Notre Dame Journal of Formal Logic Volume XVI, Number 3, July 1975 NDJFAM

UNIVERSAL PAIRS OF REGRESSIVE ISOLS

JUDITH GERSTING

1 *Introduction* Universal isols were first introduced by E. Ellentuck in [4] to provide a uniform source of counter-examples for proposed arithmetic statements in Λ . Prof. Ellentuck was also the first to prove, in unpublished notes, the existence of regressive universal isols, which provide a source for counter-examples in Λ_R ; his proof is essentially a category argument. The present paper generalizes this argument to prove the existence of universal pairs of regressive isols which can serve as a source of counter-examples for proposed properties of Λ_R^2 .

For f a recursive combinatorial function, let C_f denote the canonical extension of f to the isols; if f is recursive, then D_f denotes the canonical extension. From [4] we have the following definition: An isol T is *universal* if for each pair of recursive, combinatorial functions f and g,

$$C_{f}(T) = C_{g}(T) \rightarrow \{x \mid f(x) \neq g(x)\} \text{ is finite}$$

or

there exists a number *n* such that $x \ge n \rightarrow f(x) = g(x)$.

We are interested here in pairs of regressive isols (S, T) that have the property that if f(x, y) and g(x, y) are any recursive, combinatorial functions of x and y, then the identity $C_f(S, T) = C_g(S, T)$ will imply certain non-trivial similarities between the two functions f and g.

One analogue of the above definition would require a universal pair (S, T) of regressive isols to have the property that for f(x, y) and g(x, y) any recursive, combinatorial functions,

$$C_f(S, T) = C_g(S, T) \rightarrow \{(x, y) \mid f(x, y) \neq g(x, y)\}$$
 is finite.

However, it is not difficult to construct recursive combinatorial functions \tilde{f} and \tilde{g} having the property that for all infinite regressive isols S and T,

$$C_{\tilde{r}}(S,T) = C_{\tilde{e}}(S,T)$$
 and $\{(x,y) \mid f(x,y) \neq \tilde{g}(x,y)\}$ is infinite;

even easier functions refute the implication if S or T is taken to be finite. Thus we see that this analogue of the one-dimensional definition is too stringent, and we are led to the following definition: A pair of regressive

Received August 27, 1973

isols (S,T) is *universal* if for each pair of recursive, combinatorial functions f(x, y) and g(x, y),

$$C_f(S,T) = C_g(S,T) \rightarrow \exists$$
 numbers *m* and *n* such that
 $x \ge m$ and $y \ge n \rightarrow f(x,y) = g(x,y)$.

2 Universal Pairs We will outline the proof of the existence of universal pairs of regressive isols. Following E. Ellentuck, we let E denote the non-negative integers and define a function f from a subset of E into E to be *initial* if the domain of f, δf , is empty or of the form $\{0, 1, \ldots, k\}$ for some $k \in E$. A function f: $E \to E$ is *e-initial*. Let

X = the collection of all e-initial functions, G = the collection of all initial functions, F = X \cup G.

For functions f and g in F, $f \leq g$ denotes the function g an extension of the function f. For $f \in F$, let

$$\mathsf{N}_f = \{g \in \mathsf{X} \mid f \leq g\}$$

and

$$\mathcal{B} = \{ (\mathsf{N}_f \times \mathsf{N}_g) \mid f, g \in \mathbf{G} \}.$$

Then \mathcal{B} serves as a base for a topology on X^2 ; we let X^2 indicate the space with this topology.

Lemma 1 X^2 is Category II.

Proof: Let A be any Category I subset of X^2 , i.e.,

$$A = \sum_{0}^{\infty} A_{i}$$

where for each i, A_i is nowhere dense in X^2 . We wish to show that $A \notin X^2$. Let $(N_f \times N_g) \in \mathcal{B}$. Because A_0 is nowhere dense in X^2 , there exist functions f_0 and g_0 in **G** such that

$$(\mathsf{N}_{f_0} \times \mathsf{N}_{g_0}) \subset (\mathsf{N}_f \times \mathsf{N}_g)$$

and

$$(\mathsf{N}_{f_0} \times \mathsf{N}_{g_0}) \cap A_0 = \emptyset.$$

Continuing, sequences of functions $\{f_i\}$ and $\{g_i\}$ are obtained with

$$f \leq f_0 \leq f_1 \leq \ldots$$
 and $g \leq g_0 \leq g_1 \leq \ldots$

and

$$(\mathsf{N}_{f_i} \times \mathsf{N}_{g_i}) \cap A_j = \emptyset.$$

Four possibilities arise concerning these functions:

(i) $(\exists k)(f_k = f_{k+1} = ...)$ and $(\exists j)(g_j = g_{j+1} = ...),$

(ii)
$$(\exists k)(f_k = f_{k+1} = ...)$$
 and $\bigcup_{0}^{\infty} \delta g_i = \mathbf{E}$,
(iii) $\bigcup_{0}^{\infty} \delta f_i = \mathbf{E}$ and $(\exists j)(g_j = g_{j+1} = ...)$,
(iv) both $\bigcup_{0}^{\infty} \delta f_i = \mathbf{E}$ and $\bigcup_{0}^{\infty} \delta g_i = \mathbf{E}$.
For each of these cases we construct a member of $\mathbf{X}^2 - A$.

- (i) Let $m = \max(k, j)$. Then $(N_{f_m} \times N_{g_m}) \subset \mathbf{X}^2 A$.
- (ii) Let a function \tilde{g} be defined by $\tilde{g} = \lim_{i \to \infty} g_i$. Then $(N_{f_k} \times \tilde{g}) \subset X^2 A$.
- (iii) Similar to case (ii).
- (iv) Let $\tilde{f} = \lim_{i \to \infty} f_i$, $\tilde{g} = \lim_{i \to \infty} g_i$; then $(\tilde{f}, \tilde{g}) \in \mathbf{X}^2 A$.

This completes the proof of Lemma 1.

For $f \in \mathbf{F}$, we define a function f^* with $\delta f^* = \delta f$ by

$$f^{*}(n) = \prod_{0}^{n} q_{i}^{f(i)+1}$$

where q enumerates the primes in increasing order. Let π_f denote the range of f^* . Then for $f \in X$, π_f is an infinite retraceable set.

Lemma 2 Let $\{\alpha_i\}$ be an enumeration of all infinite r.e. sets. Let

$$A_i = \{ f | f \in \mathsf{X} \text{ and } \alpha_i \subset \pi_f \}$$

and

$$\mathbf{W} = \sum_{0}^{\infty} A_{i} = \{f \mid f \in \mathbf{X} \text{ and } \pi_{f} \text{ contains an infinite } \mathbf{r.e. } subset\}$$

Then both $W \times X$ and $X \times W$ are Category I in X^2 .

Proof: $\mathbf{W} \times \mathbf{X} = \left(\sum_{0}^{\infty} A_{i}\right) \times \mathbf{X} = \sum_{0}^{\infty} (A_{i} \times \mathbf{X})$. If we can prove that $A_{i} \times \mathbf{X}$ is nowhere dense in \mathbf{X}^{2} , then $\mathbf{W} \times \mathbf{X}$ will be Category I. Let $(N_{f} \times N_{g}) \in \mathcal{B}$. Then $f \in \mathbf{G}$ with $\delta f = \{0, 1, \ldots, k - 1\}$, where this is the empty set if k = 0, and π_{f} is a finite set. Let m be a number such that $m \in \alpha_{i}$ and $m \notin \pi_{f}$. Define a function h(x) by

$$\delta h = \{0, \ldots, k\},
h(x) = f(x) \text{ for } 0 \le x \le k - 1,
h(k) = m.$$

Then $(N_h \times N_g) \subseteq (N_f \times N_g)$ and $(N_h \times N_g) \cap (A_i \times X) = \emptyset$. Hence $A_i \times X$ is nowhere dense in X^2 and $W \times X$ is Category I in X^2 . A similar proof holds for $X \times W$.

Lemma 3 Let $h_1(x, y)$ and $h_2(x, y)$ be two recursive combinatorial functions of two variables which are induced by the normal recursive combinatorial operations Φ_1 and Φ_2 , respectively. Let p(x) be a one-to-one partial recursive function. Define a set λ

$$\lambda = \{ (x, y) \mid h_1(x, y) \neq h_2(x, y) \}$$

and a set ${\bf H}$

 $\mathbf{H} = \mathbf{H}(p, h_1, h_2) = \{(f, g) \in \mathbf{X}^2 \mid \Phi_1(\pi_f, \pi_g) \subset \delta p \wedge p \Phi_1(\pi_f, \pi_g) = \Phi_2(\pi_f, \pi_g)\}.$

If λ is totally unbounded, then H is nowhere dense in X^2 .

Proof: Let $(N_f \times N_g) \in \mathscr{B}$. Then $f, g \in \mathbf{G}$ with $\delta f = \{0, 1, \ldots, n-1\}$ and $\delta g = \{0, 1, \ldots, m-1\}$ (these are empty if n = 0 or m = 0, respectively). We may assume $(\operatorname{cord} \delta f, \operatorname{cord} \delta g) \in \lambda$. If not, since λ is totally unbounded, extensions f' and g' of f and g fulfill this property and $(N_{f'} \times N_{g'}) \subset (N_f \times N_g)$; the proof could proceed on $(N_{f'} \times N_{g'})$. If $(N_f \times N_g) \cap \mathbf{H} = \emptyset$, the proof is complete, so assume the existence of $(\tilde{f}, \tilde{g}) \in (N_f \times N_g) \cap \mathbf{H}$. $(\tilde{f}, \tilde{g}) \in (N_f \times N_g) \to \pi_f \subset \pi_{\tilde{f}}$ and $\pi_g \subset \pi_{\tilde{g}}$, so that $\Phi_1(\pi_f, \pi_g) \subset \Phi_1(\pi_{\tilde{f}}, \pi_{\tilde{g}})$ and $\Phi_2(\pi_f, \pi_g) \subset \Phi_2(\pi_{\tilde{f}}, \pi_{\tilde{g}})$. $(\tilde{f}, \tilde{g}) \in \mathbf{H} \to \Phi_1(\pi_{\tilde{f}}, \pi_{\tilde{g}}) \subset \delta p$ and $p\Phi_1(\pi_{\tilde{f}}, \pi_{\tilde{g}}) = \Phi_2(\pi_{\tilde{f}}, \pi_{\tilde{g}})$. Thus $\Phi_1(\pi_f, \pi_g) \subset \delta p$ and $\Phi_2(\pi_f, \pi_g) \subset \rho p$. However, $(\operatorname{cord} \delta f, \operatorname{cord} \delta g) = (\operatorname{cord} \pi_f, \operatorname{cord} \pi_g) \in \lambda$, so that $h_1(\operatorname{cord} \pi_f, \operatorname{cord} \pi_g) \neq h_2(\operatorname{cord} \pi_f, \operatorname{cord} \pi_g)$ or, by a property of Φ_1 and Φ_2 , $\operatorname{cord} \Phi_1(\pi_f, \pi_g) \neq \operatorname{cord} \Phi_2(\pi_f, \pi_g)$. Since p is one-to-one, we cannot have $p\Phi_1(\pi_f, \pi_g) = \Phi_2(\pi_f, \pi_g)$. Two cases may obtain:

(i) $\exists x \in \Phi_1(\pi_f, \pi_g)$ and $\exists y \in \Phi_2(\pi_{\tilde{f}}, \pi_{\tilde{g}}) - \Phi_2(\pi_f, \pi_g), y = p(x),$ (ii) $\exists x \in \Phi_1(\pi_{\tilde{f}}, \pi_{\tilde{g}}) - \Phi_1(\pi_f, \pi_g)$ and $\exists y \in \Phi_2(\pi_f, \pi_g), y = p(x).$

In each case we construct a member of \mathcal{B} which is a subset of $(N_f \times N_g)$ and whose intersection with **H** is empty.

(i) Define function \overline{f} by

$$\begin{split} \delta \bar{f} &= \{0, \ldots, n\},\\ \bar{f}(x) &= f(x) \text{ for } 0 \leq x \leq n-1,\\ \bar{f}(n) & \text{ is such that } \bar{f}^*(n) > \max (1\text{ 'st components in } \Phi_2^{-1}(y)). \end{split}$$

Define function \overline{g} by

$$\begin{split} &\delta \overline{g} = \{0, \ldots, m\},\\ &\overline{g}(x) = g(x) \text{ for } 0 \leq x \leq m - 1,\\ &\overline{g}(m) \quad \text{is such that } \overline{g}^*(m) > \max (2 \text{ 'nd components in } \Phi_2^{-1}(y)). \end{split}$$

Then $(N_{\overline{i}} \times N_{\overline{p}}) \subseteq (N_{\overline{i}} \times N_{g})$ and $(N_{\overline{i}} \times N_{\overline{p}}) \cap \mathbf{H} = \emptyset$.

(ii) Define function \overline{f} by

$$\begin{split} \delta \bar{f} &= \{0, \ldots, n\},\\ \bar{f}(x) &= f(x) \text{ for } 0 \leq x \leq n-1,\\ \bar{f}(n) & \text{ is such that } \bar{f}^*(n) > \max (1\text{'st components in } \Phi_1^{-1}(x)). \end{split}$$

Define function \overline{g} by

$$\begin{array}{l} \delta \overline{g} = \{0, \ldots, m\},\\ \overline{g}(x) = g(x) \text{ for } 0 \leq x \leq m-1,\\ \overline{g}(m) \quad \text{is such that } \overline{g}^*(m) > \max (2 \text{ 'nd components of } \Phi_1^{-1}(x)). \end{array}$$

Then $(N_{\overline{i}} \times N_{\overline{g}}) \subset (N_{i} \times N_{g})$ and $(N_{\overline{i}} \times N_{\overline{g}}) \cap \mathbf{H} = \emptyset$.

This completes the proof of Lemma 3.

Theorem 1 A universal pair of regressive isols exists.

Proof: Let (h_{1_k}, h_{2_k}) be an enumeration of all pairs of recursive combinatorial functions of two variables such that for each k, $\lambda_k = \{(x, y) | h_{1_k}(x, y) \neq h_{2_k}(x, y)\}$ is a totally unbounded set. For each k and each one-to-one partial recursive function p, we have from Lemma 3 that the set $H(p, h_{1_k}, h_{2_k})$ is nowhere dense in X^2 . Let W be defined as in Lemma 2. Then using Lemma 2, the set M,

$$\mathsf{M} = \sum_{p,k} \mathsf{H}(p, h_{1_k}, h_{2_k}) \cup (\mathsf{W} \times \mathsf{X}) \cup (\mathsf{X} \times \mathsf{W}),$$

is Category I in X^2 . Since X^2 is Category II by Lemma 1, let $(s, t) \in X^2 - M$. Then s, $t \in X$ so π_s and π_t are infinite retraceable sets. Also, $s \notin W$ so that π_s contains no infinite r.e. subset, i.e., π_s is immune. Similarly π_t is immune and if $S = \text{Req } \pi_s$, $T = \text{Req } \pi_t$, we have S, $T \in \Lambda_R - E$.

We will show that (S, T) is a universal pair. Let $h_1(x, y)$ and $h_2(x, y)$ be two recursive combinatorial functions such that $C_{h_1}(S, T) = C_{h_2}(S, T)$. Let Φ_1 and Φ_2 be the operations inducing h_1 and h_2 , respectively. Then Req $\Phi_1(\pi_s, \pi_t) = \text{Req } \Phi_2(\pi_s, \pi_t)$ so that there exists a one-to-one partial recursive function p(x) such that

$$\Phi_1(\pi_s, \pi_t) \subseteq \delta p \text{ and } p \Phi_1(\pi_s, \pi_t) = \Phi_2(\pi_s, \pi_t).$$

But since $(s,t) \notin H(p,h_1,h_2)$, the set $\lambda = \{(x,y) | h_1(x,y) \neq h_2(x,y)\}$ cannot be totally unbounded. Thus there exist numbers m and n such that $x \ge m$ and $y \ge n$ imply $h_1(x,y) = h_2(x,y)$. This completes the proof.

We summarize some easily shown properties of universal pairs of regressive isols.

Proposition 1 Let (S, T) be a universal pair of regressive isols. Then

a) both S and T are universal,

b) $S \neq T$,

c) (T,S) is also a universal pair.

3 An Application The \leq * relation between isols was introduced in [3], where it was shown that there are pairs of regressive isols incomparable relative to \leq *. (This result also appears in [1].) The use of universal pairs of regressive isols to contradict universal properties of Λ_R^2 is illustrated below in a third proof of this result.

First we characterize universal pairs in terms of the canonical extension to Λ_R^2 , α_{R^2} , of a recursive relation α in \mathbf{E}^2 .

Proposition 2 Let S, $T \in \Lambda_R$ - E. Then (S, T) is a universal pair \iff (S, T) $\notin \alpha_{R^2}$ for all sets $\alpha \subseteq E^2$ such that α is recursive and $E^2 - \alpha$ is totally unbounded.

We will make use of the following result due to J. Barback:

Lemma (Barback) Let a recursive set $\alpha \subset \mathbf{E}^2$ be defined by

$$\alpha = \{(x, y) \mid x \leq y\}.$$

Then for X, $Y \in \Lambda_{\mathsf{R}}$, $(X, Y) \in \alpha_{\mathsf{R}^2} \longleftrightarrow X \leq Y$.

Proof: Since the statement

$$x \leq y \leftrightarrow \min(x, y) = x$$

is valid in $\boldsymbol{\mathsf{E}},$ we apply a well-known result of A. Nerode to extend to Λ_{R} and get

 $(X,Y) \in \alpha_{\mathbb{R}^2} \hookrightarrow \mathsf{D}_{\min}(X,Y) = X.$

But in Λ_R , by a result in [2]

 $D_{\min}(X, Y) = \min(X, Y)$

and from [3], Theorem T4(c)

$$\min(X, Y) = X \longleftrightarrow X \leq * Y.$$

Therefore

 $(X, Y) \in \alpha_{\mathbb{R}^2} \iff X \leq Y.$

Theorem 2 There exist regressive isols S and T that are incomparable relative to $\leq *$.

Proof: Let (S, T) be a universal pair of regressive isols. By Proposition 1(c), (T, S) is a universal pair. Again let

$$\alpha = \{(x, y) \mid x \leq y\}.$$

Then α is recursive and $\mathbf{E}^2 - \alpha$ is totally unbounded. By Proposition 2, $(\mathbf{S}, \mathbf{T}) \neq \alpha_{\mathbf{R}^2}$ and $(\mathbf{T}, \mathbf{S}) \neq \alpha_{\mathbf{R}^2}$. Now apply the preceding Lemma to get

 $S \not\leq T$ and $T \not\leq S$.

This completes the proof.

REFERENCES

- [1] Barback, J., "Two notes on regressive isols," *Pacific Journal of Mathematics*, vol. 16 (1966), pp. 407-420.
- Barback, J., "Double series of isols," Canadian Journal of Mathematics, vol. 19 (1967), pp. 1-15.
- [3] Dekker, J. C. E., "The minimum of two regressive isols," *Mathematischke Zeitschrift*, vol. 83 (1964), pp. 345-366.
- [4] Ellentuck, E., "Universal isols," *Mathematischke Zeitschrift*, vol. 98 (1967), pp. 1-8.
- [5] Myhill, J., "Recursive equivalence types and combinatorial functions," Bulletin of the American Mathematical Society, vol. 64 (1958), pp. 373-376.
- [6] Nerode, A., "Extensions to isols," Annals of Mathematics, vol. 73 (1961), pp. 362-403.

Indiana University—Purdue University at Indianapolis Indianapolis, Indiana

414