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SUMS OF a-SPACES

NORTHRUP FOWLER, III

1 Intvoduction* In [1] and [2], Dekker introduced and studied an R,-
dimensional recursive vector space Up over a countable field F. Briefly, it
consists of an infinite recursive set ¢ of numbers (i.e., non-negative
integers), an operation + from ep x ¢z into ez and an operation - from
F x e into eg. If the field F is identified with a recursive set, both + and -
are partial recursive functions. Let B be a subset of ex. We call 3 a
repéve if it is linearly independent; B is a 7.e. reperve if B is a r.e. set;
and B is an a-7epére if it is included in some r.e. repére. A subspace V of
Ur is an a-space if it has at least one a-basis, i.e., at least one basis which
is also an a-repére. A subspace V is isolic if it includes no r.e. repére; it
is 7.e. if it is r.e. as a set. The word ‘‘space’’ is used in the sense of
“subspace of Up’’, and we denote “W is a subspace of V’’ by “W < V.
We usually write (0) for {0}, and U for Up. Leta Cep. If =9, L(a) = (0).
If a#®, L(a) denotes the span of a, i.e., the set of all linear combinations
(with coefficients in F) of finitely many elements of a. If a = {a,, . . .}, we
usually write L(a,, . ..) instead of L{a,, . ..}). We use ¢ to denote the
cardinality of the continuum.

The reperes B and y are independent if they are disjoint and their union
is a repére. The spaces V and W are independent if VN W = (0). The sets
B and y are sepavable (written: (|y)if they can be separated by r.e. sets.
The a-repéres 8 and y are a-independent (written: Bl|y), if they can be
separated by independent r.e. repéres. The spaces V and W are a-
independent (written: V|| W), if there are independent r.e. spaces V and W
such that V< V and W< W. For spaces V, W, W is an a-subspace of V
(written: W <, V) if there is an a-space S such that W||Sand W@ S = V.

In [3] we proved that the intersection of two a-spaces need not be an
a-space. The same question naturally arises concerning the sum of two

*The results presented in this paper were taken from the author’s doctoral
dissertation written at Rutgers University under the direction of Professor J. C. E.
Dekker.
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a-spaces. Dekker has shown ([1], Proposition P23) that the sum of two
a-independent a-spaces is an a-space. We shall prove that the sum of two
independent a-spaces need not be an a-space. For this purpose we shall
define a family of spaces, ¢ of which are a-spaces and ¢ of which are not.
As a side result we shall obtain a new proof of the existence of non-a-
spaces. We shall need the following three propositions:

Proposition P1. (Dekker, [1], P30). The <,-velation between a-spaces is
reflexive, antisymmetvic, and tvansitive.

Proposition P2. ([3], L5). Let I'={V;|ie I} be a non-empty family of distinct
a-spaces, where 1=0, .. .,n =~ 1) if cad T =n > 0 and I = ¢ othevwise. Let

S = ﬂ T'. Then for all finite dimensional spaces B,
S||B<>s n B = (0).

Proposition P3. (Dekker, [2], Theorem 5; see also [4]). Let S, C, V be
spaces. If S||C and S ® C =V, and if V is an a-space and C is an isolic
a-space, then S is an a-space.

2 Sums Notations. In the following, a, denotes a 1-1 function ranging over
an infinite r.e. repére a, a; = a\{g,, @,} and A = L(a). Moreover,

oo={ao+xlxear}, 7o=1{a, +xlxea}

Let 5, B, y © @;. Then

op ={ao +xlxeBl, 7y={a, + x|xer},
Eo(B) = L(og), Ei(y) = L(7y),
T(B, ')/> = L(O'ﬁ U 75) = Eo(B) + El(‘}’),
Zs = 145, 6).

Proposition P4. (a) o, and 7, are disjoint vepéves such that neithev of the
two spaces L(ao), L(7,) is a subspace of the other one,

(b) L(oo) @ L(ao, @) = A = L(7o) ® Llao, a)),

(¢) ao-aifd Loy U LTy, but ay - a,e Lo, U 7o),

(d) LogU Ty ® Llay) =4 = Lo, U 7o) @ Liay),

(e) L(oo) ® L@ - @) = L(0o U 7o) = L(79) @ L(ao - ay).

Proof: Left to the reader.

Proposition P5. (a) The mapping 6 — Zs, for & Ca, has the following
properties:

(1) 6 +P<>a,-aeZs,

(i) ZsNog=05,Z5 NTo=Ts,

(iii) @t is 1-1.

(b) The mappings B — Eo(B), for B C ai, and y — E(y), for y € ay, have the
following properties:

(iv) EoB)Nog= op, E 1('}’) NTo= Ty,
(v)  they are 1-1,
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Proof: Left to the reader.

Remarks. (a) If 8 and y are known from the context, we often write o = o
and 7=7yand V=Tg,=LouT7). (b) For B, yCa, we have o C a,
7 C 7o. Hence o is a basis for L(c) and 7 is a basis for L(7). We would like
to know when o U 7 is a basis for L(o U 7), i.e., when L(o) N L(7) = (0).

Proposition P6. Let a be an infinite v.e. vepéve and a(n) a 1-1 recursive
function ranging over a. Then for 6 C a,

(a) Zs is a 7.e. space <5 is a v.e. set,
(b) Zs is an a-space for every 5 C aj.

Proof: Assume the hypothesis. Then clearly o, and 7, are r.e. sets. Part
(a) follows directly from

5 r.e.=05, T5 r.e.=>Z;5 r.e.,
Zs r.e.=Zs N0, =05 r.e.=>Hd r.e.

To prove part (b), note if 6 is empty, Z5 = (0) and we are done. Now
assume that 6 #+ . Then a, - a,¢ L(os), since a, -a.f L(o,) and o5 C o,.
Using P5 (i), it is readily proved that

L(og) ® L(ao - ay) = L{os U Tg) = Zs.

Hence Z5 has as a basis the set o5 U{a, - a,} which is included in the r.e.
repére o, U {a, - @,}. Hence Zs is an a-space. Q.E.D.

Proposition P7. Let 8, y C a,. Then

0, T independent <>card(B N y) < 1.
Proof: We will show:
(@) BNy=@P=>0UTisa repére,

() BNny={a,}=>0U 7 is a repére,
(¢) card(BNy)=2=>L(c) N L(7) # (0).

Consider the relations

(1) 7@ + @) + ...+ 7@ + @n) + Sp(ay +as) +...+s,a; +a,) =0,

(2 (re+...+7)a+(Sa+...+8)a + (1 +8)az+. ..+ (7, +8,)a,=0,
(3) at most one of 7;, s; is # 0, for 2 < i < n,
(4) at most one of 7;, s; is #0, for 3 < i < n.

Note that (1) =>(2). Under the hypothesis of (a), we work with (2) and (3).
Thus 7; =s; =0, for 2 <¢{ <n and hence o U 7 is a repére. To prove (b),
we may assume w.l.g. that k= 2; thus we work with (2) and (4). Then
¥; = 8;=0, for 3 <i <n, and (2) implies

Vol + S,ay + (72 + Sp)a, = 0.

Hence 7, = s, = 0 and ¢ U 7 is a repére. We now prove (c). Letp, ge BNy,
where p # gq. Then
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P -q=(,+p) - (@, +q)e L(0),
p-q=@,+p) - (@ +q)e L(7).

However, p - g # 0, hence L(0) N L(7) # (0). Q.E.D.
Proposition P8. The vestriction of the mapping (B, y) — T(B, y) to the

family of all ordeved pairs of disjoint subsets of a, has the following
properties:

(a) T(B, 7>n0'0=0', T<B; ')’>nTO=T’
® TB,wN(,UT)=0UT,
(¢) dtis 1-1.

Proof: Let (B, y) be an ordered pair of disjoint subsets of a;,: Clearly,
0 C T{B, y) N 0,. Now assume x € T(B, ) N 7o, SAY

X=7o(Ag + Do) + oo +Vnl@g +Pp) +S@ + ) +. .. +Spla, +qn),
i.e.,
K=ot e +¥)g+(Sa+ oo +8Sp)ay +VaDo+ oo+ VaPp +Sado + « .. + Spm,
where {pay . .+, o} C B,{d2s - « +, 4} € y. Since ¥ € 0, it can also be written

in the form x = a, + u, where u e @,. Thus, ue B U y since @, is a repére. We
see that the hypothesis « € v leads to the contradiction

Vot oo otVy=1,7,=,..=27,=0.

Hence ue B and ¥ = a, + e 05 = o, and we have proved that T{B, ) N 0, = o.
The second part of (a) can be proved similarly. Clearly, (a) implies (b),
while according to (a), T{B, y) uniquely determines (o, 7). Since ¢ = 03 and
T =Ty, we see that (¢, 7) uniquely determines (B, y). Thus the mapping
(8, y) — T(B, 7 is 1-1. Q.E.D.

Proposition P9. If B and y ave disjoint and non-empty, a, - a, ¢ L(oc U 7)and
Llou ) @ L(ae - a)) = Zpuy.

Proof: Left to the reader.
Proposition P10. For disjoint subsets B, y of a,,

(a) dim L(oc U 7) =card(B) +card(y),
()  codimgL(oc U 7) =2 +card[a,\(B U y)].

Proof: Under the hypothesis, ¢ and 7 are disjoint and ¢ U 7 is a basis of
L(c U 7). Thus

dim L(0c U 7) = card 0 + card T = card 0 +card T, = card 8 + card y.
This proves (a). Now let 6 = o;\(BU y) and p = 75, then

LlouTup) ® Llay - ay) = Zayyus= Zays
LlouT) @ L(p) @ L(a, - a1) = L(op U To).

According to P4 (d), L(c, U 7,) has codimension 1 with respect to A. Hence,
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codimyL(cUT) =2 +cardp = 2 +card 6.
Q.E.D.
Corollary C11. If (B, y) is a decomposition of a,, then codimaL(c U 7) = 2.

Proposition P12, Let a be an infinite 7.e. repeve, a, a 1-1 recursive
function vanging over a, and (B, v) an ovdered pair of disjoint non-empty
subsets of a,. Then o and T are a-vepeves which ave sepavated by the 7.e.
reperes o, and T,.

Proof: Note that ¢ C g,, 7 C 75, where 0,, T, are disjoint repéres by P4.
Since a, is a recursive function, o, and 7, are r.e. repéres and o, T are
a-repéeres. Q.E.D.

Agreement. We recall that @ is an infinite repére and a, 1-1 function
ranging over a. In the special case that @ is an a-repére, there is a r.e.
repére @ such that @ C @. With @ we associate a 1-1 recursive function @,
ranging over @, and we agree to choose a, in such a way that a, = a,, @, = a,,
and put @, = @ \{a,, @,}, resulting in @, = a N @,. We define

Ty =1, +xlxea}, 7o ={a, + xlxea}.

Corollary C13. Let a be an infinite a-vepére, and (B, y) an ordeved pair of
disjoint non-empty subsets of a,. Then ¢ and T ave a-vepéves, and fuvther-
more, theve ave v.e. disjoint v.e. reperes Gq, T, such that

0CoyCogand TC 17, C T

Proof: Since a is an infinite a-repére, a C @, an infinite r.e. repére. Then
apply P12 to a = pa,, where, by the above agreement, we are assuming that
a,=a,and @, = a, hence 6 C 0, S 0pand 7 C 7, C 7,. Q.E.D.

Remark. Under the hypothesis of C13, L(o) N L(7) = (0), L(o) ® L(7) =
L(cuT). Here L(0), L(7) are a-spaces. Since B~ ¢ and y ~ 7, we have
dim,L (o) = Req(B) and dim,L(7) = Req(y). We wish to solve the following two
problems:

()  ““When is ¢ U T an a-repére ?”’
(I) “When is L(oc U 7) an a-space?”’

Proposition P14. For sepavable, independent a-vepeves & and 6,
5 U 0 is an a-repeve <>5|| 6.

Proof: Let 6, 6 be independent a-repéres, 5 C 5, 6C 67, where 6 and 6 are
disjoint r.e. reperes.

(a) Assume that 6 U 6 is an a-repére, say 6 U § C A, where X is an r.e.
repére. Then 6 C§ and 6 C x imply 6 € & Nx. Similarly, 9§ C 6 N x. Note
that 5 N x and 6 N X are r.e. reperes which are disjoint, since 6 Nd = P.
Since 5 N x and # N X are both included in the r.e. repére A, they are also
independent. Thus 5| 6.

(b) Assume 6||6, say 6 C 5, 6C 6, where 6, 5, are independent r.e.
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repéres. Then 6 U 6 C 8, U 6,, where 6,U 6, is an r.e. repére. Hence 5U 6
is an a-repére. Q.E.D.

Proposition P15. Let a be an infinite a-repére. Let (B, v) be an ovdered
pair of disjoint non-empty subsets of a,. Then

(@) L(o) 7.e. space<>B 7.e. set, L(1) v.e. space <>y 7.e. set,
() L(oc U 7) 7.e. space =B and y are 7.e. sels,
(c¢) Zguy 7.e. space <>B U y 7.e. sel.

Proof: Let a C @, where @ is an r.e. repére.

(a) If B is an r.e. set, so is og=0, hence L(0) is an r.e. space. Now
assume that L(c) is an r.e. space. Since g C a,, we see by P5 (b) that
L(0) NGy = 0. Then o is r.e. since G, is r.e.; then B is also r.e. Similarly,
one proves the second part of (a).

(b) If B, y are r.e. sets, so are o, 7, hence L{oc U 7) is an r.e. space. Now
assume that L(c U 7) is an r.e. space. Using P8, we see that L(c U 7) N0, =
0, LloUT) NTy= 7. Hence o and T are r.e. and so are $ and y.

(c) By P6 (a). Q.E.D.

Proposition P16. Let a be an infinite a-vepere. Let (B, ) be an ordeved
paivr of disjoint non-empty subsets of a,. Then the three following condi-
tions are mutually equivalent:

(@) Bly, ) all7, (c) o U Tis an a-repere.

Proof: Let a Ca, where a is an infinite r.e. repére. Suppose that (8, 3 is
an ordered pair of disjoint non-empty subsets of @;. Then the sets o0 and 7
are independent a-repéres separated by the r.e. repéres G, and 7,. Thus
(b) <=(c) by P14. Thus all we need to show is (a)<>(b).

(a) = (b). Suppose that 8|y, say B C B, y C y' where B’, y' are disjoint r.e.
sets. Then set B=B"Na, y=»'Na,. Then BCB, y C 5 where B, y are
independent disjoint r.e. subsets of @,. Let o =0; T=T7y, then 0, T are
independent r.e. repéres, since B, y are disjoint r.e. sets. Moreover,
0 €0, T C T and hence ol|7.

(b) =>(a). Assume o||7, say ¢ C o', 7 C 7', where o', 7' are independent
r.e. repéres. Put 0=0¢'N0, 7=7"NT,. Then 0, T are independent r.e.
reperes. Let

E={yeallao+yea}:
y={yvea,la, +yeTh

Then f, y are r.e. subsets of @ such that BC B, y €%, 3, =0, 73 =7, 0 CT,
and 7 € 7. According to P7, the relation G||7 implies card(8N7y) < 1. If
BNy =9, B and y are separated by the r.e. sets B and 7, hence 8]y. Now
suppose BNy = (k). Since B and y are disjoint, we have k¢S or k£y. We
may assume w.l.g. that 2¢B. Then, B and y are separated by the r.e. sets
B\{%} and 7, hence again B|y. Q.E.D.

Remark. P16 answers question (I) in the remark following the proof of C13.
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We have not yet answered the second question. The relevant problem is
whether

L(oc U T) an a-space =>0 U T an a-repére.
We shall see that this is indeed the case.
Notation. Let W be any space. Then
6o(W) =fx earlag +xe W}, 6,(W) = fxea,la, +xewh
Now assume @ C @, where @ is an r.e. repére. Then
Go(W) = {xedila, +x e W}, 6,(W) = {xea,la, + x e W}

Remark. Clearly (a) 6,(W) = 6,(W) N @y, 6,(W) = 6,(W) Nay; (b) 64[L(0)] = B,
and 6,[L(7)] = y; (c) if W is an r.e. space, then 6,(W) and 6,(W) are r.e. sets.

Proposition P17. Let (B, y) be an ovdered pair of disjoint non-empty
subsets of a, and L(c U T) < W. Then exactly one of the following is true:

(@) 6o(W) N 6,(W) =D and ap - a,£ W,
(b) BU Yy C 6,(W) N 6,(W) and a, - a, e W.

Proof: 1t is readily seen that 6,(W) N 6,(W) #+ @ if and only if a, - a, e W.
Thus, either (a) holds or a, - a, € W. We now prove

Ay - a e W=>B Uy C 8,(W) N 6,(W).
Assume the hypothesis. Trivially, B C 6,(W). Also,
pey=>a,+p,a0-a e W=>ao+peW=>pe (W)
Thus B Uy C 6o(W). Similarly one shows that 8 Uy C 6,(W). Hence BUy C
8o(W) N 6, (W). Q.E.D.

Proposition P18. Let a be an infinite a-vepéve. Let (B, v) be an ordered
paiv of disjoint non-empty subsets of a,. Then the following five conditions
ave mutually equivalent:

(a) Bly, () all7, (c) oUTan a-repére,
(d) L(oc U 7) an a-space, (e) L(c U 7)||L(a, - a,).

Proof: Let aCa. In view of P16, it suffices to show that (¢c)=>(d) =
(e) =>(a). The first conditional is obvious. According to P9, @, - a,£ L(c U
7). If (d) holds, we obtain (e) by P2. Finally, assume (e). Then there is a
r.e. space W such that L(c U7) <W and a, - a,f W. We conclude by P17
that 8,(W) and 6,(W) are disjoint r.e. sets. Moreover, B C 6,(W) and y C
9,(W), hence 8|y and (a) holds. Q.E.D.

Proposition P19. Let W <V, wheve V is an v.e. space, and codim:(W) finite.
Then

W is an a-space <> W is an v.e. space.

Proof: Only the => conditional needs a proof. Let W be an a-space. Since
W <V, there is an a-basis B of W and an r.e. repére 8 such that BC B C V.
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Then the fact that codimy(W) is finite implies that B\B finite. This and the
fact that B is r.e. implies B8 is r.e. Hence W = L(B) is an r.e. space. Q.E.D.

We present a new proof of the existence of non-a-spaces. Let A
denote the family of all ordered pairs of disjoint non-empty subsets of a,.
For & C a,, 6 infinite, we define

Ay = {8, YealBuy =2l
Consider the mapping
B, ) = T(B, ) =V, for (8, Y € Aq,.

This mapping is 1-1 by P8. Since its domain has cardinality ¢, so has its
range. By P10 the range consists of spaces of codimension 1 w.r.t. the
space Zy). We now make the additional assumption that @, is r.e. Then
Zacy is an r.e. space. Thus, for Ve T(Aqy), V is r.e. if and only if V is an
a-space by P19. However, there are only 8, r.e. spaces, and hence T(Ay))
contains exactly ¢ non-a-spaces.

While this proof uses a cardinality argument, P18 enables us to
characterize those (B, 7) € Ay, for which T(B, y) is an a-space. There are
the ordered pairs (B, j) such that B|y; since ai is r.e., these are the
ordered pairs (B8, y) such that 8 is r.e. and y = @,\B is r.e. Thus, even in
the simple case that 8 is r.e., but y is not, T(8, v is a non-a-space. In
that case,

T(B,y)=LcuT)=L(c)®L(7)

while L(0) is r.e., but L(7) is not r.e.

More generally, consider the mapping (B, y) — T(B, ) = V, for (B, p) €
A, where 6 = BU y. For each of the ¢ choices of the infinite subset 6 of a;,
we obtain a class of ¢ spaces V of the form T(3, 'y), with B Uy =6. Among
these, 8, are a-spaces, namely those for which Bly, and ¢ are non-a-
spaces, namely those for which not (8|y). Let V), V., correspond to
different choices of (B, ) for a fixed 6 = BUy. Then V; ® L(a, - a)) = Zg,
and V, @ L(a, - @,) = Z5. Since V, # V,, we have V, + V, = Z5. Thus, we
have a family of ¢ distinct non-a-spaces all of which are subspaces of Z;
with codum 1 w.r.t. Z5. According to P6, Z; is an r.e. space if and only if
§ is an r.e. set.

Proposition P20. (a) Theve ave ¢ ovdeved paivs (o, T) of independent a-
vepéres which ave sepavable by r.e. vepéves, but not by independent v.e.
repeves.

(b) There ave ¢ ovdeved pairs (S, T) of independent a-spaces whose sum is
not an a-space.

Proof: Let (B, ) be an ordered pair of non-empty subsets of @,, which are
disjoint but not separable, ¢ = 0p, T=17y, S= L(0), T= L(7). Then (o, 7)
and (S, T) satisfy the requirements. Moreover, (3, ) can be chosen in ¢
ways and the mappings (B, y) — (o, T, (B, y) — (S, T) are 1-1, Q.E.D.

Proposition P21. Let a be an infinite a-vepeve, and A = L(a). Then
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(a) Zay ® L(ao) =Zoy ® L(ay) = A,
(b) Za(1)”|-(ao) and 7y, ”L(al),
() Zar) oA and Zyy is an a-space.

Proof: Let a Ca, where @ is an infinite r.e. repére. Recall that the 1-1
function a, ranging over a, and the 1-1 recursive function a, ranging over a
are chosen so that @,=a, and @, =a,. Put A= L(@). Suppose that g, 7,
Zyy are defined w.r.t. @, and o4, To, Zz,) are defined w.r.t. @;. Then we
have by P4 and the definitions of Z4, Zz(1),

L(oo U To) = Zany, L(00 U To) =Z5n), _

L(EoU ;o) ® L(ay) = L(Eo U?o) @ L(ay) =A,

L(oo U 7o) ® L(ag) = L(oo U 7o) ® L(ay) = A.
Moreover, L(G, U T,) is an r.e. space, while Z,(;, is an a-space by P6. Note
that the first part of (c) follows from (a) and (b). Thus it suffices to prove
L(0o U To) < L(0p U To). Since aq = aq, @, = a,, We have o, C 0, To € To, hence
L (0o U 7g) < L(0 U To). Q.E.D.

Proposition P22. Let a be an infinite a-repére. Consider the 1-1 mapping
B, vy — T(B, y) = V, with as domain the family of all decompositions (B, v)
of a, into non-empty sets. Then we have for each such ovdered paiv (B, v),

@ve L(ao - al) =Zo), VO L(ao: al) =4,
(b) the following five conditions ave mutually equivalent:

(i) VllL(ao, ay), (i) VliL(a, - ay),
(iii) V <4Z4¢ry, (iv) V <,4, (v) Vis an a-space.

Proof: Part (a) follows from P9 and P4 (d). We prove part (b) by showing
that (i) = (i) =>(iii) = (iv) =(v) =>(i). The first two conditionals are
immediate. By P21 (c) we know that Z,;) <4A. Thus, assuming (iii),

V<qgZoyny and Zypy) Sq A=V <A
by P1. This proves (iii) = (iv). According to P3,
V <,A and A a-space and codim4(V) finite =V a-space.

Thus (iv) =>(v) follows from the fact that A is an a-space and codim(V) = 2.
Finally, assume (v). By part (a) and P2, we have V||L (@, a,). Q.E.D.

Corollary C23. For every Wo-dimensional a-space A, theve ave ¢ non-o-
spaces V such that V is a subspace of A of codimension 2 w.v.t. A.

Remark. If in C23 we choose an isolic 8,-dimensional a-space for A, we
obtain Hamilton’s result: there are exactly ¢ isolic non-a-spaces (5],
Theorem 5, p. 93).
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