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ARITHMETIC OPERATIONS ON ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* We characterize addition and multiplication of ordinal
numbers. We assume familiarity with the basic properties of ordinal
arithmetic (Sierpinski [3], Chapter 14). Although our discussion is in-
formal, it could be formalized within Godel-Bernays set theory, e.g., within
the axiom system consisting of groups A, B, C, and D of Godel [1].

Greek letters, sometimes with subscripts, will denote ordinals; #*On’’
will denote the class of all ordinals. As usual, ‘“+’’ and ‘‘-’ stand for
ordinal addition and multiplication, respectively. Braces will designate
proper classes as well as sets.

2 Addition Let + be any binary operation on On that is such that for all
ordinals a, B3, and vy,

1) a+0=aq;
2) if B<y,thena+B<a+y;
3) if B <, then there is a unique 6 such that 8 +5 = 4.

In Proposition 2.1 and its corollary, we assume that + is a binary
operation on On that satisfies 1), 2), and 3).

Proposition 2.1 Let a, B, and y be ovdinals. If B< y,thena+B<a+y.

Proof: a=a+0<a+vy, by 1) and 2). Thus, if a+ B8 =a+ vy, then by 3),
B=1v. By 2),a+B<a+y;therefore, we must havea +B< a + y.

Corollary For all ordinals a, B,and y, < yifandonly if a + B< a + y.
Define +;, +;, and +; on On as follows:
For a, B€On,

a+ B =
a+0=a,
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and for B > 0,
B, if a # B,
a+, B =
0, if @ = B;
a+; B=a.

Then +, satisfies 2) and 3), but not 1); +, satisfies 1) and 3), but not 2); +;
satisfies 1) and 2), but not 3), as does the Hessenberg natural sum
(Hessenberg [2]). It is well-known that + satisfies 1), 2), and 3); we now
show that + is the only binary operation on On which does so.

Theorem 2.1 Let + be any binary opevation on On that satisfies 1), 2), and
3). Then for all ordinals a and 3,

a+B=a+8.
Thus + = +.
Proof: We utilize the Principle of Transfinite Induction. Let
A={B: foralla, a+p=a+f}L

Then, by 1), 0eA. Suppose BeA; let @ be an arbitrary ordinal, Surely
a2 < @ + B%; let 5 be the unique ordinal that satisfies @ + 6 = @ + 8%, Then

a+B=a+B<a+pBtr=a+sb.
By the Corollary of Proposition 2. 1, 3 < 8. Thus B* <5 and
a+B=a+B<a+Br<a+d=a+B"=(a+p".

It follows that @ + 87 = a + B*. Suppose y C A, where y is a limit ordinal.
Fix a. Then

(1) @ + v is the smallest ordinal, §, such that @ + 8 < & for every B < 4.

Since a + < a +y for every B < y, it follows that @ + y<a +y. Let d be
the unique ordinal that satisfies @ +5 = @ +y. Then y <8, by (1). There-
fore,

a+y<a+db=0a+y.
Hence a +y=a +y.

Corollary 2.1 If + is a binary operation on On that satisfies 1), 2), and 3),
then + is associative.

Corollary 2.2 No comwmutative binary operation on On satisfies 1), 2),
and 3),

Let # be any binary operation on On that satisfies the following: for all
ordinals @, 3, and v,

4) if B<y, thenatp<aiy;
5) B <y if and only if there is some 5 such that 8 § 6 = .
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In Propositions 2.2 and 2.3, we assume that § is a binary operation on
On that satisfies 4) and 5).

Proposition 2.2 Fov all ovdinals B and v, if B < v, then there is a unique b
such that B § 6 = y.

Proposition 2.3 For every ovdinal a, a $ 0 = a.

Proof: a<a#0,by5). Suppose a < a # 0. Let 5 be the unique ordinal that
satisfies a 4 6 = 2. If 6 # 0, then 0 < § and, by 4),

a$0<atds=a<afo.
This contradiction establishes that a § 0 = a.
Observe that +, satisfies 4) but not 5). Define +, on On by
@ +4 B = max{a, B}, for all @, BeOn.
Then +, satisfies 5) but not 4). Clearly, + satisfies both 4) and 5).

Theorem 2.2 Let § be any binary opervation on On that satisfies 4) and 5).
Then for all ovdinals a and 8,

adpB=a+8.
Thus § = +.
Proof: § satisfies 1), 2), and 3); the result follows from Theorem 2.1,

Corollary 2.3 Let §.be any binary operation on On that satisfies the
following:

2) ifB<vy, thenal B<aly;

5') B <y implies theve is a unique b such thatB h 6 =y, and B > y implies
there is no & such that B § 6 = y.

Then for all ordinals @ and B, a §f B = a + B.

Proof: 1t suffices to show that f satisfies 4) and 5). Clearly 5') implies
that  satisfies 5). Let a be an arbitrary ordinal and let 8 < y. Then 5')
implies that @ § B # a § y. This together with 2) indicates that a §f B<a f 4.

Observe that +, satisfies 2) but not 5!). Moreover, define +; on On as
follows:

045 8= [, forallp;

g*, if < w,
1+ 8=
B, if w < B;
for a > 2, let
0,if a> B,
a+s B =
B, if a<B.

Then +; also satisfies 2) but not 5'). Furthermore,
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5'"") B <y if and only if there is a unique 6 such that 8 +56 = 4.
Define +; on On as follows:

1,ifa=8=0;
a+gB=1{0,if a=0and 3 = 1;
a + B, otherwise.

Then +¢ satisfies 5') but not 2).

3 Multiplication Let X be a binary operation on On that is such that for all
ordinals a, 8, and vy,

1) if y < @ x B, then there are ordinals @, and B, that satisfy a; < a, 8, <8,
and y = a X f; + a;;
2) it <y, thenaxB+ra<axXy.

It is well-known that - satisfies 1) and 2). Define X, and X, as follows:
For all ordinals a and 8,

ax; B=0;
ax, B=a-ph

Then X, satisfies 1) but not 2), and X, satisfies 2) but not 1).

Theorem 3.1 Let x be a binary opevation on On that satisfies 1) and 2).
Then for all ovdinals aand B, a X B=a - B, Thus X = -,

Proof: Let
A={B: foralle,ax B=a- B

0e¢ A because otherwise, 0 < @ X 0 would require that there be an ordinal
B, <0, by 1). Suppose Bt C A but ST£A. Then for some a, a x 8+ # a-p™ .
Then, by 2),

a-Bt=aB+a=axpB+a<axpt,

It follows that a - B+ < a x B*, Thus a > 0; by 1), there are 8, <Band a, < a
for which

a-Br=axBi+a=a-B+a -1<a*B+a-1=a-Bf <a-p+,

This inequality is false; hence f*e A. Let y be a limit ordinal for which
y € A. If a is an arbitrary ordinal and if 8 < y, then

a*Bt=a-B+ra=axB+ras<saxy.

Since a - y is the smallest ordinal for which a - ¥ < a + y for every 8 < v,
it follows that @ - y<ax y. If @ . y < @ X y, then there are o, < aand y, < y
for which

dey=axpy+a=Qey+a-1<ay+a-l=a.9f<a-y.
This contradiction establishes that a - y = a X v,

Corollary 3.1 Let ® be a binary opevation on On that satisfies
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3) for every a > 0 and for every B theve is a unique (€, p) with 0 < p < a for
which B=a Q¢ + p;

4) if B<y,thena®B<a®v;

5 0®pB=0.

Then X = *,

Proof: It suffices to show that ® satisfies 1) and 2).

1): Suppose y < a ® B. Clearly, 5) implies thata > 0. By 3), y=a ® { +p,
where p < a. Finally, 4) implies that { < 8.
2): Let 8<y. Then 0®B+0=0®B<0®y. If a>0, it follows that

a®B<a®y Thus for some unique pg, @ ® y=a ® B+ po. By 3), po=a;
hencea® B +a<a®y.

Note that X, satisfies 4) and 5), but not 3). Define ® and ®, on On as
follows:

for all ordinals @ and S:

0,ifa=8=1,
a®, B=({1,ifa=1and =0,
a * B, otherwise;

1,ifa=0,
d®23=

a - 3, otherwise.
Then ®, satisfies 3) and 5), but not 4); ®, satisfies 3) and 4), but not 5).

4 Remark In [4], we characterize the Hessenberg natural sum and gen-
eralizations of this operation.
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