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COMPUTABILITY ON FINITE LINEAR CONFIGURATIONS

THOMAS H. PAYNE

In [1] H. Friedman posed the following problem: " . . . to fill in the
blank in: Turing's operations are to finite linear configurations as are

to arbitrary finite configurations." For these purposes we make
the following assumptions:

(1) The arbitrary finite configurations of members of £ are the elements
of the closure £$ of £ under finite set formation, i.e., £$ = \ί{U: £ c U
and {xl9 . . .,xn}e U whenever xl9 . . .,xneU}.
(2) The finite linear configurations of members of £ are the elements of
the closure £* of £ under formation of ordered pairs, i.e., £* = Π {U: £ c

U and (x, y) ell whenever x, ye U}.

Such mathematical renderings of abstract concepts, e.g., "configura-
tion" and "computability," must remain theses until such time as one
accepts as evident enough mathematical properties of the notion involved to
prove some sort of a characterization theorem on the basis of those
properties. However, experience at translating mathematics into set theory
seems to indicate that whatever "arbitrary finite configurations" and
"finite linear configurations" are, reasonable representations for them can
be found in £# and £* respectively.

In [2], on the basis of a number of evident mathematical properties of
computability, the notion of computability on £% is characterized in tέrms
of computability on the natural numbers. Since £* is a computable subset
of £%, we automatically get a characterization of computability on finite
linear configurations. It is the purpose of this note to show that com-
putability on arbitrary finite configurations is a strict generalization of
computability on finite linear configurations in the sense of the following
theorem.

Henceforth, we assume that £ is infinite and free in the sense that the
members of £ are e-minimal in £^ (i.e., s Π ^ = φ for all se £).

Theorem There is no embedding θ of £# into £* such that for every partial
function F on the range of θ, F is computable on £* iff Θ"1F θ is computable
on£#.
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To prove this theorem we need three lemmas and a number of
definitions.

Definition If ψ: S-> £ then ψ#: S% -> S# is the extension of ψ to an
e-homomorphism, i.e., ψ^({yu . . ., yn}) = {ψ^iyi), . . , Ψ#(yn)} for all
3>i, -, y»€ϋom ψ# .

Definition If xeS^,xb denotes the smallest set contained in g such that

xe(xbf(i.e.,xh = Π{WC SlxeUP}).

Definition A set U c g is said to determine & partial function F on gfi iff
Fθ# = ΦF for every permutation θ on g such that 0(w) = u for all weW.

Note: In [2] it is shown that every computable partial function on g^ is
determined by a finite set.

Definitions Let R cg$ χg# be a binary relation o n ^

(1) i? is computable ong# iff the identity function on JR is computable ong#
(2) i? is left-finite iff for every y eS^, {#: Λ̂ i?̂ } is finite.
(3) # is almost left-regular iff there is a finite set W C g such that
ie(WU 3>b)# whenever xRy.
(4) A partial function F is a selector for R iff Dom F = {y e g^ : for some
x e <§*, xRy} and FίyJΛy for all y e Dom F.

Lemma 1 {(#, 3>} e g^: x e y} has no computable selector on g%.

Proof: Suppose F were such a selector. Let U c g be a finite set that
determines F. Let s and ί be distinct members oi S - U. Let ψ = λx[x if
#/{s, ί}; ί if x = s; s if x = ί]. Notice that ψ#({s, ί}) = {s, t}. Suppose
F({s, t}) = s. Then since U determines F and ψ(u) = u for all ue U, s =
F({s, t}) = ψ*"1^!//^^, ί}) = ψ^jFtfc, /}) = ψ#"1(s) = t. This contradicts
our assumption that s Φ t and, similarly, so does the supposition that
F({s, t}) = t. Q.E.D.

Lemma 2 Let R be a relation on g# that is left-finite and computable on gft.
Then R is almost left-regular on S%.

Proof: Since R is computable, then \όR is computable and hence idR is
determined by a finite set W c g. Suppose there exist x, y e g^ such that
xRy and x^(yhu U)#. Then there exists te xh - (yh{JU). Let sus2, . . . be
distinct members of S - (yh u U) and let ψ{ = λz [s f if z = t; t iί z = s{; z
otherwise] so that

(1) ψι*(x)9 ψ2*M, . . . are distinct.
(2) ψi#(y) = y for i = 1, 2, . . . .
(3) ψi(u) = u for all ue U and z = 1, 2, . . . .

It follows that ψi^(x)Ry for £ = 1, 2, . . . contrary to our assumption
that R is left-finite, for <ψΐ#(*), y> =<ψf #(*), Ψi*(y))=Ψi*<x, y) =Ψi#ϊdR<x, y> =
idRψz

 # ( ^ , y> = i d R ^ # M , i i / ;

# ( v ) ) = i d R ^ O * ) , ? ) . Q.E.D.

Lemma 3 Lβί i2 δe «w almost left-regular computable relation on S^. Tftew
RΠ(S# x <S*) /*αs α computable selector F.
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Proof: For every member x of £* we define an enumeration Λ;Δ of x° via the
recursion formula:

ΛΓΔ = (Si, . . ., Sm, t u . . . , tn) if X = (y, Z)

and ;yΔ = (s1? . . ., sm) and £Δ = (tl9 . . ., 4).

We now define £ : ί * x N - » ^ so that λrc[i?(#, ^)] is an enumeration of (xh)#
as follows:

E(x, 2n) is the n'th member of xΔ if n is less than or equal to the length of
ΛΓΔ; φ otherwise.

E{x, 2(2y i + . . . + 2ym) + 1) is {E(x, yd, . . ., E(xt ym)}.

Clearly E is computable on S$. We complete the proof by defining F so
that

F(y) = E{(y, ul9 . . . , uk), m) where m denotes μn[E((y, ul9 . . . , uk), n)Ry]
and {ul9 . . .,uk}is such that xe (yh U {̂ i, . . ., uk})# whenever xRy. Q.E.D.

Proof of main theorem: Suppose to the contrary that such a 0 exists. Let
eθ denote {(θ(x), 6(y)): xey}. Then eθ is computable and left-finite onS#.
Hence eθ is almost left-regular on S$. So eθ has a computable selector F.
But then θ'^FΘ would be a computable selector for e on £# contrary to
Lemma 1. Q.E.D.

REFERENCES

[1] Friedman, H., ''Algorithmic procedures," in Logic Colloquium '69, North-
Holland, Amsterdam (1971).

[2] Payne, T. H., "Concrete eomputability," Notre Dame Journal of Formal Logic,
vol. XVΊ (1975), pp. 238-244.

University of California, Riverside
Riverside, California




