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UNIVERSAL PAIRS OF REGRESSIVE ISOLS

JUDITH GERSTING

1 Introduction Universal isols were first introduced by E. Ellentuck in [4]
to provide a uniform source of counter-examples for proposed arithmetic
statements in Λ. Prof. Ellentuck was also the first to prove, in unpublished
notes, the existence of regressive universal isols, which provide a source
for counter-examples in ΛR; his proof is essentially a category argument.
The present paper generalizes this argument to prove the existence of
universal pairs of regressive isols which can serve as a source of
counter-examples for proposed properties of ΛR2.

For / a recursive combinatorial function, let C/ denote the canonical
extension of / to the isols; if / is recursive, then Dy denotes the canonical
extension. From [4] we have the following definition: An isol T is
universal if for each pair of recursive, combinatorial functions /andg ,

C/(T) = Cg(T) - {x\f(x) Φg(x)}is finite
or

there exists a number n such that x ^ n —> f(x) = g(x).

We are interested here in pairs of regressive isols (S, T) that have the
property that iff{x,y) and g(x,y) are any recursive, combinatorial functions
of x and y, then the identity C/(S, T) = Cg(S, T) will imply certain non-trivial
similarities between the two functions / and g.

One analogue of the above definition would require a universal pair
(S, T) of regressive isols to have the property that for f(x,y) and g{x,y) any
recursive, combinatorial functions,

C^S, T) = Cg(S, T) - {(x,y)\f(x,y) * g(x,y)} is finite.

However, it is not difficult to construct recursive combinatorial functions
/ and g having the property that for all infinite regressive isols S and T,

Cj(S, T) = C|(S, T) and {{x,y)\f{x,y) *g(x,y)} is infinite;

even easier functions refute the implication if S or T is taken to be finite.
Thus we see that this analogue of the one-dimensional definition is too
stringent, and we are led to the following definition: A pair of regressive
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isols (S,T) is universal if for each pair of recursive, combinatorial
functions f(x, y) and g(x, y),

C/(S, T) = Cg(S, T) -» Ξ3 numbers m and n such that
x^m and 3; ̂  ft —» /(#, 3;) = £•(#, 3;).

2 Universal Pairs We will outline the proof of the existence of universal
pairs of regressive isols. Following E. Ellentuck, we let E denote the
non-negative integers and define a function / from a subset of E into E to be
initial if the domain of/, δ/, is empty or of the form {θ, 1, . . ., k} for some
k e E. A function /: E -> E is e-initial. Let

X = the collection of all e-initial functions,
G = the collection of all initial functions,
F = X U G.

For functions / and g in F, / ^g denotes the function g an extension of the
function /. For fe F, let

Hf = {geX\f^g}

and

Λ = {(NfxNg)\f,geG}.

Then £ serves as a base for a topology on X2; we let X2 indicate the space
with this topology.

Lemma 1 X2 is Category II.

Proof: Let A be any Category I subset of X2, i.e.,
00

A-ΣAi

where for each i, Aι is nowhere dense in X2. We wish to show that A <£ X2.
Let (N^ x Ng) e £. Because Ao is nowhere dense in X2, there exist functions
/ 0 and g 0 in G such that

H o x N g o ) c ( N / x N g )

and

H o x N g o ) Π A o = 0.

Continuing, sequences of functions {f.} and {g{} are obtained with

/ ^/o <Λ ̂  . and g< gQ ̂  g ι ^ . . .

and

(Nή x Ng.) ΠAj = 0.

Four possibilities arise concerning these functions:

( i ) (3k)(fk =fk+ι = . . . ) a n d ( 3 j ) ( g j = gj+1 = . . . ) ,
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(ii) (3fe)(Λ =/* + i = . . •) and U δg. = E,

(iii) U δfi = E and Bj){gj = gi+ι = . . . ) ,
OQ OO

(iv) both U δfi = E and U δ ^ = E.

For each of these cases we construct a member of X2 - A.

(i) Let m = mαx(&, j). Then (N/w x N^J C X 2 - 1
(ii) Let a function £• be defined by g = lim g{. Then (N;, x ^ ) c X 2 - A .

(iii) Similar to case (ii).
(iv) Let / = lim /,., g = lim g{; then (f,g) ε X2 - A.

2->OO ί->oθ

This completes the proof of Lemma 1.

For fe F, we define a function /* with δf* = δ/ by

f*(ή)=UqJ{i)+1

o *

where # enumerates the primes in increasing order. Let iff denote the
range of /*. Then for/ € X, πy is an infinite retraceable set.

Lemma 2 Let {μi\ be an enumeration of all infinite r.e. sets. Let

A4 ={/|/eXandα, c πf}

and
OO

W = LJ Ai = {/1 fe X α?zd 7iy contains an infinite r .e. swδseί}.

TTteft όô A W x X ί ϊ ^ X x W are Category I m X2.

( oo \ oo

Σ A^ j x X = Σί {A{ x X), If we can prove that A,- x X is
nowhere dense in X2, then W x X will be Category I. Let (Nf x Ng) e £. Then
fe G with δ/ = {0, 1, ..., k - l}, where this is the empty set if & = 0, and TT̂
is a finite set. Let w be a number such that meat and m^ijf. Define a
function h{x) by

δfc = {0, . . ., k\
h(x) = /(Λ:) for 0 ^ x ^ k - 1,
/z(̂ ) = m.

Then (N/,x Ng) c (N/ X Ng) and (N/,x Ng) Π (Az x X) = φ. Hence A, x X is
nowhere dense in X2 and W x X is Category I in X2. A similar proof holds
for X x W.

Lemma 3 Let hx{x,y) and h^ix.y) be two recursive combinatorial functions
of two variables which are induced by the normal recursive combinatorial
operations Φx and Φ2, respectively. Let p(x) be a one-to-one partial
recursive function* Define a set λ



412 JUDITH GERSTING

λ = {{x,y)\h1(xfy) Φ h(x9y)}

and a set H

H = \-\(p,hl9h2) = {(/,£) e X21 ΦΛπ/,^) c δpApΦ^f,^) = Φ2(π/, πg)}.

If x is totally unbounded, then H is nowhere dense in X2.

Proof: Let (Nf x Ng) e £. Then f,geG with δf = {0, 1, . . ., n - 1} and δg =
{0, 1, . . ., m - 1} (these are empty if n = 0 or m = 0, respectively). We
may assume (card δ/, card δg ) e λ. If not, since λ is totally unbounded,
extensions / ' and g' of / and g fulfill this property and (N^ x Ng») c
(N/ x Ng); the proof could proceed on (N/» x Ng»). If (N/ x Ng) Π H = Jδ, the
proof is complete, so assume the existence of (f,g) e (N/x Ng) Π H.
( / ,#)€ (N/X Ng) -* π/ c ?!jr and π^ c TΓJ-, SO that Φi(π/,7rg) c Φ^πj9Ήφ and
* 2(^/ ?%) c Φ 2(^7Γ^. (/,^) e H -> Φi(7Γj,7Γ|) c δ/> and pΦ^iΐpΉ^ = Φ2(π^π-).
Thus Φi(π^, πg) C δ/> and Φ2(ττ/, πg) C p/>. However, (card δ/, card δ^ ) =
(card 7Γ/, card 7ίg) e λ, so that /zx(card π/, card πg) Φ h2(carό π/, card πg) or, by a
property of Φx and Φ2, card Φx(π/, πg) Φ card Φ2(ττ/,πg) Since p is one-to-one,
we cannot have />Φi(π/,πg) = Φ 2 (^ ,π g ) . Two cases may obtain:

(i) 3 * e Φi(ττ/, 7Γg) and 3j; e Φ2(πpπ-) - Φ2(xr/,7Γg), y = />U),
(ii) 3ΛΓ e Φiίπ^ , πj) - Φi(π/, πg) and 3y e Φ2(π/, π g), 3; = />(#).

In each case we construct a member of ^ which is a subset of (N/ x Ng) and
whose intersection with H is empty.

(i) Define function / by

_δ/={0, . . .,w},
f(x) = f(x) for 0 < x ^ n - 1,

f(n) is such that/*(^) > max (l 'st components in Φ2"
1(^)).

Define function g by

_ δ ^ = {0, . . ., m},
g(x) = g(%) for 0 ^ Λ; ^ m - 1,

^(m) is such thatjf*(m) > max (2'nd components in Φ2""1(^)).

Then (N7 x N-) c (N/ x Nj and (N7 x N-) Π H = 0.

(ii) Define function / by

__δ/={0, . . .,«},
/ M = / M for 0 ^ x < w - 1,
/U) is such that /*(») > max (l'st components in ΦΓ 1 ^)).

Define function J7 by

_ δ ^ = {0, . . .,m},
5"M = ^W for 0 < Λ: ^ m - 1,

^(m) is such that^*(m) > max (2'nd components of Φi" 1^)).

Then (N7 x Nj) c (N/ x NJ and (N7 x Ns) Π H - 0.

This completes the proof of Lemma 3.
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Theorem 1 A universal pair of regressive isols exists.

Proof: Let (hιk,h2/) be an enumeration of all pairs of recursive combina-
torial functions of two variables such that for each k, \k = {(x,y) \hlk(x,y) Φ
h2k(x,y)} is a totally unbounded set. For each k and each one-to-one partial
recursive function p9 we have from Lemma 3 that the set W{p9hlk9h2k) is
nowhere dense in X2. Let W be defined as in Lemma 2. Then using
Lemma 2, the set M,

M = Σ H(p,hlk,h2k) U (W x X) U (X x W),

is Category I in X2. Since X2 is Category II by Lemma 1, let (s, t) e X2 - M.
Then s, t e X so πs and Ήt are infinite retraceable sets. Also, s/W so that
ΉS contains no infinite r.e. subset, i.e., πs is immune. Similarly πt is
immune and if S = Req π s, T = Req πt9 we have S, T e ΛR - E.

We will show that (S, T) is a universal pair. Let hx(x9y) and h2(x,y) be
two recursive combinatorial functions such that C^ίS, T) = C/̂ (S, T). Let
Φ: and Φ2 be the operations inducing h1 and h2, respectively. Then
Req Φi(π5, πt) = Req Φ2(τrs, π,) so that there exists a one-to-one partial
recursive function p(x) such that

Φi(πs,ττt)
 c δp and^Φi(πs, τrt) = Φ2(πs,πt).

But since (s,t) jέH(p,hl9h2), the set λ = {(x9y)\h1(x,y) Φ h2(x,y)} cannot be
totally unbounded. Thus there exist numbers m and n such that x ^ m and
y ^-n imply h^x^y) = h2(x,y). This completes the proof.

We summarize some easily shown properties of universal pairs of
regressive isols.

Proposition 1 Let (S, T) be a universal pair of regressive isols. Then

a) both S and T are universal,
b) S * T,
c) (T, S) is also a universal pair.

3 An Application The <* relation between isols was introduced in [3],
where it was shown that there are pairs of regressive isols incomparable
relative to <*. (This result also appears in [1].) The use of universal
pairs of regressive isols to contradict universal properties of ΛR2 is
illustrated below in a third proof of this result.

First we characterize universal pairs in terms of the canonical
extension to ΛR

2, αR2, of a recursive relation a in E2.

Proposition 2 Let S, T e ΛR - E. Then (S, T) is a universal pair ^>(S, T)/
αR2 for all sets α C E 2 such that a is recursive and E2 - a is totally
unbounded.

We will make use of the following result due to J. Barback:

Lemma (Barback) Let a recursive set a c E2 be defined by

a = {(χ,y)\χ^y}
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Then for X, Ye ΛR, (X, Y) e aR2*^X ^* Y.

Proof: Since the statement

X ^ y<r-> m\n(x,y) = x

is valid in E, we apply a well-known result of A. Nerode to extend to ΛR and
get

(X,Y)eaR2^Dmιn(X,Y) = X.

But in ΛR, by a result in [2]

OmJX, Y) = min(X, Y)

and from [3], Theorem T4(c)

mίn {X, Y) =X<^X^* Y.

Therefore

{X, Y) e aR2^ΦX *z* Y.

Theorem 2 There exist regressive isols S and T ί/zαί are incomparable
relative to ^*.

Proof: Let (S, T) be a universal pair of regressive isols. By Proposition
l(c), (T, S) is a universal pair. Again let

a = {(x,y)\x ^y}.

Then a is recursive and E2 - a is totally unbounded. By Proposition 2,
(S, T) /ί aR2 and (T, S) /αR2. Now apply the preceding Lemma to get

S fέ* T and T ̂ * S.

This completes the proof.
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