Notre Dame Journal of Formal Logic Volume XVI, Number 4, October 1975 NDJFAM

NICE IMPLICATIONAL AXIOMS

IVO THOMAS

It might seem unlikely at this date that a new and interesting threeaxiom set for classical implication would be found. However I do not remember in the literature the set $\{1,2,3\}$ below. In number of axioms and basic implicational structure it is identical with Tarski's $\{1,14,7\}$ which in some sense strengthens 2 and weakens 3 ; the variable occurrences are $7 p, 4 q, 4 r$, against Tarski's $6 p, 4 q, 5 r$. The conspicuous merit of $\{1,2,3\}$ is the ease with which all the most famous and commonly named propositions can be developed; we have a minimum of material which is of merely local or contextual necessity and interest. For a discussion of axiomatics I know of no other set which assembles so much needed material in such short order. Witness the following:

1. $C p C q p$ (Simp)
2. $C \operatorname{CqrCCpqCpr}$ (Weak Syll)
3. CCCpqrCCrpp (Roll)

D21 = 4. $C C q r C q C p r$ (A Fortiori)
DD243 = 5. CCCpqrCCrpCsp ((ukasiewicz)
D23 = 6. CCsCCpqrCsCCrpp
D63 $=7 . \quad$ CCCpqrCCprr (Tarski)
D61 = 8. CpCCpqq (Aff or Pon)
DD228 = 9. CqCCpCqrCpr (Comm-Comm)
DD999 = 10. \quad CCpCqrCqCpr (Comm)
DD10.1.n = 11. Cpp (Id)
D3.11 $=12 . \quad$ CCCpqpp (Peirce)
D3.12 $=13 . \quad$ CCpCpqCpq (Hilbert)
D10.2 $=14 . \quad$ CCpqCCqrCpr (Syll)
D10DD14.2.14 = 15. CCCprsCCqrCCpqs
D73 $=16 . \quad C C p C q C p r C q C p r$
DD15.16.9 = 17. CCpqCCpCqrCpr (Comm-Frege)
D10.17 = 18. \quad CCpCqrCCpqCpr (Frege)
D14.1 $=19 . \quad$ CCpqrCqr (Syll-Simp)
$\mathrm{D} 14.19=20$. CCCqrsCCCpqrs

D20.12 $=$ 21. $\quad \operatorname{CCCrCpqpp}$
D4D20.17 = 22. CCCpqrCsCCqCrtCqt (Meredith)
D10.7 = 23. CCpqCCCprqq (Comm-Tarski)
DD2.23.19 = 24. CCCpqrCCCqprr (Dummett)
We have, among other possibilities, $A x_{C}=\{1,2,3\}=\{1,14,7\}($ Tarski $)=$

$\{12,14, C p C \alpha \beta\}$ (Eukasiewicz) $=\{3,4\}$ (Meredith) $=\{2,21\}$ (Meredith) $=$ $\{14,21\}$ (Meredith) $=\{2,8,12\}$ (Wajsberg), etc.
$A x_{\text {PosC }}=\{22\}$ (Meredith) $=\{1,17\}($ Meredith $)=\{1,18\}($ Frege $)=\{1,13,14\}$ (Hilbert), etc.
$A x_{L C}=\{$ PosC, 24\} (Dummett).
The Wajsberg set $\{2,8,12\}$ obviously requires comparison with $\{1,2,3\}$. Only one axiom uses three variables; while 3 is simplified, 1 is replaced with a more complex proposition; development along the foregoing lines is a little heavier.

University of Notre Dame
Notre Dame, Indiana

