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LOGICAL AND PROBABILITY ANALYSIS OF SYSTEMS

MITCHELL O. LOCKS

1 Introduction This paper is concerned with a method for symbolically
describing an outcome, event, proposition or system of propositions,
premises, assumptions, etc., which is a binary-valued function of n binary
elements, and for calculating the probability of an event, based upon
Boole's classic, The Laws of Thought [l]. We employ concepts and
terminology borrowed from fields such as symbolic logic and Boolean
algebra, lattice theory and partially ordered sets, which trace their origins
to Boole's book. Some new terminology is added, however, for convenience
in describing sets. Boole recognized that for a two-valued function of
binary elements, the possible outcomes can be algebraically partitioned
into two subsets: the "true" or "one" states which are consistent with all
of the assumptions or premises of the system, and which we shall call in
the sequel the "identity set 3 " ; and the "false" or "zero" states which
are not consistent and which we shall call the "zero set 0." The method
described in Laws of Thought was to first find the zero set directly from
the premises, then subtract it from the universal set to obtain 3 . Both 0
and 3 are represented as Boolean polynomials. This is the same thing as
building a truth table entirely algebraically, by first finding the false
statements and then the true ones, without actually listing out the entire
table. Probability assignments and calculations are meaningful only to
subsets of 3 , because only outcomes included in 3 are consistent with
every single characteristic the system is assumed to have.

We follow Boole's method of representing 0 in just about the same way
it is done in his book. Each premise or proposition implies that a specified
value (either "zero" or "one") for one or more binary elements cannot
coexist, under that premise, with a specified value for some other element
or elements. Thus, each proposition defines a zero-valued complete subset1

1. A complete subset of a partially ordered set contains both its greatest lower bound and its least
upper bound, and all elements in the interval between these bounds. An interesting combi-
natorial result obtained in this paper is that the total number of complete subsets of the
universal set is 3W; this is believed to be new.
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of states or binary n-vectors, from the universal set. The union or join of
the sets formed from all such propositions is the 0 polynomial, each of
whose terms represents a complete subset of 0. By contrast to the relative
ease with which the zero set is found, Boole's derivation of the identify set
3 is not a convenient one to use. What we do instead of Boole's method is
to complement the 0 polynomial to obtain the 3 polynomial, using de
Morgan's theorems, followed by a simplification to get 3 into its smallest
(minimal) form.

A useful by-product of these results is that since the universal set is
partitioned in such a way that states can easily be identified as being either
consistent or inconsistent, subsets which are defined by the presence or
absence of certain binary characteristics can also be described entirely
algebraically, by Boolean polynomials. In particular, probability assign-
ments can be made only to subsets of 3 which are called "events" . To
derive the Boolean polynomial for an event E, it is only necessary to
logically multiply the binary indicator or set of indicators which define that
event, by the 3 polynomial, and simplify. A probability calculation of an
event E which is a subset of 3 is straightforward, but it can be very
tedious. A probability polynomial, a numerical-valued function of the
probabilities of the components, is derived by Poincare's method (inclusion-
exclusion) from the Boolean polynomial. The number of terms of the
probability polynomial is potentially very large, but it can be substantially
reduced by the fact that in an inclusion-exclusion expansion, certain terms
are usually repeated many times, and terms can also be eliminated if there
are contradictions. Machine derivation of the polynomial is essential for
problems of any substantial size (say, n ^ 10). The probability calculation
is made by substituting the probabilities of the elements into the polyno-
mial.

CHAPTER I: LOGICAL ANALYSIS

2 Concepts and definitions

2.1 Components, states, and the universal set A system consists of n
binary-valued atomic components or generators, 2n distinct states (because
each component has two possibilities) collectively called the universal set,
%, and a number of specifications, propositions or statements which either
specify the values of one of more components or else define the interrela-
tionships between two or more components. The components may be either
properties, animate or inanimate objects, or concepts, for example:
"Socrates", " i s a man", "functioning black box", "closed circuit". For
each i, i = 1, . . ., n, X{ = 1 denotes that the i-th component is " t r u e " or
"ex i s t s" , and xi = 0 or ~xt = 1 the opposite: "person other than Socrates",
"not a man", "failed black box", "open circuit". Examples of specifica-
tions are: "Socrates_(#i) j S_a man (x2) %# 2 = 0 " ' ; "the circuit is open (x3)
if the black box fails (#4) %# 4 = 1 ' " .

2.2 The identity and zero sets A state of the system is an element of 21; it
is an n-tuple which specifies a value for each of the n binary components,
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and it also has a ''truth value" which may be either one or zero, depending
upon the specifications. Those states which are consistent with all
specifications are assigned a value of one and collectively are the identity
set, 3; those with a zero value are in the zero set, fl. The null set is
denoted by the usual symbol, φ. The difference between the zero and null
sets is that each member of 0 is inconsistent with at least one specifica-
tion, whereas 0 includes no states at all. If all states are consistent with
all specifications, 3 = 51, so that 0 = 0, and the system is a tautology
(Wittgenstein [2]). In the opposite case, no states are consistent with any
specification, so that 3 = 0 and 0 = ΪI, and the system is a contradiction,

2.3 Logical addition and multiplication: upper and lower bounds The
universal set % is a free Boolean algebra (Halmos [3], p. 5 and p. 40). It
contains the unique zero element (0, . . ., 0) and unique one element
(1, . . ., 1). Addition, multiplication, and complementation of elements is
performed component by component under the usual rules (0+0 = 0, 1 + 0 =
1 + 1 = 1 ; 0 0 = 0 1 = 0, 1 1 = 1; 0 = 1, ϊ = 0). Addition or multiplication
of w-tuples is performed either pairwise, denoted by "+" and "•" or in
sequences, denoted by LJ and H .

An element which is the Boolean sum of two or more elements of 31 is
also their least upper bound, l.u.b., and the Boolean product the greatest
lower bound, g.l.b. The zero and the unit elements are respectively lower
and upper bounds for all subsets of $1, but not necessarily the "greatest"
lower bound or " least" upper bound.

2.4 Logical comparison Comparison of elements is denoted by the symbol
<. For any pair of them, X = (xu . . ., xn) and Y= (yu . . .,yn),X^ Y (Y is
s a i d t o i n c l u d e X) m e a n s t h a t X Y = X(xi = l=Φyι = 1). Equality (X = Y)
means both X ^ Y and Y < X. Strict inclusion (X < Y) means both X < Y and
X ψ F; strict noninclusion (X <jt Ϋ) means X Y < X.

2.5 Lattices A lattice % (Birkhoff [4]) is a nonempty set for which every
pair of elements has both a g.l.b. and a l.u.b. Since the sum of every pair
or sequence of elements in % is the l.u.b. and the product the g.l.b., the
universal set 51 and every subset of it are also lattices. 8 is closed if it
contains both its g.l.b. and l.u.b. A closed lattice is complete if it contains
all of the elements in the interval between the bounds.2

When a lattice, 8, is expressed as either the union or the intersection
of lattices 8χ, . . ., 2m, both the g.l.b. of £ and the l.u.b. of S are related to
the corresponding bounds of 81? . . . %m. We have:

2. An example of a free Boolean algebra is the set 21 = {00, 01, 10, 11} of 2-tuples; the g.l.b. is
"00" and the l.u.b. is "11." The subset 0 = {00, 01} is a complete sublattice with a fixed zero
value for the first component; the g.l.b. is "00" and the l.u.b. is "01." Similarly, the subset
•0 = {θθ, 10} is a complete sublattice with a g.l.b. of "00" and l.u.b. of "10." The set
0 v 0 = {00, 01, 10} is neither closed nor complete; it has a g. 1 .b. of "00," which is in the set
and a l.u.b. of "11" which is not. The lattice 0 v 11 = {00, 01, 11} contains both bounds, but
is not complete.
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if 8 = 0 8, , g.l.b. 8 = Π g.l.b. 8y. (1)

m

A proof is by contradiction: assume that g.l.b. 8 < i l g.l.b. 8 ; ; then g.l.b.

8 is not a "greatest" lower bound for 8 because a greater one can be
found. If the reverse inequality were true, then g.l.b. 8 would not be a
lower bound for 8. There are three statements which are dual to (1) and
to each other:

if 8 = 0 8 ; , l.u.b. 8 = Σ l.u.b. 8 ; ,

if 8 = ft βy, g.l.b. 8 = B g l b. «/,

if 8 = Π 8/, l.u.b. 8 = Π l.u.b. 8 ; .

This duality is explained by the fact that the symbols in any two of the three
pairs (\J> Π)> (l.u.b., g.l.b.) and ( Σ , II j may be reversed in any one of
these four statements to obtain one of the other three.

2.6 Maximal and minimal elements A maximal element of 8 is a binary
n-vector Ve 8 such that V < X for no Xe 8, that is, a maximal element is
the l.u.b. of a complete sublattice in 8 which is not a proper subset of any
other sublattice in 8. A minimal element of 8 is a Ve 8 such that X < V
for no Xe 8, that is, the g.l.b. of a complete sublattice in 8 which is not a
proper subset of any other sublattice in 8. If 8 is complete, there are just
one minimal element and one maximal element, respectively the g.l.b. and
the l.u.b. If 8 is not complete, however, there are either more than one
minimal element, more than one maximal element, or both; furthermore,
there can be several (many) different configurations of complete subsets of
8. Note that 8 has exactly one l.u.b. and exactly one g.l.b., neither of
which necessarily belongs to 8, and these are both unique. The maximal
and minimal elements of 8, however, can be different for each different
configuration of complete subsets.

2.7 Complete subsets: ideals and filters Every lattice has a representa-
tion as a Boolean polynomial, frequently known as the disjunctive normal
form. For a complete lattice, this is a single term (monomial). If the
system has n binary-valued components or generators, a complete sub-
lattice 8, which is a proper subset of 31, is represented by m binary
indicators^ m < n, each of which is either zero (0) or one (1) in every one
of the 2n~m states in the lattice. The monomial xλ . . . xm, Xi = 0 or 1, is
frequently called a "minterm". For the g.l.b. (l.u.b.) the n - m free
elements are all zero-valued (unit-valued).

Nonempty complete sublattices whose indicators all have the same
value are either ideals or filters (dual-ideals). For an ideal Lj, all
indicators are zero-valued; from the definition of an ideal: if Xe L\, Ye%,
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X Y\ eL\ (cf. Bell and Slomson [5], p. 12 and Halmos [3], pp. 45-50). For a
filter Lp, all indicators are unit-valued; if Xe Lp, YeM, X + Ye Lψ.

2.8 Counting complete subsets There are exactly

( ; ) • © • • • • • ( , : . ) • ' - • - '

different ideals, because there are n different ways of selecting zero

indicators one at a time, ί J two at a time, etc. Similarly there are exactly

2n - 1 different filters.3 The total number of complete subsets of %
including ideals, filters, and subsets with mixed indicators, is 3W. This can
be shown by counting first, according to the number of fixed components
and second, according to the number of different ways binary-valued
indicators can be obtained, then by accumulation. The only set with no
fixed components is the universal set. With one fixed component there are
n ways of choosing the components; for each component there are two
choices, hence 2n complete subsets. For two fixed components there are

( 9 ) ways of selecting the components and 22 different ways of obtaining

binary indicators. Finally, with n fixed components there are 2n subsets.
It can be seen therefore that the total number of complete subsets of 31 is

( ό M M > ° - •*(:>• •<••*•••••
2.9 Boole's method In his classic Laws of Thought Boole described a
calculus employing lattice polynomials for analyzing a system of logical
propositions, to determine which states of the universal set % are not
consistent with the system. In the sequel we call this set of "inconsistent
(false)" states the zero set D. However, Boole did not have a convenient
way of symbolically describing the set of states which are consistent (true)
with the system, which we call the "identity set 3 " . Starting from what he
called the "Principle of Contradiction (that an event and its complement
cannot both occur)" p. 49, he proceeded on pp. 71-80 through some rather
complex steps, including a Taylor-series expansion of a logical function, to
derive a truth function. In the sequel we follow Boole's procedure for
obtaining fl; to obtain 3, however, we complement the 0 polynomial using
de Morgan's theorems, and then employ a Quine [8] simplification, to get
the 3 polynomial into its smallest (minimal) form.

3. Examples of both ideals and filters arise in the reliability analysis of coherent systems [6, 7 ] .

If Xj = 1, the/-th component operates successfully; otherwise Xj = 0. The universal set has two

types of outcomes, system failure states or "cuts" and success states or "paths." A "minimal

cut" is defined as a complete set of cuts which is associated with the failure of a specified set

of components, and which is not wholly contained within any other complete set of cuts. The

minimal cuts are ideals and each one of them includes the zero state (0, . . . , 0), all compo-

nents failed. Similarly a "minimal path" is a complete set of paths not wholly contained within

any other such complete set of paths. Every minimal path includes ( ! , . . . , ! ) and is a filter.
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3 Examples

3.1 A syllogism4 The well known syllogism "all men are mortal; Socrates
is a man; therefore Socrates is mortal" is used to illustrate how to develop
the D and3 polynomials. Denote Socrates as xu a man as x2 and a mortal
as x3. For every i let X{ denote the unit value and 3ζ the zero value. The
major and minor premises are, x2 ^ x3 and xx ^ x2. These are restated
respectively as the zero equations x2x3 = 0 and xjc2 = 0. The term x2x3

represents a complete sublattice with two states, ΊcγX&z and XιX2x3.
Similarly the term x{x2 represents a complete sublattice with two states:
x{x2x3} xix2lc3. The zero set 0 is the join of these two sets

0 = x{x2\rx2~X3. (2)

Invert (2) by de Morgan's theorems; after simplification we have the
complement of 0, the identity polynomial

3 = ~xjc2v x2x3. (3)

The identity set 3 has four elements, x1x2x3f ~XiX2x3, ^^x2x3, and ~x^x2~x3.
Each of these represents a proposition which is consistent with both the
major and the minor premises. The conclusion "Socrates, a man, is
mortal" is implied by xxx2xz. Other conclusions are:

lcλx2x3v a non-Socrates man is mortal.
~x{x2x3: a non-Socrates non-man could be mortal.
~x{x2~x3: a non-Socrates non-man might not be mortal.

Note that of the four propositions in 3 , two have probability 1, and two
have probability less than one. xλx2x3 (x3 = 1 if both xλ = 1 and x2 = 1) and
"x!X2x3 (x3 = 1 if Xι = 0 and x2 = 1) are both implied by the premises with
probability 1. Since the premises imply nothing with certainty about
"non-men", the mortality of xjc2 (non-Socrates non-men) has a probability
less than 1.

It is instructive to summarize the results of this analysis in the form
of a truth table, with additional remarks. (See page 129, Table 1.)

3.2 Epimenides paradox "Epimenides the Cretan speaks the truth; he
says that all Cretans are liars". The system has three components: xί9

Epimenides; x2, Cretans; and ΛΓ3, liars. The three premises inferred are
interpreted as zero equations: (1) x{x2 = 0, (2) xγx3 = 0, and (3) x2~x3 = 0.
The zero set is

0 = X^sf X2X3\f XγX3.

4. Since the Aristotelean syllogism is the gest known example of a system of propositions, it has
been studied extensively. Gardner [9] has an interesting discussion of the history of attempts
to solve the syllogism by various geometrical, electromechanical and algebraic means. Lewis
Carroll (better known as the author of "Alice in Wonderland") used both Boolean polynomials
and "logic boards" [10], pp. 72-80. For a modern symbolic treatment of the syllogism with-
out Boolean polynomials, refer to Kleene [11], example 19, p. 135.



LOGICAL AND PROBABILITY ANALYSIS OF SYSTEMS 129

Element Member of Remarks

XιX2x3 3 x2 if X\ by minor premise;

x3 if x2 by major premise

#i#2#3 0 excluded by major premise

xjc2x3 0 excluded by minor premise

~xγx2x3 3 x3 if x2 by major p r e m i s e

#1X2^3 0 excluded by minor p r e m i s e

~xxx2Ίc3 0 excluded by major premise

~xjc2x$ 3 a possible state of

"non-Socrates non-human m o r t a l s "

~X\X2x3 3 a possible state of

"non- Socrates non-human non-mortal"

Table 1
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By inverting 0 and simplifying, we obtain the identity set

3 = * Λ v ί i ^ .

Thus no statement whatever can be made about Epimenides, because there
are no states in 3 with xx = 1. Other elements, however, are consistent
with this system such as "non-Cretans who are liars", "non-Cretans who
are not liars", etc. In other words, the paradox is not a logical contradic-
tion, because some elements are consistent with it. The truth table is as
follows:

Element Member of Remarks

*!*2*3 0 excluded by (2)
*i*2*3 0 excluded by (3)
#i#2#3 0 excluded by both (1) and (2)
#i#2#3 3 non-Epimenides Cretan can be (is) a liar
*i*2*3 0 excluded by (1)
*i*2*3 0 excluded by (3)
*i*2*3 3 non-Epimenides non-Cretan can be a liar
*i*2*3 3 non-Epimenides non-Cretan can tell the truth

Table 2

4 Subsets of the identity set Every subset of 31 can be represented by a
Boolean polynomial. A subset is identified by a specified binary value for
a characteristic or else by a specified set of binary values for specified
characteristics. Only subsets of 3, however, are meaningful for further
analysis, such as, for example, probability calculations, because only
elements in 3 are consistent with every proposition of the system. In order
to derive the polynomial for a subset of 3, the binary-valued characteristic
which defines the subset is logically multiplied by the polynomial. For the
foregoing syllogism, an example of a defining characteristic is "man",
"Socrates" or "mortal", or some combination of these. Let "*, = 1" be
the specified characteristic. Then xι defines a complete sublattice of %
with 2n~1 elements. In order to find the subset of 3 which is defined by xi9

we logically multiply the 3 polynomial by *,, to obtain the subset of 3 for
which *, = 1. Similarly, if the defined characteristic is " # ; = 0", the 3
polynomial is multiplied by *, to obtain the desired result. For example,
with the syllogism (3), there are six such possibilities:

Socrates (#i): *i*2*3

non-Socrates (*i): * x* 2 v *!*2*3

men (#2): *2*3

non-men (#2): *!*2

mortals (*3): *i*2#3 v *2*3

non-mortals (*3): *i*2#3.

To extend the example, an event E can be defined by the intersection of
fixed values for two or more components. Let * t and */ be two fixed-valued
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components which define E\ the polynomial is the logical product of x&j by
3 . We have, for example:

Socrates non-mortals (xιX3): zero (not null)
men mortals (#2*3)' #2#3.

An event E can be defined as the ''inclusive or" for two or more
fixed-valued components. Let X{ and Xj be two such components; the
polynomial is the logical product of X{ vXj by 3 . For the example, we have:

man or mortal (x2 v x3): 3^2*3 v x2x3

non-man or mortal (#2v#3): 3
Socrates or non-mortal fcvϊ3): XχX2x3 vΊc&ϊxz.

Clearly, the event E can be defined in terms of even more complex
combinations of " o r s " and "ands" than are shown in this section.

CHAPTER II: PROBABILITY ANALYSIS

The objective of this section is to develop the methodology for deter-
mining the probability of an event, £, as a function of the probabilities of
the components of the system, structuring this function, a polynomial, after
the lattice polynomial for the event. We first describe the probability space
for the components and the states. The probability of a state in a complete
lattice is a product of the conditional probabilities of the indicators. Then
Poincare's method is used to obtain the probability of the event.

5 Probability spaces for components and states Let X= (xl9 . . ., xn),
Xi = 0 or 1, i = 1, . . ., w, be any state. Corresponding to X there is an
n-tuple of conditional probabilities whose components are respectively

pr(#i), pr(#2l*i), pr(*3l*i, ^2), . .. , pr(*J#i, . . ., #«-i), (4)

all of which are defined as real numbers between zero and one, inclusive.
It is assumed that there is a complementary relationship such that

pv(Xi = lUi , . . ., ximml) = 1 - pr(Xi = θUi, . . ., Xi-J, i = 1, . . ., n.

The probability for the state, X, is the joint probability for all the values
of its components, or the numerical product of the conditional probabilities
in (4)

pr(X) = prta) pr(#2l#i) . prU«Ui, - . , ^«-i) (5)

When the components are all independent (5) becomes simply

prfo) pr(#2) . . . pr(xn).

The description above holds for any chosen permutation or ordering of
the generators xu . . ., xn. Depending upon the ordering selected, the
values of the factors of (5) change because of the altered selection of
components upon which to condition the probabilities. It is assumed,
however, that pr(X) does not depend upon how the atoms are ordered. It
can be shown that the sum of the probabilities for all 2n states in 31 is one.
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Since all probability measure is assigned to the identity set, 3 constitutes a
"sample space".

6 Probability of a complete subset For a system having n atomic elements
a complete subset is identified by m fixed-valued indicators, m < n9 and
has 2n~m states. If the n components are renumbered, for convenience, so
that these m indicators are first, thus: xx,..., xm, the probability that the
actual outcome of a random experiment is one of these 2n'm states is the
product of the conditional probabilities

pr(#i) prfeUi) . . . px{xm\xu . . ., Xm-i), (6)

if these probabilities are all defined. If the components are totally
independent (6) becomes

pr(#i) prfe) • . . pr(#»).

Independence of components is possible only if the identity set 3 is
identical with the universal set tl, so that all states are possible; this
condition " 3 = %" is. known in logic as a "tautology". The dual condition
that the identity set is empty " 3 = 0 " is known as a "contradiction"; since
no states at all can occur by assumption, no probability assignment can be
made at all.

7 Probability of a set (lattice) Every lattice S can be characterized as a

join of the m complete sublattices 8i, . . ., %m, which are all proper

subsets of 8. Therefore, the probability of 8 is the probability that at least

one of 8i, . . ., 8W occurs. The principle of inclusion-exclusion (Feller

[12], Chapter 4), also called Poincare's Theorem (Riordan) ([13], p. 52) is

used to derive the probability equation, a numerical-valued polynomial in

the probabilities of the components. Let Sλ denote the sum of the proba-

bilities of the m subsets taken one at a time, S2 the sum of the ( 1 joint

probabilities of the subsets taken two at a time, S3 the sum of the f ) joint

probabilities of the subsets three at a time, etc. Then the probability
desired is

pr(β) = Sι - S2 + S3 - . . . + (-1Γ"1 Su. (7)

Equation (7) has a maximum of 2m - 1 terms, which can often be a very
large number. The problem of data processing and bookkeeping in order to
generate Equation (7) is usually simplified considerably by the fact that
most terms cancel, either because of contradictions or because in the
expansion the same lattice is obtained in different ways. Electronic
computation is necessary for this purpose if the problem is of any
substantial size. If m is very large and if there is not enough cancellation
of terms in the process of generating Equation (7) to operate within a
reasonably bounded computer memory allocation, it may be uneconomical
to generate the complete polynomial. The Bonferroni inequality (Feller
[12]) can be used to set up a criterion for termination with a reasonably
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good approximation. If only the first r - 1 terms of the right-hand side of
(7) are used, viz:

p r ( 8 ) < * S 1 - S 2 + S s + . . . + ( - l ) r - 2 S r _ 1 J

the error (true value minus approximation) is smaller in absolute value
than Sr.

8 Conditional probability of an event The conditional probability of one
event, given another event, can be determined in the usual way. Let 8i
and g2 be any two lattices, both proper subsets of the identity set, 3 . The
conditional probability of S 2 given δi is

9 Examples

9.1 The syllogism The major and minor premises can be interpreted,
respectively

(i) a mortal (x3) if a man (x2), with probability one
(ii) a man (x2) if Socrates (x^9 with probability one.

Therefore we have

pr(#3U2) = pr(ΛΓ2Ui) = 1.

Since the event "Socrates" (#0, is identical with "Socrates-man-mortal"
(xλx2x3), the probability

pr(x1X2X3) = pr(x3\x2) pr(# 2ki) pr(%) = p r ^ )

is identical with the probability of xγ. However, if we are given that the
man selected is Socrates

pv{x2x3\xι) = PΓU3U2) PΓ(ΛΓ2UI) = 1.

9.2 Boole's examples revisited In Chapter XVIII, Boole gave a number of
illustrations of the use of the general method for deriving probability
functions. In this section, some of these examples are redone using the
techniques described in this paper. In [l], p. 276:

2. Ex. 1.—The probability that it thunders upon a given day is p, the probability
that it both thunders and hails is q, but of the connexion of the two phenomena of
thunder and hail, nothing further is supposed to be known. Required the probability
that it hails on the proposed day

Using the notation of this paper rather than Boole's, the example is
continued: Let xλ denote the event " i t thunders" and let x2 denote the event
" i t hai l s " , and let ~xx and ~x2 represent their respective complementary
events. A zero space is not specified; therefore the identity lattice, 3 , is
identical with the universal set, $ί, and the system is a tautology. Since
5 = $ϊ, the event " i t hai ls" is the free lattice with indicator x2. We write

X2 ~~ X\ X2 v X \ X2
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It is given that prί*^) = q and also that pv{xd = P, so that pr^) = 1 - p.
What is needed is pr(#2l#i); this Boole calls " c " and he gives the correct
answer

pr(#2) = <7 + c(l - p).

9.2.1 Analysis of Dr. S. Clarke's metaphysical system Boole was very
interested in metaphysical problems such as scientific proof of the
existence of Deity, etc. He used Dr. Samuel Clarke's tract "Demonstration
of the Being and Attributes of God" [14] as an example of how to construct
a logical system. In the discussion below we reproduce the relevant portion
of Boole's text setting up the problem and then, using essentially his
interpretation and notation, construct probability functions both for the
affirmation and the denial of the existence of a presiding intelligence in the
universe. This example is interesting for two reasons: first, it is used to
derive the probability function for an event in a relatively complex system;
secondly, it is shown that there are enough contradictions in the premises
that under reasonable assumptions neither affirmation nor denial is
possible. The portion of the text reproduced below starts on p. 219 of [ l ] :

1. If matter is a necessary being, either the property of gravitation is necessarily
present, or it is necessarily absent.
2. If gravitation is necessarily absent, and the world is not subject to any presiding
intelligence, motion does not exist.
3. If gravitation is necessarily present, a vacuum is necessary.
4. If a vacuum is necessary, matter is not a necessary being.
5. If matter is a necessary being, the world is not subject to a presiding intelligence.
If, as before, we represent the elementary propositions by the following notation, viz:

x = Matter is a necessary being.
y = Gravitation is necessarily present.
w = Motion exists.
t = Gravitation is necessarily absent.
z = The world is merely material, and not subject to a presiding intelligence.
v = A vacuum is necessary.

We shall on expression of the premises and elimination of the indefinite class symbols
(q), obtain the following system of equations:

xyt + xyt + yv + vx + xz + tzw - 0

The last expression (from p. 220) will be recognized as the zero
polynomial, 0, in the notation of this paper, if "v" is substituted for "+".
It can also be recognized that y = 1 and t = 1 are essentially contradictory
events, so that yt - 0, and the first term can therefore be simplified to just
"yt'\ Thus, we may write the zero polynomial

0 = yt vxyt vyv v vx vxz v tzw.

By complementation we obtain the identity polynomial

3 = xyt v xyz v xyϊΰ v xtv v ytvzΐϋ+



LOGICAL AND PROBABILITY ANALYSIS OF SYSTEMS 135

If z••= 0, that is, ~z = 1, the world does have a presiding intelligence. The
event ~z has the defining polynomial

z = xyz v xivz.

The corresponding probability function is

pr(z) = pr (xyz) + pr(xivz) - pr (xyztv).

However, if matter exists (x = 1), £ is in the zero set and this probability is
zero. Similarly, z = 1 (which denies a presiding intelligence) has the
polynomial

z = Ίcytz v Ίcywz v ~xtυz v 'ytvz'w.

The probability function for z is obtained in four stages:

Pi = pr(xyiz)

P2 - Pi + pr(#;yM;2) - pr (xytwz)

P3 = P2 + pr (xtυz)_- pr(xyiυz) _

pr(s) = p* = p3 + pr (ytvzw) - pr(xywztv)

= pr(#;yte)j- prOOJWZ) + pr(^>ε) + prίy^^^)
- pr {xytwz) - pr (xyivz) - pr (xywztv).

If both matter (x = 1) and gravitation (y = 1) are axiomatically true, z is in
the zero space and this probability is zero. Hence, if one accepts the
existence both of matter and of gravitation, no inference can be made from
the system as to the affirmation or denial of the existence of a presiding
intelligence.

10 Extensions The procedure described herein, which closely follows
Boole's, is to first define the complete subsets of the zero set formed by
the propositions, "join" them to obtain the zero set, and then complement
the zero set to find the identity set. As an alternative, the dual procedure
can be used to produce the identity set directly. For example, the
implication x ̂  y can be written either as " xy- 0 (Boole's method)" or
alternatively as its dual "^cvy= V. A system such as a syllogism with
two propositions, xx >̂ x2 and x2

 D x3, can be written in the identity form

(χχvχ2) -(χ2vχ3) = 3.

When this expression is expanded, you obtain

XχX2 v X2X3 = 3 ,

which is identical to Equation (3).
Either of the two dual forms of the propositional connectives commonly

used in logic can be used in the same way as described above, with similar
interpretations. For example "equivalence, x ~ y" becomes

xy v Icy = 0

xy v~xy = 1;
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"conjunction, x&y" is

xy = 1
~x vy = 0;

and "disjunction xv y" is

xvy=l
x y = 0.

Thus Boolean polynomials can be built up even for fairly complicated
systems of propositions using the methods outlined in this paper, either for
the zero set or the identity set, whichever is most convenient.

REFERENCES

[ 1 ] Boole, G., An Investigation of the Laws of Thought, Dover (1854).

[2] Wittgenstein, L., Tractatus Logico-Philosophicus (1921), new translation by Pears, D. F.,
and B. F. McGuinness, Routίedge and Kegan Paul, Ltd., London (1961).

[3] Halmos, P. R., Lectures on Boolean Algebras, D. Van Nostrand (1963).

[4] Birkhoff, G., Lattice Theory, 3rd ed., American Mathematical Society Colloquium Publica-
tions, Volume XXV (1967).

[5] Bell, J. L., and A. B. Slomson, Models and Ultra-products: An Introduction, North-Holland
Co., Amsterdam (1967).

[6] Barlow, R. E., and F. Proschan, Mathematical Theory of Reliability, Wiley (1965).

[7] Locks, M. O., "Exact minimal state system reliability analysis," Proceedings: Computer
Science and Statistics: Fifth Annual Symposium on the Interface, Oklahoma State Univer-
sity (1972), pp. 180-191. Available From Western Periodicals, 13000 Raymer St., North
Hollywood, CA 91605.

[8] Quine, W. V., "The Problem of Simplifying Truth Functions," American Mathematical
Monthly, vol. 59 (1952), pp. 521-531.

[ 9] Gardner, M., Logic Machines, Diagrams and Boolean Algebra, Dover (1958).

[10] Carroll, L., Mathematical Recreations of Lewis Carroll: Symbolic Logic (1897) and The
Game of Logic (1887) (both books bound as one), Dover (1958).

[11] Kleene, S. C, Mathematical Logic, Wiley (1967).

[12] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed.,
Wiley (1968).

[13] Riordan, J., An Introduction to Combinatorial Analysis, Wiley (1958).

[14] Clarke, Samuel, A Demonstration of the Being and Attributes of God (1706), Reprinted
by Friedrich Frommann Verlag, Stuttgart—Bad Cannstatt (1964).

Oklahoma State University
Stillwater, Oklahoma




