary wffs it cannot be derived from the
formal axiom schemes and rules and is hence introduced as a postulate.
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5.2 Postulate. If P is a strong disjunction of wffs of Sς each of which is
either an elementary wff or the negation of an elementary wff, then P is not
a theorem offi$.

Justification: The postulate also follows from the truth function, in this
case for strong disjunction, and the independence of the elementary wffs.

5.3 Lemma. If P is a theorem of fί and is in positive form and Q is a
generalizatum of P and is in weak positive form, then Q is a theorem of$<&.

Proof: (1) Let Ao, Al9 . . . , An be a sequence of one or more wffs of £ such
that Ao is P and such that each member Ai which is not in conjunctive
normal form has a successor Af + 1 which is the result of replacing the first
wff occurring in Ai and having the form of a disjunction of some wff with a
conjunction by its transformation, by way of T6, into a conjunction of
disjunctions or, in case no wff occurs in Ai in the form of a disjunction of
some wff with a conjunction, is the result of replacing the first wff
occurring in Ai and having the form of a disjunction of a conjunction with
some wff by its transformation, by way of T5, into a disjunction of the wff
with the conjunction. The sequence terminates in a wff An which is in
conjunctive normal form and, being a transformation of P, is by R4 and the
hypothesis a theorem of fί. (2) The theorem An is, or by one or more
applications of T9 may be transformed into, a wff of the form Ro or of the
form Γβ0 & β 2 & . . . & Rr where, in either case, each β t is of the form
*Sio V 5/i V . . . V Sis such that each S/; is either an elementary wff of £ or
the negation of an elementary wff. The wff An is, by T12 and 4.2, a theorem
of fί only if each R{ is a theorem of JL. However, by 5.1, each R{ is
a theorem only if there is an S, 7 and an S^ such that Sf & is the negation
of Sij. (3) Let Bo be the generalizatum of An which is in weak posi-
tive form, then, by 4.5 and 4.12, Bo is in weak conjunctive form,
that is of the form ΓβJ Λ R[ Λ . . . Λ Rl where each R\ is of the form
s Slo + Sji + . . . + Sis in which, for each i and j, S}; is a generalizatum
of S^ and hence is either an elementary wff of Sς or the negation of
an elementary wff. Wff Bo is a theorem of Ji<& by GT12 if each R\ is a
theorem of fi$. However, by GT10 and 4.5, each R\ is a theorem if there is
an Slj and an Sa such that S}k is the negation of Sj; . (4) Consider the
sequence Bo, Bu . . . , Bn of one or more wff of £<& such that for each i,
1 < e< n, B{ is that transformation of i?f _i by either GT5 or GT6 which
makes it a generalizatum of Λ»-i This is always possible since Bo is a
generalizatum of An and GT5 and GT6 are generalizata of T5 and T6. Thus
Bn is a generalizatum of Ao, i.e. P, and, is a theorem of Jl® since by (4) it is
a transformation of Bo which by (2) and (3) is a theorem of $g if An is a
theorem of Jί which by (1) is the case. Also, since the same connectives
occur after transformation by either GT5 or GT6 and the negators remain
fixed relative to the elementary wff, the weak positive form of Bo gives rise
to a weak positive form for Bn. Hence Bn is the required Q.

5.4 Lemma. The weakest generalizatum of every theorem of Jx is a

theorem ofji$.
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Proof. (1) Let P be a theorem of % then, by 4.6, Pl9 the positive form of P,
is a theorem of ;£. (2) Since P± is in positive form and a theorem of % then,
by 5.3, Ql9 that generalizatum of P± which is in weak positive form, is a
theorem of ftg. (3) By 4.9 and 4.19, Q, the weakest generalizatum of P is a
transformation of Qx and hence, by (2), a theorem of J^.

5.5 Theorem. TTte calculus fί generalizes into the calculus Ji®.

Proof: By 2.17 the language Sς is a generalization of the language S. The
relations represents defined in 2.15 and generalizatum of defined in 2.16
constitute a mapping such that by 5.4 for every theorem P of £ there is a
theorem Q of JGβ such that each symbol which occurs in Q represents, i.e.
is an image of, a symbol occurring in a corresponding position in P. Thus
the definition of generalizes in 1.18 is satisfied.

5.6 Remark. In general, the weakest generalizatum of any theorem P of JL
will contain either or both representatives of each binary connective which
occurs in P even though it is constructed by means of an intermediate weak
positive form in which only two binary connectives occur.

5.7 Lemma. Disjunctor occurs in the positive form of every theorem of fi.

Proof: The axioms and RΊ are such that a binary connective occurs in
every theorem. By T12 and 4.2 a conjunction is a theorem only if all of the
conjoined wff are theorems. Hence there is at least one dis junctor in every
theorem which is in positive form and therefore, by 4.6, 4.8 and 3.22 in the
positive form of every theorem of Ji.

5.8 Lemma. Weak Dis junctor occurs in the positive form of every theorem

ofΉ.

Proof: The axioms of ^ and GR1 are such that a binary connective occurs
in every theorem of ^(jδ. By GT12a and 4.2 a weak conjunction and by GR12b
and 4.2 a strong conjunction is a theorem only if all of the conjoined wff are
theorems. By 5.2 a wff of Sς in which Strong Dis junctor is the sole binary
connective is not a theorem of fi<& and hence, by GT12a, GT12b, R2.17 and
R3.23 neither is a wff containing as connectives only Strong Dis junctor
together with either or both of the representatives of Conjunctor.

5.9 Theorem. Among the generalizata of every theorem of fί there is at
least one wff of Sς which is not a theorem offi®.

Proof: Let P be a theorem of Ji, Px the positive form of P and Q1 a
generalizatum of Px in strong positive form. Since, by 4.13, Weak Disjunc-
tor does not occur in Qx it is, by 5.8, not a theorem of Ji<g. However, by
4.14, Qi is the positive form of a wff Q of Sς which is a generalizatum of P
and, being a transformation of Qly is also not a theorem of fi$.

5.10 Lemma. If P and Q are generalizata of the same wff of S and are in
positive form and if Q is the result of replacing zero or more strong con-
junctors in P by weak conjunctor s, then the weak implication of Q by P is a
theorem of Jι%.



GENERALIZABILITY 123

Proof: Since both P and Q are in positive form, repeated application of
GT14 together with R2.17.18, R3.16.17.23.24.26.27 can be used to construct
proofs for all possible cases.

5.11 Theorem. If a theorem of Jί is such that its positive form is in
conjunctive normal form, then every generalizatum of said theorem in
which Strong Disjunctor does not occur is a theorem ofji®.

Proof Let Px be a theorem of Jι in conjunctive normal form and the
positive form of a theorem P, and let Q be a generalizatum of P such that
in its positive form Qi the only binary connectives occurring are Strong
Conjunctor and Weak Disjunctor. By definitions 2.15, 2.16 and 4.4 Qx is a
generalizatum of Pv Since Px and Qx are in conjunctive normal form the
argument used in (2) and (3) of the proof of 5.3 can be used with strong
conjunctors in place of weak con junctors and GT12b in place of GT12a to
prove that Qλ must be a theorem of £<g if Pλ is a theorem of % and hence by
4.6 that Q is a theorem of fί^ since P is a theorem of Jk. Consider now
another generalizatum of P, the wff R, such that in its positive form Rx

Weak Conjunctor occurs. By 5.10 if Qλ is a theorem so is β x and hence by
4.4 also R. Thus any generalizatum of P such that Strong Disjunctor does
not occur in its positive form is a theorem of Jι%.

5.12 Remark. Other conditions can be enunciated which are either suf-
ficient or necessary in order that a generalizatum of a theorem of Jί be a
theorem of fί^; however there is no simple set of conditions which is both
sufficient and necessary.

The following lemma establishes the lemmas and theorems of this
section as lemmas for Section 7 on the pure predicate calculus of the first
order.

5.13 Lemma. Every general statement which holds for wff of S(Sς)
and/or theorems of £(?&$) also holds for quantifier-free wff of S<j(Sgς)
and /or quantifier-free theorems of fi^(Ji^.

Proof: This is a direct result of the common formation rules of S( Sς) and
Sy(Syς) and the common axioms and rules of derivation for £(£«) and
ĴΪΦJΓOB) applicable to quantifier-free formulae.

6. NONGENERALIZABILITY OF CALCULI WITH EQUIVALENCE.

6.1 Definition. Let Sc be a language differing from £ only in that its
logical symbols include Equivalor, prototype =, and its formation rules
include provision for the formation of wffs called equivalences of two wffs in
which Equivalor occurs as a binary connective.

6.2 Definition. Let Sςc be a language differing from Sc only in that its
logical symbols include representatives of Equivalor and its formation
rules include provisions for the formation of wff which are generalizata of
equivalences.

6.3 Definition. Let ^ be a calculus differing from Jί only in that its
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language is S^ and its axioms include a definition of Equivalor equivalent
to 3.14. Similarly let ̂ ^ differ from ^ only in that its language is Sςc
and its axioms include generalizata of the axioms embodying Equivalor
effectively defining the added symbols.

6.4 Definition. A wff of St(£ςt) is in positive form iff the only binary
connectives occurring in it are Disjunctor and Conjunctor and Negator
occurs only immediately before elementary wff.

6.5 Definition. A wff of Sςc i-s m weak positive form iff the only binary
connectives occurring in it are Weak Disjunctor and Weak Conjunctor and
Negator occurs only immediately before elementary wff.

6.6 Lemma. Lemma 4.6 is not valid for Sc ( £ςε ) in place of S{ Sς).

Proof: When an equivalence such as P = Q occurs in a wff which is to be
transformed to its positive form it must be replaced by a conjunction of
disjunctions, such as \~P V Q & -Q V P, or a disjunction of conjunctions,
such as :P & Q V ,~P & ~Q. The requirement of 4.6 that the elementary
wffs occur with the same frequency thus cannot be maintained.

6.7 Lemma. Lemma 4.9 is not valid with Sς£ and S^ replacing Sς and

S.

Proof: Consider a wff of Sc in which an equivalence occurs between wffs at
least one of which is compound. Say φ = .q V r in which p, q and r are
supposed to be elementary wffs. Transformation to positive form can be
accomplished in three steps: (1) removal of Equivalor to yield :p zz q V r &
:q V r D p\ (2) removal of Implicator to yield \~p V q V r & .~ .q V r V p;
(3) shifting of Negator when it precedes a dot to yield :p V q V r & :~q &
~rVp.

The weak generalizatum of this in weak positive form is :Ίp + q + γ A
: q A ir + p. Transformation by the generalized reversal of step (3) yields
:lp + q +r A .Ί.q v r + p; reversal of step (2) yields :p -» q + r A :q v r —> p
which however is not transformable to a generalizatum of any wff that can
be formed by joining p and q\l r with a binary connective. Since the dual of
each weak disjunction or conjunction is a strong conjunction or disjunction
this result is perfectly general.

6.8 Theorem. The calculus ^ does not generalize into the calculus ^ 5 .

Proof: The failure of 4.9 and hence the inadmissibility of definition 4.10
for $Q and Sςc invalidates the use of the proof given in 5.5 for the
extension of theorem 5.5 to fί μ and JCβjg but does not directly disprove the
theorem or prove 6.8. The easiest proof of 6.8 is by counterexample.
Thus, PM*5.32 is a theorem of £$ but none of its generalizata are theorems
of ftgjj. This is most easily demonstrated by the use of truth functions for
the seven possible representatives of Equivalor which can be characterized
in terms of the positive forms of equivalences given in 6.6, together with
the truth functions for the other connectives as set forth in Rl. The truth
functions for the seven generalizata of equivalence are as follows:
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mαx(min(l- p, 1- q), m\n(p,q)); mαx(mίn(l - p, 1-q), p+q-1)); min(l - p+ q,
1-q+p)) mαx(l- p- q, min( p,q)); mαx(l- p- q, p+q-1); min(l- q+p, mαx(l-
p,q)); min(l- p+q, mαx(l -q, />)). There are 392 different generalizata in
ggε of the theorem.

PM*5.32 :P D .Q = R = :P& Q= .P& R

none of which are theorems of Jί^ as each can be shown to be contravalid

by assigning to P, Q and R one or more of the following sets of truth values:

(ijOji)? (i?i?0)> (ΞΛΛ), (ΪΛΛ)I (ίAA)

6.9 Remark. It is often convenient to consider the theorems asserted in
PM as theorems of ^ and to seek among their generalizata in Sςc
theorems of JG^. However, by 6.8, such a search may be fruitless. In such
cases, if the principal connective is Equivalor, the theorem is often best
decomposed into two implications, or, if a complex subsidiary equivalence
occurs in it, this may be transformed into a conjunction of implications or
a disjunction of conjunctions. As an example it may be noted that there are
several generalizata of the implications arising from the decomposition of
PK/Γ5.32 which are theorems of Jk<&$ and retain the subsidiary equivalences,

(1) :P -3 ,Q^>R->:P Λ Q^-> .P AR
(2) :.P Λ Q^-> .P Λ R -> .P-+ .Q<-^R

The following theorem of Jk^ψ is a generalizatum of a theorem formed from
PM*5.32 by transforming the complex subsidiary equivalence to a conjunc-
tion of implications but retaining the principal equivalence:

(3) :P->.^β^ΛPx^.PΛβ^:Pχβ-^.PΛQ

Transforming the simple subsidiary equivalence would produce no new
independent generalizata.

7. GENERALIZABILITY OF THE PURE PREDICATE CALCULIS.

7.1 Definition. A wff of Sy(S^ς) is in prenex form iff no dot or negator
appears in it preceding any occurrence of a quantifier.

7.2 Definition. The matrix of a wff in prenex form is the longest
quantifier-free formula occurring therein. The prefix of a wff in prenex
form is the longest formula occurring before any dot or negator.

7.3 Theorem. The matrix of a wff in prenex form is wf. A quantifier-free
wff is in prenex form, has no prefix and is identical with its matrix.

Proof Follows directly from the definitions.

7.4 Lemma. Every wff of S$ in positive {of £$ς in postive or weak
positive) form can be transformed into a wff in prenex form which is also
in positve (positive or weak positive) form.

Proof. By the use of T18, T19, T20, T21 and A10 (GTlδab, GT19ab, GT20,
GT21ab and GA10) a sequence of wff may be constructed which begins with
the given wff and ends in a wff in prenex form and is such that each
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member of the sequence is a transformation of its predecessor resulting
from the replacement of the first quantifier occurring after a dot by one
occurring before the dot. The connectives are not changed or displaced in
such transformations and hence the property of being in positive (positive
or weak positive) form is conserved.

7.5 Definition. A wff is in prenex positive (positive or weak positive) form
iff it is in positive (positive or weak positive) form and also in prenex
form.

7.6 Lemma. If a theorem^ is in prenex positive form its generalizatum
in weak positive form is a theorem offί^.

Proof: (1) Consider a theorem P of ^ which is in prenex positive form
with a prefix consisting of n quantifier occurrences. In n > 0 then P is
either in the form VΛ:Q or ΊxQ. (2) If P is in the form VxQ then there is, by
T17, a wff Q which is a theorem; if P is in the form ixQ then there is, by
R3, a set of wf? Qo> Ql9 . . . , Qm, at least one of which is a theorem.
(3) Hence by (1) and (2) if n > 0 there is a set aλ of one or more wffs in
positive prenex form at least one of which is a theorem and each of which
has the same prefix consisting of n - 1 quantifier occurrences. (4) if n > 1
there is, corresponding to each member Qi of al9 a set Qil9 Qi2, . . . , QiP of
wffs in prenex positive form at least one of which is a theorem in the case
that Qi is a theorem. (5) Since by (3) some member Qk of ax is a theorem
then by (4) some member of a2, the union of the Q^ , is a theorem. Also
each member of a2 has the same prefix of n - 2 quantifier occurrences.
(6) In general, each a^ for 0 < k < n determines a set of sets of wffs in
prenex positive form the union ak+1 of which is such that at least one of its
members is a theorem and each has the same prefix consisting of n + k - 1
quantifier occurrences. (7) The sequence terminates in a set an of
quantifier-free wffs each in positive form and at least one a theorem.
(8) Let βn be the set of weakest generalizata of an. The members of βn will
be wff of S9ς in quantifier-free weak positive form. (9) Since, by (7), at
least one member of an is a theorem of Ji% it follows by 5.3 and 5.13 that at
least one member of βn is a theorem of fi%<&. (10) The derivation of an from
«„-! involved the use of T17 or R3, hence, by the use of GR2 or GA9, resp.,
a set βn-x of wffs of Syς can be derived from βn such that βn-λ constitutes
the generalizata of an~1 in prenex weak positive form and such that each
member of βnmml which is the generalizatum of a theorem of Jij is a theorem
of Ji3[(g. The same single quantifier will occur as the prefix of each member
of βw-!. (11) In general, to each ak for 0 < k < n there corresponds a βk

which is derived from βk+1 by GR2 or GA9, is made up of the weakest
generalizata of the ak each with a prefix consisting of the same n - k
quantifiers and is such that every member of ft which is the generalizatum
of a theorem of Ji% will be a theorem of Jim®. (12) From βλ which, being
derived stepwise from βn includes among its members at least one theorem
of JCjfβ, a wff is obtained by GR2 or GA9 which has a prefix consisting of n
quantifiers is a theorem of fί^ and is the weakest generalizatum of P .
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7.7 Lemma. The weakest generalizatum of every theorem of fiq is a
theorem ofjι^<&.

Proof. Let P be a theorem of fί^. By 4.6, 5.13 and 3.22 the positive form
Px of P is a theorem of ^ by 7.4 and 3.22 the prenex form P2 of Px is a
theorem of JĈ ; by 7.6 the weakest generalizatum Q2 of P2 is a theorem of
JL^; hence, by 4.6 and GR4, the generalizatum Q of P of which Q2 is the
positive form is a theorem of ̂ ^ and by 4.10 is the weakest generalizatum
of P.

7.8 Theorem. The calculus fi% generalizes into the calculus fί^.

Proof: By 2.17 the language SJQ is a generalization of the language S$.
The relation, generalizatum of, of 2.16 constitutes a mapping such that by
7.7 for every theorem P of JĈ  there is a theorem Q of ^(g such that each
symbol which occurs in Q represents and hence is an image of a symbol
occurring in a corresponding position in P, thus satisfying the definition
1.18 of generalizes.

7.9 Lemma. Weak Disjunctor occurs in the positive form of every theorem
of f~<fβ.

Proof. (1) Let Qx be the positive form of a theorem Q of fί^ and let Q2 be
the prenex form of QΣ. (2) By (1) and 7.4 Q2 is a theorem of |G3f« and the
same connectives occur in it as occur in Qlt (3) From Q2, by GR3 and
GT17 in a series of steps analagous to steps (1)—(7) in the proof of 7.6, a
set of quantifier-free wffs is derivable in each of which the same connec-
tives occur as occur in Q2 and hence by (2) as in Qx and at least one of
which, say Qs is a theorem of fί^. (4) Since Q3 is a theorem then by 5.8
and 5.13 Weak Disjunctor occurs in it, and hence by (3) in Q2 and hence by
(2) in Qv

7.10 Theorem. Among the generalizata of every theorem of ^ there is at
least one wff of Sjς which is not a theorem offiq®.

Proof: Let P be a theorem of fί%, Px the positive form of P and QΣ a
generalizatum of Px in strong positive form. Since, by 4.13, Weak Dis-
junctor does not occur in Ql9 Qx is, by 7.9, not a theorem of £̂ <g. However,
by 4.14, Qi is the positive form of a wff Q of SJQ which is a generalizatum
of P and, being a transformation of Qλ is also not a theorem of £̂ <g.
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