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SUMS OF α-SPACES

NORTHRUP FOWLER, III

1 Introduction* In [1] and [2], Dekker introduced and studied an tf0-
dimensional recursive vector space Up over a countable field F. Briefly, it
consists of an infinite recursive set eF of numbers (i.e., non-negative
integers), an operation + from eF x eF into eF and an operation from
F x eF into eF. If the field F is identified with a recursive set, both + and
are partial recursive functions. Let β be a subset of eF. We call β a
repere if it is linearly independent; β is a r.e. repere if β is a r.e. set;
and β is an a-repere if it is included in some r.e. repere. A subspace V of
Up is an a-space if it has at least one a-basis, i.e., at least one basis which
is also an α-repere. A subspace V is isolic if it includes no r.e. repere; it
is r.e. if it is r.e. as a set. The word "space" is used in the sense of
"subspace of VP"9 and we denote "W is a subspace of F " by "W < V".
We usually write (0) for {θ}, and ϋ for UP. Let a c €p. If a = Φ, L (a) = (0).
If otφφy l(a) denotes the span of a, i.e., the set of all linear combinations
(with coefficients in F) of finitely many elements of a. If a = {aQ, . . .}, we
usually write i(a0, . . .) instead of L({α0, . . .}). We use c to denote the
cardinality of the continuum.

The reperes β and γ are independent if they are disjoint and their union
is a repere. The spaces V and PPare independent if V Π W = (0). The sets
β and γ are separable (written: β\γ) if they can be separated by r.e. sets.
The α-reperes β and γ are a-independent (written: j3||y), if they can be
separated by independent r.e. reperes. The spaces V and W are a-
independent (written: F | | JF), if there are independent r.e. spaces Fand W
such that V ^ V and W < W. For spaces F, W9 W is an a-subspace of F
(written: W ̂ a V) if there is an α-space 5 such that w\\S and W Θ S = F.

In [3] we proved that the intersection of two a-spaces need not be an
α-space. The same question naturally arises concerning the sum of two

*The results presented in this paper were taken from the author's doctoral
dissertation written at Rutgers University under the direction of Professor J. C. E.
Dekker.
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α-spaces. Dekker has shown ([1], Proposition P23) that the sum of two
a-independent of-spaces is an α-space. We shall prove that the sum of two
independent of-spaces need not be an a-space. For this purpose we shall
define a family of spaces, c of which are en-spaces and c of which are not.
As a side result we shall obtain a new proof of the existence of non-α-
spaces. We shall need the following three propositions:

Proposition Pi . (Dekker, [1], P30). The ^a-relation between a-spaces is
reflexive, antisymmetric, and transitive.

Proposition P2. ([3], L5). Let Γ = {Ff U"e l}be a non-empty family of distinct
a-spaces, where I = (0, . . ., n - 1) if card Γ = n > 0 and I = e otherwise. Let

S = Π Γ. Then for all finite dimensional spaces B,

S\\B<=>SC\B = (o).

Proposition P3. (Dekker, [2], Theorem 5; see also [4]). Let S, C, V be
spaces. If S\\C and S ® C = F, and if V is an a-space and C is an isolic
a-space, then S is an a-space.

2 Sums Notations. In the following, an denotes a 1-1 function ranging over
an infinite r.e. repere a, aλ - a\$a0, αjand A = L(α). Moreover,

σ0 = {a0 +x\xe α }̂, τ0 = {αx + x \x e α j .

Let δ, β, γ c aγ. Then

σβ = {a0 + x\xe β}, τγ = {aλ + x\xe γ},
EoO) = L(σβ), Ex( r) = L(τy),

T(β, γ) = L(σβU τ8) = E0(β) + Ei(y),
Zδ = T(δ, δ).

Proposition P4. (a) σ0 and τ 0 are disjoint reperes such that neither of the
two spaces L(σ0), L(τ0) is a subspace of the other one9

(b) L(σ0) θ L(«o, aj = A= L(τ0) θ L(a0, aλ),
(c) a0- aU L(σ0) U L(τ0), but a0- aλe L(σ0 U τ0),
(d) L(σ0 U τ0) θ L(α0) = A = L(σ0 U τ0) θ LtαJ,
(e) L(σ0) θ L(α0 - «i) = L(σ0 U τ0) = L(τ0) θ L(α0 - «i).

Proof: Left to the r e a d e r .

Propos i t ion P 5 . (a) The mapping δ - » Z § , / o r δ c ^ /κ?5 the following

properties:

(i) δ φφ^¥aQ -aιeZδ,
(ii) Z δ Π σ0 = σδ, Z δ Π τ 0 = τ δ ,
(iii) it is 1-1.

(b) T/ze mappings β -> E 0(β), /or β c αx, αwί? y -* E x(y), /or γ c αd, Λαve ίΛ.e
following properties:

(iv) E 0 (β) Π σ 0 = σ β , E ̂ y ) Π τ o = τγ,
(v) ί ^ ^ e r ^ 1 - 1 .
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Proof: Left to the reader.

Remarks, (a) If β and γ are known from the context, we often write σ = σβ

and r = τγ and V = Ί(β,γ)= L(σ U r). (b) For β, γ c α ,̂ we have σ c cr0,
r c τ0. Hence σ is a basis for L(σ) and r is a basis for L(τ). We would like
to know when σ U r is a basis for L(σ u r), i.e., when L(σ) Π L(τ) = (0).

Proposition P6. Let a be an infinite r.e. repere and a(n) a 1-1 recursive
function ranging over a. Then for δ c al9

(a) Zδ is a r.e. space <##>δ is a r.e. set,
(b) Z§ is an a-space for every δ c aλ.

Proof: Assume the hypothesis. Then clearly σ0 and τ0 are r.e. sets. Part
(a) follows directly from

δ r.e.=#>σδ, τ δ r.e.=^>Zδ r.e.,

Zδ r.e. =$>Zs Π σ0 = σδ r.e.=^>δ r.e.

To prove part (b), note if δ is empty, Zδ = (0) and we are done. Now
assume that δ Φ φ. Then a0 - aιf[ L(σδ), since a0 - aιfί L(σ0) and σδ c σ0.
Using P5 (i), it is readily proved that

L(σδ) φ l(a0 - αx) = L(σδ u τδ) = Z δ .

Hence Zδ has as a basis the set σδ U {a0 - a^ which is included in the r.e.
repere σ0 U {a0 - a^. Hence Zδ is an α-space. Q.E.D.

Proposition P7. Let β, y C ^ , Then

σ, T independent <Φ#>cαrd(/3 n y) ^ 1.

Proof: We will show:

(a) /3Πy = 0 = = > σ U τ i s a repere,

(b) β Π γ = {ak}=^>σ u r is a repere,

(c) card (β Π γ) > 2 = > L(σ) Π L(τ) * (0).

Consider the relations

(1) r2(a0 + α2) + . . . + rw(α0 + αw) + s2(«! + α2) + . . . + 5w(α! + an) = 0,

(2) (r2 + . . . + rw)α0 + (s2 + . . . + sw)«i + (r2 + s2)α2 + . . . + (rn + sn)an = 0,
(3) at most one of riy s{ is Φ 0, for 2 < i < n,
(4) at most one of rz , sf is ^ 0, for 3 ̂  z < ẑ.
Note that (1)==>(2). Under the hypothesis of (a), we work with (2) and (3).
Thus r, = s{ = 0, for 2 ^ i ^ n and hence σ U r is a repere. To prove (b),
we may assume w.l.g. that k = 2; thus we work with (2) and (4). Then
r{ = Si1 = 0, for 3 < i ^ n, and (2) implies

r2a0 + ̂ 2^! + (r2 + s2)α2 = 0.

Hence r 2 = s 2 = 0 and σ u r is a repere. We now prove (c). Let p, qe β Π y,

where p Φ q. Then
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p - q = (a0 +p) - (a0 + q) e L(σ),
p - q = (aλ +p) - (a, + q) e L(τ).

However,/? - q Φ 0, hence L(σ) Π L(τ) * (0). Q.E.D.

Proposition P8. The restriction of the mapping (β, y) -* TO, y) to the
family of all ordered pairs of disjoint subsets of at has the following
properties:

(a) TO, γ) Πσo= σ, TO, γ) n τ0 = r,
(b) TO, y> Π(σ 0 U τ0) = σ u T,
(c) it is 1-1.

Proof: Let (β, y) be an ordered pair of disjoint subsets of a±: Clearly,

σ c τ(β, y) Π σ0. Now assume #e TO, y) Π σ0, say

# = r 2(α 0 + />2) + + r«(^o + Pn) + s2(«i + q2) + . . + s«(«i + «̂)>

i.e.,

A: = (r2 + . . . + rw)α0 + (s2 + . . . + s J α x + r2p2 + . . . + rn/>n + s2q2 + . . . + sw^w,

where {/>2> •> ί«} c β?fe, . .? ^m} c y Since #e σ0, it can also be written
in the form x = a0 + u, where u e α?1# Thus, ue β u γ since αx is a repere. We
see that the hypothesis ue γ leads to the contradiction

r2 + . . . + rn = 1, r 2 = . . . = rn = 0.

Hence we β and ΛΓ = a0 + u e σβ = σ, and we have proved that TO? γ) ^ &o = or.
The second part of (a) can be proved similarly. Clearly, (a) implies (b),
while according to (a), Tθ> y) uniquely determines (σ, r). Since σ = σβ and
τ= τγ, we see that (σ, τ> uniquely determines O, y). Thus the mapping
O, γ)- TO, y) is 1-1. Q.E.D.

Proposition P9. If β and γ are disjoint and non-empty, a0 - α x / L(σ U T) αn<i

L(σ U T) φ L (α0 " «i) = Zβuy.

Proof: Left to the reader.

Proposition P10. For disjoint subsets β, y o/ α ,̂

(a) dim L(σ U T) = cαrd(|3) +cαrd(y),

(b) codimA L(σ U r) = 2 + cαrdfα^β U y)].

Proof: Under the hypothesis, σ and r are disjoint and σ U r is a basis of
L(σ U r). Thus

dim L(σ U T) = card σ + card T = card σ̂  + card Tγ = card β + card y.

This proves (a). Now let δ = a\(β U y) and p = Tg, then

L(σ U r U p) ® L(α0 - α j = Z β U y U δ = Zα i,
L(σ U T) Θ L(p) φ l(a0 - αx) = L(σ0 U τ 0).

According to P4 (d), L(σ0 u τ0) has codimension 1 with respect to A. Hence,
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codim^ L (σ U T) = 2 + card p = 2 + card δ.

Q.E.D.

Corollary Cll . If (β, γ) is a decomposition of al9 then codim^Lίσ u T) = 2.

Proposition P12. Let a be an infinite r.e. repere, an a 1-1 recursive
function ranging over a, and (β, γ) an ordered pair of disjoint non-empty
subsets of aλ. Then σ and τ are a-reperes which are separated by the r.e.
reperes σ0 and τ0.

Proof: Note that σ c σ0, τ c τ0, where σ0, τ0 are disjoint reperes by P4.
Since an is a recursive function, σ0 and τ0 are r.e. reperes and σ, r a r e
α-reperes. Q.E.D.

Agreement. We recall that a is an infinite repere and an 1-1 function
ranging over a. In the special case that a is an α-repere, there is a r.e.
repere α such that a c ά. With a we associate a 1-1 recursive function an

ranging over α, and we agree to choose an in such a way that ά0 = a0, aΊ = al9

and put a1 = ά\{α0,
 βi}> resulting in aλ = a Π a1. We define

"σo = %ίo+x\xe Si}, τ0 = {άi + x\xe δL}.

Corollary C13. L£ί en δ^ an infinite a-repere, and (β, γ) an ordered pair of
disjoint non-empty subsets of α?1# Then σ and τ are a-reperes, and further-
more, there are r.e. disjoint r.e. reperes σ0, τ0 such that

σ c oro c σ0 αnί? r c τ0 c τ0.

Proof: Since a is an infinite a-repere, a c α, an infinite r.e. repere. Then
apply P12 to o? = pαw, where, by the above agreement, we are assuming that
Έι = aλ and a0 = a0, hence σ c α0 c σ0 and r c τ0

 c τ0. Q.E.D.

Remark. Under the hypothesis of C13, L(σ) Π L(τ) = (0), L(σ) θ L(r) =
L(σu r). Here L(σ), L(τ) are o -spaces. Since /3 ̂  σ and y ^ T, we have
dimαL(σ) = Req(/3) and dimαL(τ) = Req(y). We wish to solve the following two
problems:

(I) "When is σ U r an α-repere?"

(II) "When is L(σ U r) an o -space?"

Proposition P14. For separable, independent a-reperes δ and θ,

δ U θ is an a-repere <=#>δ 11 θ.
Proof: Let δ, 0 be independent a-reperes, δ c δ, θ c β, where δ and β are
disjoint r .e. reperes.

(a) Assume that δ U θ is an α-repere, say δ u θ c λ, where λ is an r .e.

repere. _Then δ_c δ̂  and δ ^ λ imply δ c s n l Similarly, θ c ~θ Π λ._Note
that δ ί l λ and ΘΠλ are r.e. reperes which are disjoint, since θ Π δ = 0.
Since δ ί l λ and ΘΠλ are both included in the r.e. repere λ, they are also
independent. Thus δ 11 θ.
(b) Assume δ | | # , say δ c δ0, θ c θ0, where θ0, δ 0 are independent r.e.
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reperes. Then δ U θ c δ 0 U θOy where δ0 U θ0 is an r.e. repere. Hence δ U θ
is an α-repere. Q.E.D.

Proposition Pi5. Let a be an infinite a-repere. Let (β, γ) be an ordered
pair of disjoint non-empty subsets of aίt Then

(a) L(σ) r.e. space<=^>β r.e. set, L(τ) r.e. space<^γ r.e. set,
(b) L(σ u T) r.e. space <#̂ >β and γ are r.e. sets,
(c) Zβ[jγ r.e. space <=>β u γ r.e. set.

Proof: Let a c ~a} where a is an r.e. repere.

(a) If β is an r.e. set, so is σβ = σ, hence L(σ) is an r.e. space. Now
assume that L(σ) is an r.e. space. Since j3 c Si, we see by P5 (b) that
L(σ) Π σ0 = σ. Then σ is r.e. since σ0 is r.e.; then β is also r.e. Similarly,
one proves the second part of (a).
(b) If β, γ are r.e. sets, so are σ, r, hence L(σ u r) is an r.e. space. Now
assume that L(σ U r) is an r.e. space. Using P8, we see that L(σ U r) Π σ0 =
σ, L(σ u r) Π τ 0 = r. Hence σ and τ are r.e. and so are β and y.
(c) By P6 (a). Q.E.D.

Proposition P16. Let a be an infinite a-repere. Let (β, γ) be an ordered
pair of disjoint non-empty subsets of at. Then the three following condi-
tions are mutually equivalent:

(a) β\γ, (b) σ 11 T, (c) σ U T is an a-repere.

Proof: Let a c ~a9 where ~ά is an infinite r.e. repere. Suppose that (β, γ) is
an ordered pair of disjoint non-empty subsets of alt Then the sets σ and r
are independent α-reperes separated by the r.e. reperes σ0 and τ0, Thus
(b)<£=>(c) by P14. Thus all we need to show is (a)<#^>(b).

(a) =#>(b). Suppose that β\γ, say β c β'y y C y f where βf, γ' are disjoint r.e.
sets. Then set β = βf D^y* = y' Π 5i. Then β c β, γ c y where β, y are
independent disjoint r.e. subsets of 51# Let σ = σ ,̂ l = Jy, then σ, r are
independent r.e. reperes, since β, y are disjoint r.e. sets. Moreover,
σ c cr, T c T and hence σ 11 r.
(b)=#>(a). Assume σ| |τ, say σ c σr, τ<^τr, where σf, τ f are independent
r.e. reperes. Put σ = σf Π cr0, ~τ = τ' O^Q. Then σ, r are independent r.e.
reperes. Let

β = {yeaι\a0 + y eσ},
γ = {y eaι\a1 + ye τ}.

Then β, y are r.e. subsets of #! such that β c β? y C ^ g = ̂  f. = r̂  σ c σ,
and T c r. According to P7, the relation σ | | τ implies cαrd(β Π y) ̂  1. If
β D'γ = 0, β and y are separated by the r.e. sets β and y, hence β|y. Now
suppose β Π y = (k). Since β and y are disjoint, we have kfίβorkfέγ. We
may assume w.l.g. that kjί β. Then, β and y are separated by the r.e. sets
~β\{k} and y, hence again β | y. Q.E.D.

Remark. P16 answers question (I) in the remark following the proof of C13.
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We have not yet answered the second question. The relevant problem is
whether

L(σϋτ) an α-space =>σ u r an α-repere.

We shall see that this is indeed the case.

Notation. Let W be any space. Then

ΘO(W) = {xeaι\aQ+xe w], Θ^W) ={xeaι\aι+xe w}.

Now assume cϋCα, where a is an r .e. repere. Then

~ΘO(W) = {x e ~ a x \ a Q + x e W], l ^ W ) ={xeά1\a1+xe W}.

Remark. Clearly (a) Θ^W) = H^W) Π alf Θ2(W) = ~Θ2{W) Π a{, (b) 0o[L(σ)] = β,
and 0i[L(τ)] = y; (c) if W is an r.e. space, then ~ΘO(W) and ~θχ(W) are r.e. sets.

Proposition P17. Let (β, y) be an ordered pair of disjoint non-empty
subsets of aι and L(σ U r) ^ W. Then exactly one of the following is true;

(a) ΘO(W) Π θtiW) = Φ and a0 -a^W,
(b) β U γ c θo(W) Π θλ{W) andao-a.e W.

Proof: It is readily seen that ΘO(W) Π Θ^W) Φ φ if and only if a0 - aγ e W.
Thus, either (a) holds or a0 - a1 e W. We now prove

a0 - ax e W =Φβ U γ c 0o(pp) n ^i(PΓ).

Assume the hypothesis. Trivially, β c 0O(P^). Also,

peγ=Φa1 +p,ao-a1e W=^ao+pe W==>pe ΘO(W).

Thus j3 u y c ΘO(W). Similarly one shows that β u y c: θ^W). Hence β U γ c

βo(^) Π 6>x(Wθ. Q.E.D.

Proposition P18. L^ί a be an infinite a-repere. Let (β, γ) be an ordered
pair of disjoint non-empty subsets of α l β Then the following five conditions
are mutually equivalent:

(a) β I y, (b) σ 11 r, (c) σ U r arc a-repere,

(d) L(aUτ) arc a-space, (e) L(σ u r) | | L(«o - «i)

Proof: Let of c ά. In view of P16, it suffices to show that (c)=Φ(d)=# >

(e) ^ ^ ( a ) . The first conditional is obvious. According to P9, a0 - aλ^ L(σ U
r). If (d) holds, we obtain (e) by P2. Finally, assume (e). Then there is a
r.e. space W such_that L(σ u T) ̂  W and a0 - ax)έ W. We conclude by P17
that Ί)0(W) and \(w) are disjoint r .e. sets. Moreover, β c \(w) and γ c
l9i(ϊF), hence β|y and (a) holds. Q.E.D.

Proposition P19. Let W ̂  V, where V is an r.e. space, and codίm-(PF) finite.

Then

W is an a-space <^>W is an r.e. space.

Proof: Only the = φ conditional needs a proof. Let Wbe an α-space. Since
W ^ V, there is an α-basis β of W and an r.e. repere β such that β c β c γ.
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Then the fact that codim^(w) is finite implies that β\/3 finite. This and the
fact that β is r.e. implies β is r.e. Hence W = l(β) is an r.e. space. Q.E.D.

We present a new proof of the existence of non-α-spaces. Let Δ
denote the family of all ordered pairs of disjoint non-empty subsets of aλ.
For δ c αfi, δ infinite, we define

Δ δ = {(β, γ)eΔ\βUγ= δ}.

Consider the mapping

</3, γ) -* T(β, Ύ) = F, for (β, Ύ) e Δ β l .

This mapping is 1-1 by P8. Since its domain has cardinality c, so has its
range. By P10 the range consists of spaces of codimension 1 w.r.t. the
space Zα ( 1 ) . We now make the additional assumption that aλ is r.e. Then
Zα(D is an r.e. space. Thus, for Fe T(Δα(1)), F i s r.e. if and only if F i s an
α-space by P19. However, there are only No

 r e. spaces, and hence T(Δα(1))
contains exactly c non-α-spaces.

While this proof uses a cardinality argument, P18 enables us to
characterize those (β, γ)eΔaι for which T(/3, y) is an α-space. There are
the ordered pairs (β, y) such that β\γ; since αi is r.e., these are the
ordered pairs (β, y) such that β is r.e. and y- a\β is r.e. Thus, even in
the simple case that β is r.e., but y is not, T(β, y) is a non-α-space. In
that case,

T(/3, y ) = L(σuτ) = L(σ) ® L(τ)

while L(σ) is r.e., but L(τ) is not r.e.
More generally, consider the mapping (β, y) —> 1 (β, y) = V, for (β, γ) e

Δδ, where δ = β u γ. For each of the c choices of the infinite subset δ of aί9

we obtain a class of c spaces Fof the form T(j3, y), with β U γ = δ. Among
these, No are Qf-spaces, namely those for which β\γ> and c are non-α-
spaces, namely those for which not (β\γ). Let Vl9 V2 correspond to
different choices of (β, γ) for a fixed δ = β u γ. Then VΊ ® l(a0 - at) = Zδ,
and F2 Θ L(α0 - aj = Z δ . Since Vλ Φ F2, we have Vx + F2 = Z δ . Thus, we
have a family of c distinct non-α-spaces all of which are subspaces of Zδ

with codum 1 w.r.t. Z δ . According to P6, Zδ is an r.e. space if and only if
δ is an r.e. set.

Proposition P20. (a) There are c ordered pairs (σ, τ> of independent a-
reperes which are separable by r.e. reperes, but not by independent r.e.
reperes.
(b) There are c ordered pairs (S, T) of independent a-spaces whose sum is
not an a-space.

Proof: Let (β, γ) be an ordered pair of non-empty subsets of al9 which are
disjoint but not separable, σ = σ ,̂ r = τ y , S= L(σ), T= L(τ). Then (σ, T)
and (S, T) satisfy the requirements. Moreover, (0, y) can be chosen in c
ways and the mappings <β, γ) -• <σ, r), </3, y) -• (S9 T) are 1-1. Q.E.D.

Proposition P21. Let a be an infinite a-reperey and A = L(α). Then
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(a) Zαd) θ L(α0) = Zα(i) θ KαJ = A,
(b) Za(1)\\l(a0) and Z α ( 1 ) I M α J ,
(c) Zαd) ^aA and Za(1) is an a-space.

Proof: Let α C ^ where ~ά is an infinite r .e. repere. Recall that the 1-1
function an ranging over a, and the 1-1 recursive function an ranging over a
are chosen so that aQ = a0 and αx = aγ. Put A = L(α). Suppose that σ0, τ0,
Z α ( 1 ) are defined w.r.t. α̂  and σ0, τ0, Zg ( 1 ) are defined w.r.t. 5 l β Then we
have by P4 and the definitions of Z α ( 1 ) , Zα ( 1 ) ,

L(σ0 U τ0) = Z d ( 1 ) , L(σo_U τo)_= Z 3 ( 1 ) , _
L(σ0 U τ0) φ L(α0) = L(σ0 U τ0) © L ^ ) = A,
L(σ0 U τ0) φ L(α0) = L(σ0 U τ0) Θ L(αJ = A.

Moreover, L(cF0 u τ"0) is an r .e. space, while Z α ( 1 ) is an α-space by P6. Note
that the first part of (c) follows from (a) and (b). Thus it suffices to prove
L(σ 0 U τ0) ̂  L(σ0 u τ 0). Since a0 = a0, a1 = au we have σ0 c σ0, τ 0 c τ0, hence
L(σ0U τ0) < L(σ0U τ 0). Q.E.D.

Proposition P22. Let a be an infinite a-repere. Consider the 1-1 mapping
(0, y) —* T(β, y) = F, w zί/i as domain the family of all decompositions (β, γ)
of a?i into non-empty sets. Then we have for each such ordered pair (β, y),

(a) V Φ L(α0 - «i) = Z α ( 1 ) , F φ L(α0, αx) =A,
(b) the following five conditions are mutually equivalent:

(i) F| |L(α 0, ax), (ii) F | |L(f l o -«i),
(iii) F ̂ α Z α ( 1 ) , (iv) F ̂ αΛ, (v) F 25 an a-space.

Proof: Part (a) follows from P9 and P4 (d). We prove part (b) by showing
that (i) =#>(ii) =^(iii) =#>(iv) =Φ(v) =#>(i). The first two conditionals are
immediate. By P21 (c) we know that Z α ( 1 ) ^ α A. Thus, assuming (iii),

V ^a Zαd) and Z α < 1 ) ^aA =^>V ^aA

by P I . This proves (iii) =Φ>(iv). According to P3,

F ^a A and A c^-space and codimΛ(F) finite =^>V Q?-space.

Thus (iv) =>(v) follows from the fact that A is an α-space and codimA(F) = 2.
Finally, assume (v). By part (a) and P2, we have F| |L(α 0, «i). Q.E.D.

Corollary C23. For every $Q~dimensional a-space A, there are c non-a-
spaces V such that V is a subspace of A of codimension 2 w.r.t. A.

Remark. If in C23 we choose an isolic No-dimensional α-space for A, we
obtain Hamilton's result: there are exactly c isolic non-α-spaces ([5],
Theorem 5, p. 93).
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