Notre Dame Journal of Formal Logic Volume XVI, Number 4, October 1975 NDJFAM

ARITHMETIC OPERATIONS ON ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* We characterize addition and multiplication of ordinal numbers. We assume familiarity with the basic properties of ordinal arithmetic (Sierpiński [3], Chapter 14). Although our discussion is informal, it could be formalized within Gödel-Bernays set theory, e.g., within the axiom system consisting of groups A, B, C, and D of Gödel [1].

Greek letters, sometimes with subscripts, will denote ordinals; "On" will denote the class of all ordinals. As usual, "+" and "." stand for ordinal addition and multiplication, respectively. Braces will designate proper classes as well as sets.

2 Addition Let + be any binary operation on On that is such that for all ordinals α , β , and γ ,

- 1) $\alpha + 0 = \alpha$;
- 2) if $\beta \leq \gamma$, then $\alpha + \beta \leq \alpha + \gamma$;
- 3) if $\beta \leq \gamma$, then there is a unique δ such that $\beta + \delta = \gamma$.

In Proposition 2.1 and its corollary, we assume that + is a binary operation on On that satisfies 1), 2), and 3).

Proposition 2.1 Let α , β , and γ be ordinals. If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Proof: $\alpha = \alpha + 0 \le \alpha + \gamma$, by 1) and 2). Thus, if $\alpha + \beta = \alpha + \gamma$, then by 3), $\beta = \gamma$. By 2), $\alpha + \beta \le \alpha + \gamma$; therefore, we must have $\alpha + \beta \le \alpha + \gamma$.

Corollary For all ordinals α , β , and γ , $\beta < \gamma$ if and only if $\alpha + \beta < \alpha + \gamma$.

Define $+_1$, $+_2$, and $+_3$ on On as follows:

For α , $\beta \in On$,

$$\alpha +_1 \beta = \beta;$$

 $\alpha +_2 0 = \alpha,$

^{*}This research was supported by a City University of New York Faculty Research Award, 1970-72.

and for $\beta > 0$,

$$\alpha +_{2} \beta = \begin{cases} \beta, & \text{if } \alpha \neq \beta, \\ 0, & \text{if } \alpha = \beta; \end{cases}$$

$$\alpha +_{3} \beta = \alpha.$$

Then $+_1$ satisfies 2) and 3), but not 1); $+_2$ satisfies 1) and 3), but not 2); $+_3$ satisfies 1) and 2), but not 3), as does the Hessenberg natural sum (Hessenberg [2]). It is well-known that + satisfies 1), 2), and 3); we now show that + is the only binary operation on On which does so.

Theorem 2.1 Let + be any binary operation on On that satisfies 1), 2), and 3). Then for all ordinals α and β ,

$$\alpha + \beta = \alpha + \beta$$
.

Thus + = +.

Proof: We utilize the Principle of Transfinite Induction. Let

$$A = \{\beta : \text{ for all } \alpha, \alpha + \beta = \alpha + \beta \}.$$

Then, by 1), $0 \in A$. Suppose $\beta \in A$; let α be an arbitrary ordinal. Surely $\alpha < \alpha + \beta^+$; let δ be the unique ordinal that satisfies $\alpha + \delta = \alpha + \beta^+$. Then

$$\alpha + \beta = \alpha + \beta < \alpha + \beta^+ = \alpha + \delta$$
.

By the Corollary of Proposition 2. 1, $\beta < \delta$. Thus $\beta^+ \leq \delta$ and

$$\alpha + \beta = \alpha + \beta < \alpha + \beta^+ \leq \alpha + \delta = \alpha + \beta^+ = (\alpha + \beta)^+$$
.

It follows that $\alpha + \beta^+ = \alpha + \beta^+$. Suppose $\gamma \subseteq A$, where γ is a limit ordinal. Fix α . Then

(1) $\alpha + \gamma$ is the smallest ordinal, δ , such that $\alpha + \beta < \delta$ for every $\beta < \gamma$.

Since $\alpha + \beta < \alpha + \gamma$ for every $\beta < \gamma$, it follows that $\alpha + \gamma \le \alpha + \gamma$. Let δ be the unique ordinal that satisfies $\alpha + \delta = \alpha + \gamma$. Then $\gamma \le \delta$, by (1). Therefore,

$$\alpha + \gamma \leq \alpha + \delta = \alpha + \gamma$$
.

Hence $\alpha + \gamma = \alpha + \gamma$.

Corollary 2.1 If + is a binary operation on On that satisfies 1), 2), and 3), then + is associative.

Corollary 2.2 No commutative binary operation on On satisfies 1), 2), and 3).

Let \sharp be any binary operation on On that satisfies the following: for all ordinals α , β , and γ ,

- 4) if $\beta < \gamma$, then $\alpha \# \beta < \alpha \# \gamma$;
- 5) $\beta \leq \gamma$ if and only if there is some δ such that $\beta \sharp \delta = \gamma$.

In Propositions 2.2 and 2.3, we assume that # is a binary operation on On that satisfies 4) and 5).

Proposition 2.2 For all ordinals β and γ , if $\beta < \gamma$, then there is a unique δ such that $\beta \sharp \delta = \gamma$.

Proposition 2.3 For every ordinal α , $\alpha \neq 0 = \alpha$.

Proof: $\alpha \le \alpha \sharp 0$, by 5). Suppose $\alpha < \alpha \sharp 0$. Let δ be the unique ordinal that satisfies $\alpha \sharp \delta = \alpha$. If $\delta \ne 0$, then $0 < \delta$ and, by 4),

$$\alpha \sharp 0 < \alpha \sharp \delta = \alpha \leq \alpha \sharp 0$$
.

This contradiction establishes that $\alpha \neq 0 = \alpha$.

Observe that $+_1$ satisfies 4) but not 5). Define $+_4$ on On by

$$\alpha + \beta = \max \{\alpha, \beta\}, \text{ for all } \alpha, \beta \in \text{On.}$$

Then +4 satisfies 5) but not 4). Clearly, + satisfies both 4) and 5).

Theorem 2.2 Let \sharp be any binary operation on On that satisfies 4) and 5). Then for all ordinals α and β ,

$$\alpha \sharp \beta = \alpha + \beta$$
.

Thus $\sharp = +$.

Proof: # satisfies 1), 2), and 3); the result follows from Theorem 2.1.

Corollary 2.3 Let \(\beta\) be any binary operation on On that satisfies the following:

2) if $\beta \leq \gamma$, then $\alpha \ \beta \leq \alpha \ \beta \gamma$;

5') $\beta \leq \gamma$ implies there is a unique δ such that $\beta \not \mid \delta = \gamma$, and $\beta > \gamma$ implies there is no δ such that $\beta \not \mid \delta = \gamma$.

Then for all ordinals α and β , $\alpha = \alpha + \beta$.

Observe that $+_1$ satisfies 2) but not 5'). Moreover, define $+_5$ on O_n as follows:

$$0 +_{5} \beta = \beta, \text{ for all } \beta;$$

$$1 +_{5} \beta = \begin{cases} \beta^{+}, \text{ if } \beta < \omega, \\ \beta, \text{ if } \omega \leq \beta; \end{cases}$$

for $\alpha \ge 2$, let

$$\alpha +_5 \beta = \begin{cases} 0, & \text{if } \alpha > \beta, \\ \beta, & \text{if } \alpha \leq \beta. \end{cases}$$

Then $+_5$ also satisfies 2) but not 5'). Furthermore,

5") $\beta \leq \gamma$ if and only if there is a unique δ such that $\beta + \delta = \gamma$.

Define $+_6$ on On as follows:

$$\alpha +_{6} \beta = \begin{cases} 1, & \text{if } \alpha = \beta = 0; \\ 0, & \text{if } \alpha = 0 \text{ and } \beta = 1; \\ \alpha + \beta, & \text{otherwise.} \end{cases}$$

Then $+_6$ satisfies 5') but not 2).

3 Multiplication Let \times be a binary operation on On that is such that for all ordinals α , β , and γ ,

1) if $\gamma < \alpha \times \beta$, then there are ordinals α_1 and β_1 that satisfy $\alpha_1 < \alpha$, $\beta_1 < \beta$, and $\gamma = \alpha \times \beta_1 + \alpha_1$;

2) if $\beta < \gamma$, then $\alpha \times \beta + \alpha \leq \alpha \times \gamma$.

It is well-known that \cdot satisfies 1) and 2). Define \times_1 and \times_2 as follows: For all ordinals α and β ,

$$\alpha \times_1 \beta \equiv 0;$$

 $\alpha \times_2 \beta = \alpha \cdot \beta^+.$

Then \times_1 satisfies 1) but not 2), and \times_2 satisfies 2) but not 1).

Theorem 3.1 Let \times be a binary operation on On that satisfies 1) and 2). Then for all ordinals α and β , $\alpha \times \beta = \alpha \cdot \beta$. Thus $\times = \cdot$.

Proof: Let

$$A = \{\beta : \text{ for all } \alpha, \alpha \times \beta = \alpha \cdot \beta \}.$$

 $0 \in A$ because otherwise, $0 \le \alpha \times 0$ would require that there be an ordinal $\beta_1 \le 0$, by 1). Suppose $\beta^+ \subseteq A$ but $\beta^+ \notin A$. Then for some α , $\alpha \times \beta^+ \ne \alpha \cdot \beta^+$. Then, by 2),

$$\alpha \cdot \beta^+ = \alpha \cdot \beta + \alpha = \alpha \times \beta + \alpha \leq \alpha \times \beta^+$$

It follows that $\alpha \cdot \beta^+ < \alpha \times \beta^+$. Thus $\alpha > 0$; by 1), there are $\beta_1 \leq \beta$ and $\alpha_1 \leq \alpha$ for which

$$\alpha \cdot \beta^+ = \alpha \times \beta_1 + \alpha_1 = \alpha \cdot \beta_1 + \alpha_1 \cdot 1 < \alpha \cdot \beta_1 + \alpha \cdot 1 = \alpha \cdot \beta_1^+ \leq \alpha \cdot \beta_1^+$$

This inequality is false; hence $\beta^+ \in A$. Let γ be a limit ordinal for which $\gamma \subseteq A$. If α is an arbitrary ordinal and if $\beta < \gamma$, then

$$\alpha \cdot \beta^+ = \alpha \cdot \beta + \alpha = \alpha \times \beta + \alpha \leq \alpha \times \gamma$$
.

Since $\alpha \cdot \gamma$ is the smallest ordinal for which $\alpha \cdot \beta^+ < \alpha \cdot \gamma$ for every $\beta < \gamma$, it follows that $\alpha \cdot \gamma \le \alpha \times \gamma$. If $\alpha \cdot \gamma < \alpha \times \gamma$, then there are $\alpha_1 < \alpha$ and $\gamma_1 < \gamma$ for which

$$\alpha \cdot \gamma = \alpha \times \gamma_1 + \alpha_1 = \alpha \cdot \gamma_1 + \alpha_1 \cdot 1 < \alpha \cdot \gamma_1 + \alpha \cdot 1 = \alpha \cdot \gamma_1^+ < \alpha \cdot \gamma_1$$

This contradiction establishes that $\alpha \cdot \gamma = \alpha \times \gamma$.

Corollary 3.1 Let \otimes be a binary operation on On that satisfies

- 3) for every $\alpha > 0$ and for every β there is a unique $\langle \zeta, \rho \rangle$ with $0 \le \rho < \alpha$ for which $\beta = \alpha \otimes \zeta + \rho$;
- 4) if $\beta \leq \gamma$, then $\alpha \otimes \beta \leq \alpha \otimes \gamma$;
- 5) $0 \otimes \beta = 0$.

Then $\times = \cdot$.

Proof: It suffices to show that \otimes satisfies 1) and 2).

- 1): Suppose $\gamma < \alpha \otimes \beta$. Clearly, 5) implies that $\alpha > 0$. By 3), $\gamma = \alpha \otimes \zeta + \rho$, where $\rho < \alpha$. Finally, 4) implies that $\zeta < \beta$.
- 2): Let $\beta < \gamma$. Then $0 \otimes \beta + 0 = 0 \otimes \beta \le 0 \otimes \gamma$. If $\alpha > 0$, it follows that $\alpha \otimes \beta \le \alpha \otimes \gamma$. Thus for some unique ρ_0 , $\alpha \otimes \gamma = \alpha \otimes \beta + \rho_0$. By 3), $\rho_0 \ge \alpha$; hence $\alpha \otimes \beta + \alpha < \alpha \otimes \gamma$.

Note that \times_1 satisfies 4) and 5), but not 3). Define \otimes_1 and \otimes_2 on On as follows:

for all ordinals α and β :

$$\alpha \otimes_1 \beta = \begin{cases} 0, & \text{if } \alpha = \beta = 1, \\ 1, & \text{if } \alpha = 1 \text{ and } \beta = 0, \\ \alpha \cdot \beta, & \text{otherwise;} \end{cases}$$

$$\alpha \otimes_2 \beta = \begin{cases} 1, & \text{if } \alpha = 0, \\ \alpha \cdot \beta, & \text{otherwise.} \end{cases}$$

Then \otimes_1 satisfies 3) and 5), but not 4); \otimes_2 satisfies 3) and 4), but not 5).

4 Remark In [4], we characterize the Hessenberg natural sum and generalizations of this operation.

REFERENCES

- [1] Gödel, K., The Consistency of the Axiom of Choice and of the Generalized Continuum-hypothesis with the Axioms of Set Theory, 6th ed., Annals of Mathematical Studies, No. 3, Princeton University Press, Princeton (1964).
- [2] Hessenberg, G., *Grundbegriffe der Mengenlehre*, Abhandlungen der Fries'schen Schule (n.s.), 1.4, Göttingen (1906), no. 75.
- [3] Sierpiński, W., Cardinal and Ordinal Numbers, 1st ed., Monografie Matematyczne, 34, Państwowe Wydawnictwo Naukowe, Warszawa (1958).
- [4] Zuckerman, M., "Natural sums of ordinals," Fundamenta Mathematicae, vol. 77 (1973), pp. 289-294.

City College of the City University of New York New York, New York