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A MODAL SYSTEM PROPERLY INDEPENDENT OF BOTH THE
BROUWERIAN SYSTEM AND S4

G. N. GEORGACARAKOS

Although proper subsystems of S5, it is well-known that the Brouwerian
system (hereafter referred to as simply 'B') and S4 are independent of each
other. This independence, however, is of a peculiar nature: if the proper
axiom of either system is appended to the axiomatic basis of the other
system, a system deductively equivalent to S5 results. We might say, to
coin a new phrase, that these two systems are "properly independent of
each other with respect to S5." This rather unusual sense of independence
might perhaps lead us to speculate as to whether there exists another
system properly independent of both B and S4 with respect to S5; that is, a
system such that, if its proper axiom is appended to either the axiomatic
basis of B or S4, a system deductively equivalent to S5 results. That there
does indeed exist such a system will be shown in section 1. In section 2,
we shall examine the modal structure of this system. We shall show that
it, like S4, is characterized by possessing exactly fourteen distinct
modalities. Finally, in the last section, a Kripke-style semantic interpre-
tation for this system will be offered.

1 An elegant axiomatization of the Classical Propositional Calculus (PC) is
afforded by the following three axioms

Al CpCqp
A2 CCpCqrCCpqCpr
A3 CCNpNqCqp

together with the rules of uniform substitution and detachment. Of course
the formation rules and the usual definitions of the other PC connectives
are required, but they are familiar enough for them not to be explicitly
formulated here. Now if we go on further to append the following two
additional axioms

A4 CLCpqCLpLq
A5 CLpp
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along with the unrestricted rule of necessitation, viz.,

Rl \-a->\-La,

and the usual modal definitions and formation rules, we obtain a Lemmon-
style axiomatization of modal system T. Three familiar derived rules of
inference of T are the following:

R2 ^Caβ-^^-CLaLβ
R3 Ί-Caβ — y-CMaMβ
R4 ι-CFaGa —»ι-CG*aF*a, where F* and G* are duals respectively of F
and G (cf. [2], p. 164).

Some theorems of T which we shall employ in the subsequent discus-

sion are:

Tl ENMMNpLLp
T2 CAMpMqMApq
T3 ENLMMNpMLLp
T4 ENLLNpMMp
T5 CKLpLqLKpq
T6 ENLpMNp
T7 ENMLNpLMp
T8 ENMLNLMpLMLMp
T9 ENMpLNp
T10 ENLMNpMLp

T i l ENMLNpLMp

Now if we append

Bl CMLpp

as an axiom to the axiomatic basis of T, we obtain modal system B. If, on
the other hand, we add

B2 CLpLLp

to the basis of T, modal system S4 results. Adding

B3 CMLpLp

to the basis of T, however, gives modal system S5. Clearly, in order to
show that modal systems B and S4 are properly independent of each other
with respect to S5, we need only demonstrate that Bl and B2 jointly entail
B3 in the field of T. Assume Bl, B2 and the field of T, then

1 CMLpp Bl
2 CLpLLp B2
3 CMLLpLp 1, p/Lp
4 CMLpMLLp 2, R3
B3 CMLpLp 3, 4, Syllogism

The above result, however, is well-known. What we are primarily
concerned with is finding a modal system which is properly independent of
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both B and S4 with respect to S5. Such a system is axiomatized by simply
appending

Cl CMCMMpLMqCMMpLMq

to the axiomatic basis of T. I call the resulting system, modal system X.
Now let us assume Bl, Cl and the field of T:

1 CMLpp Bl
2 CMCMMpLMqCMMpLMq Cl
3 CMANMMpLMqANMMpLMq 2, Implication
4 CMANMMNpLMqANMMNpLMq 3,p/Np
5 ENMMNpLLp Tl
6 CMALLpLMqALLpLMq 4, 5, Substitution of Equivalents
7 CAMpMqMApq T2
8 CAMLLpMLMqMALLpLMq 7, p/LLp; q/LMq
9 CAMLLpMLMqALLpLMq 6 , 8 , Syllogism

10 CCApqrKCprCqr PC
11 CCAMLLpMLMqALLpLMqKCMLLpALLpLMqCMLMqALLpLMq

10, p/MLLp; q/MLMq; r/ALLpLMq
12 KCMLLpALLpLMqCMLMqALLpLMq 9, 11, Detachment
13 CMLMqALLpLMq 12, Simplification
14 CMLMqCNLLpLMq 13, Implication
15 CMLMqCNLLNqLMq 14, p/Nq
16 ENLLNqMMq T4
17 CMLMqCMMqLMq 15, 16, Substitution of Equivalents
18 CMMqCMLMqLMq 17, Permutation
19 CLpp A5
20 CLMqMq 19, £ / M #
21 CMLMqMMq 20, R3
22 CMLMqCMLMqLMq 18, 21, Syllogism
23 CMLMpCMLMpLMp 22, #//>
24 CKMLMpMLMpLMp 23, Importation
25 C/>iQ>£ PC
26 CMLMpKMLMpMLMp 25, p/MLMp
27 CMLMpLMp 24, 26, Syllogism
28 CMLpLMLp 27, R4
29 CLMLpLp 1, R2
B3 CMLpLp 28, 29, Syllogism

Clearly both Bl and Cl inferentially entail B3 in the field of T. Appending
Cl then to the axiomatic basis of B yields S5 and, conversely, adding Bl to
the basis of X also gives S5. Hence, modal systems B and X are properly
independent of each other with respect to S5.

Now let us assume B2, Cl and the field of T:

1 CLpLLp B2
2 CMCMMpLMqCMMpLMq Cl
3 CMANMMpLMqANMMpLMq 2, Implication
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4 CMANMMNpLMqANMMNpLMq 3, p/Np
5 ENMMNpLLp Tl
6 CMALLpLMqALLpLMq 4, 5, Substitution of Equivalents
7 CAMpMqMApq T2
8 CAMLLpMLMqMALLpLMq 7, />/LL/>; q/LMq
9 CAMLLpMLMqALLpLMq 6, 8, Syllogism

10 CCApqrKCprCqr PC
11 CCAMLLpMLMqALLpLMqKCMLLpALLpLMqCMLMqALLpLMq

10, p/MLLp; q/MLMq; r/ALLpLMq
12 KCMLLpALLpLMqCMLMqALLpLMq 9, 11, Detachment
13 CMLLpALLpLMq 12, Simplification
14 CMLLpALMqLLp 13, Commutation
15 CMLLpCNLMqLLp 14, Implication
16 CKMLLpNLMqLLp 15, Importation
17 CKMLLpNLMMNpLLp 16, #/Mi\Γ/>
18 ENLMMNpMLLp T3
19 CKMLLpMLLpLLp 17, 18, Substitution of Equivalents
20 C/>Zφ/> PC
21 CMLLpKMLLpMLLp 20, p/MLLp
22 CMLLpLLp 19, 21, Syllogism
23 CMMpLMMp 22, R4
24 CMMpMp 1, R4
25 CLMMpLMp 24, R2
26 CMMpLMp 23, 25, Syllogism
27 CL£/> A5
28 CLLpLp 27, />/L/>
29 CMpMMp 28, R4
30 CMpLMp 26, 29, Syllogism
B3 CMLpLp 30, R4

Clearly, modal system X is also properly independent of S4 with respect
to S5.

It is easily demonstrated that modal system X is a subsystem of S5.
This is accomplished by showing that B3 inferentially entails Cl in the field
of T:

1 CMLpLp B3
2 CCpqCCrsCKprKqs PC
3 CCMLpLpCCMqLMqCKMLpMqKLpLMq

2, p/MLp; q/Lp; r/Mq; s/LMq
4 CCMqLMqCKMLpMqKLpLMq 1, 3, Detachment
5 CMpLMp 1, R4
6 CMqLMq 5, p/q
7 CKMLpMqKLpLMq 4, 6, Detachment
8 CKLpLqLKpq T5
9 CKLpLMqLKpMq 8, #/M#

10 CKMLpMqLKpMq 7, 9, Syllogism
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11 CNLKpMqNKMLpMq 10, Transposition
12 ENLpMNp T6
13 ENLKpMqMNKpMq 12, p/KpMq
14 CMNKpMqNKMLpMq 11, 13, Substitution of Equivalents
15 CMANpNMqANMLpNMq 14, DeMorgan
16 CMANMqNpANMqNMLp 15, Commutation
17 CMCMqNpCMqNMLp 16, Implication
18 CMCMMpNNLMqCMMpNMLNLMq 17, q/Mp; p/NLMq
19 CMCMMpLMqCMMpNMLNLMq 18, Double Negation
20 ENMLNLMqLMLMq T8
21 CMCMMpLMqCMMpLMLMq 19, 20, Substitution of Equivalents
22 CMMqMLMq 6, R3
23 CL£/> A5
24 CpMp 23, R4
25 CMqMMq 24, />/Λf?
26 CMqMLMq 22, 25, Syllogism
27 CLMqLMLMq 26, R2
28 CLMLMqMLMq 23,p/MLMq
29 CMLqLMLq 5, />/Lg
30 CMLMqLMq 29, R4
31 CLMLMqLMq 28, 30, Syllogism
32 ELMLMqLMq 27, 31, Definition £
Cl CMCMMpLMqCMMpLMq 21, 32, Substitution of Equivalents

In order to prove that modal system X is not only a subsystem of S5
but also a proper subsystem of S5, we employ the following matrix:

ψl L(*12345678) = 18887888

This matrix verifies the entire axiomatic basis of modal system X, but
rejects B3 for />/5: CML5L5 = CM77 = C17 = 7. (We, of course, assume that
the reader is familiar with the usual eight-valued Boolean matrices for C
and N.) Note, incidentally, as we would expect, this matrix also falsifies B2
for p/5: CL5LL5 = C7L7 = C78 = 2; and Bl for />/5: CML55 = CM75 =
C15 = 5. Clearly then, modal system X is a proper extension of T, properly
independent of both B and S4 with respect to S5, and a proper subsystem
of S5.

Let us now derive some interesting theorems of X:

D1 CMCMMpLMqCMMpLMq C1
D2 CMANMMpLMqANMMpLMq Dl, Implication
D3 CMANMMNpLMqANMMNpLMq D2, p/Np
D4 ENMMNpLLp Tl
D5 CMALLpLMqALLpLMq D3, D4, Substitution of Equivalents
D6 CNALLpLMqNMALLpLMq D5, Transposition
D7 ENMpLNp T9

D8 ENMALLpLMqLNALLpLMq ΏΊ,p/ALLpLMq
D9 CNALLpLMqLNALLpLMq D6, D8, Substitution of Equivalents



106 G. N. GEORGACARAKOS

D10 CKNLLpNLMqLKNLLpNLMq D9, De Morgan
Dll CKNLLNpNLMNqLKNLLNpNLMNq D10, p/Np; q/Nq
D12 ENLLNpMMp T4
D13 CKMMpNLMNqLKMMpNLMNq Dl l , D12, Substitution of Equivalents
D14 ENLMNqMLq T10
D15 CKMMpMLqLKMMpMLq D13, D14, Substitution of Equivalents
D16 CAMpMqMApq T2
D17 CAMLLpMLMqMALLpLMq D16, p/LLp; q/LMq
D18 CAMLLpMLMqALLpLMq D5, D17, Syllogism
D19 CCApqrKCprCqr PC
D20 CCAMLLpMLMqALLpLMqKCMLLpALLpLMqCMLMqALLpLMq

D19, p/MLLp; q/MLMq; r/ALLpLMq
D21 KCMLLpALLpLMqCMLMqALLpLMq D18, D20, Detachment
D22 CMLLpALLpLMq D21, Simplification
D23 CMLLpALMqLLp D22, Commutation
D24 CMLLpCNLMqLLp D23, Implication
D25 CKMLLpNLMqLLp D24, Importation
D26 CKMLLpNLMMNpLLp D25, ?/ΛW/>
D27 ENLMMNpMLLp T3
D28 CKMLLpMLLpLLp D26, D27, Substitution of Equivalents
D29 CpKpp PC
D30 CMLLpKMLLpMLLp D29, p/MLLp
D31 CMLLpLLp D28, D30, Syllogism
D32 CMMpLMMp D31, R4

Being independent of both B and S4, we would naturally expect that there
are formulae provable in X which are neither theses of B nor S4. Two such
interesting formulae are D31 and D32.

D33 CMLMqALLpLMq D21, Simplification
D34 CMLMqCNLLpLMq D33, Implication
D35 CMLMpCNLLNpLMp D34, q/p; p/Np
D36 CMLMpCMMpLMp D12, D35, Substitution of Equivalents
D37 CMMpCMLMpLMp D36, Permutation
D38 CLpp A5
D39 CLMpMp D38, p/Mp
D40 CMLMpMMp D39, R3
D41 CMLMpCMLMpLMp D37, D40, Syllogism
D42 CMLMpKMLMpMLMp D29, p/MLMp
D43 CKMLMpMLMpLMp D41, Importation
D44 CMLMpLMp D42, D43, Syllogism
D45 CMLpLMLp D44, R4

D44 and D45 are also theses of X provable in neither B nor S4.

D46 CLLLpLLp D38, p/LLp
D47 CpMp D38, R4
D48 CMpMMp D47, p/Mp
D49 CLpMLp D47, p/Lp
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D50 CMMpMMMp D47, p/MMp
D51 CLLMpLMp D38, p/LMp
D52 CLMpMLMp D47, p/LMp
D53 CLLpMLLp D47, £/LL/>
D54 CLMMpMMp D38, />/MMp
D55 CLMLpMLp D38, p/MLp
D56 CLMLLpLLLp D31, R2
D57 CMLLpLMLLp D45, />/L/>
D58 CMLLpLLLp D56, D57, Syllogism
D59 CLLpLLLp D53, D58, Syllogism
D60 CMMMpMMp D59, R4

D59 and D60 are both provable in S4, but not in B.

D61 CMLpMMLp D51, R4
D62 CLMLMpLLMp D44, R2
D63 CMLMpLMLMp D45, p/Mp
D64 CMLMpLLMp D62, D63, Syllogism
D65 CLMpLLMp D52, D64, Syllogism
D66 CMMLpMLp D65, R4

D65 and D66 are also theses of S4 not provable in B.

D67 CLLpLp D38, p/Lp
D68 CMLpMp D38, R3
D69 CLMLpLMp D68, R2
D70 CMLpLMp D45, D69, Syllogism
D71 CMLLpLp D31, D67, Syllogism

Finally, notice that D70 and D71 are provable in B, but not in S4.

There are several alternative ways for axiomatizing modal system X.
We have already proved that

D5 CMALLpLMqALLpLMq

and

D15 CKMMpMLqLKMMpMLq

are theses of X. Actually either one of these two formulae may replace Cl
in axiomatizing system X. In order to prove this, we need only show that
D5 and D15 each entail Cl in the field of T. First, let us assume D5 and
the field of T:

1 CMALLpLMqALLpLMq D5
2 CMCNLLpLMqCNLLpLMq 1, Implication
3 CMCNLLNpLMqCNLLNpLMq 2, p/Np
4 ENLLNpMMp T4
Cl CMCMMpLMqCMMpLMq 3 ,4 , Substitution of Equivalents

Now in order to show that D15 may also replace Cl in axiomatizing X, it
will suffice to prove that D15 inferentially entails D5 (and hence Cl) in the
field of T:
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1 CKMMpMLqLKMMpMLq D15
2 CNLKMMpMLqNKMMpMLq 1, Transposition
3 ENLpMNp T6
4 ENLKMMpMLqMNKMMpMLq 3, p/KMMpMLq
5 CMNKMMpMLqNKMMpMLq 2, 4, Substitution of Equivalents
6 CMANMMpNMLqANMMpNMLq 5, De Morgan
7 CMANMMNpNMLNqANMMNpNMLNq 6,P/Np;q/Nq

8 ENMMNpLLp Tl
9 CMALLpNMLNqALLpNMLNq 7,8, Substitution of Equivalents

10 ENMLNqLMq Til
D5 CMALLpLMqALLpLMq 9, 10, Substitution of Equivalents

Still another way of axiomatizing system X is by simply appending both

D32 CMMpLMMp

and

D45 CMLpLMLp

to the axiomatic basis of T. This is easily demonstrated by merely proving
that both D32 and D45 inferentially entail D15 in the field of T:

1 CMMqLMMq D32
2 CMLpLMLp D45
3 CCpqCCrsCKprKqs PC
4 CCMLpLMLpCCMMqLMMqCKMLpMMqKLMLpLMMq

3, p/MLp; q/LMLp; r/MMq; s/LMMq
5 CCMMqLMMqCKMLpMMqKLMLpLMMq 2, 4, Detachment
6 CKMLpMMqKLMLpLMMq 1, 5, Detachment
7 CKLpLqLKpq T5
8 CKLMLpLMMqLKMLpMMq 7, p/MLp; q/MMq
9 CKMLpMMqLKMLpMMq 6, 8, Syllogism

10 CKMLqMMpLKMLqMMp 9, />/#; #//>
D15 CKMMpMLqLKMMpMLq 10, Commutation

2 Modal system X has fourteen distinct irreducible modalities; they are
the following and their negations:

(a) a
(b) La
(c) Ma
(d) LLa
(e) MMα
(f) MLa
(g) LMα

The entailment relations which hold among these modalities are exhibited
by the following diagram:
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LLa •La

I «
LMa ^ S / '

MM a ** Ma *^

That these entailment relations among the modalities are as summarized in
the above diagram are justified by the considerations that D38, D39, D47,
D48, D49, D67, and D70 are all theses of X. An analogous diagram for the
negative cases can be obtained by simply negating all of the formulae and
reversing the direction of the arrows.

Before showing that there are no more than fourteen distinct mod-
alities in X, we first take notice of some of the reduction laws provable
inX:

D72 ELMMpMMp D32, D54, Definition E
D73 EMLLpLLp D31, D53, Definition E
D74 ELLLpLLp D46, D59, Definition E
D75 EMMMpMMp D50, D60, Definition E
D76 ELMLpMLp D45, D55, Definition E
D77 EMLMpLMp D44, D52, Definition E
D78 ELLMpLMp D51, D65, Definition E
D79 EMMLpMLp D61, D66, Definition E

We are now prepared to proceed with the proof.

If we add an L to (a) we obtain a modality equivalent to (b) adding an M
to (a) gives a modality equivalent to (c). If we add an L to (b), a modality
equivalent to (d) results; adding an M to (b) gives a modality equivalent to
(f). If we add an L to (c), we obtain a modality equivalent to (g); adding an
Mto (c) results in a modality equivalent to (e). If we add an L to (d), then,
in view of D74, we obtain a modality equivalent to (d) itself; adding an M to
(d) again results in a modality equivalent to (d) itself because of D73. D72
assures us that adding an L to (e) results in a modality equivalent to (e)
itself; if instead we add an M to (e), we again obtain a modality equivalent
to (e) itself because of D75. Adding an L to (f), because of D76, results in a
modality equivalent to (f) itself; adding an M to (f) still gives rise to a
modality equivalent to (f) itself because of D79. Adding an L to (g) results
in a modality equivalent to (g) itself because of D78; adding an M, on the
other hand, still results in a modality equivalent to (g) itself because
of D77.

Clearly the negative cases can be dealt with analogously; consequently,
there are at most fourteen distinct modalities in X. Note, incidentally, that
the above proof also entials that every iterated modality in X is reducible
to an iterated modality containing no more than two modal operators; more
specifically, to the two innermost modal operators.
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In order to demonstrate that there are no fewer than fourteen distinct
modalities in X, we will make use of matrix φl of section 1.

(1) a fails to entail La and LLa for a/2, 3, 4, 5, 6, and 7; MLa for α/2, 3, 4,
6, and 7; LMa for a/A.
(2) La fails to entail LLa for α/5.
(3) MLa fails to entail a, Lα, and LLα for a/5.
(4) LΛfα fails to entail a, MLa, La, and LLa for α/2, 3, 5, 6, and 7.
(5) Mα fails to entail a, La, and LLa for α/2, 3, 4, 5, 6, and 7; LMa for
α/4; MLα for a/2, 3, 4, 6, and 7.
(6) MMα fails to entail Ma and LMα for a/4; MLa for α/2, 3, 4, 6, and 7; α,
La, and LLα for α/2, 3, 4, 5, 6, and 7.

Again it is obvious that the negative cases can be dealt with in the same
fashion; hence, we also conclude that there are no fewer than fourteen
distinct modalities in X.

Modal system X then is similar to S4 in possessing exactly fourteen
distinct modalities; however, four of the modalities are different. In S4,
LLa, MMa, and their negations are not irreducible whereas LMLa, MLMa,
and their negations are. In X, on the other hand, the latter are reducible
whereas the former are not.

3 In offering a semantic interpretation for modal system X, we shall
employ the terminology, techniques, and lemmata of Hughes and Cresswell
in [l]. Hughes and Cresswell define a semantic model for T as an ordered
triple (W, R, V) where W is a set of objects (worlds), R is a reflexive
relation defined over the members of W, and V is a value-assignment
satisfying the conditions specified in [l], p. 73.

In constructing models for modal systems properly containing T, it
quite often proves fruitful to impose additional requirements on the
accessibility relation in a T-model. Hence, for example, a model for S4
results by imposing the additional requirement of transitivity, for B the
additional requirement of symmetry, and for S5 both transitivity and
symmetry. In constructing a model for X, however, we shall not proceed in
this fashion. Rather than impose an additional requirement on the
accessibility relation, we shall impose a stipulation upon the set W in a
T-model. This stipulation will take the form of what I shall call, for the
lack of a more imaginative phrase, the "iterated modality requirement."
This requirement stipulates that if an iterated modality is true (or false) in
any world in the model, then it is true (or false) in every world in the
model.

More formally then we define an X-model as an ordered triple
(W, R, V) where W is a set of objects (worlds) possessing the iterated
modality requirement, R is a reflexive relation holding over the members
of W, and V is a value-assignment satisfying the conditions specified in [l],
p. 73. We now say that a wff, a, is X-logically true iff in every X-model
(W, R, V) and for every w{ e W, V(a, to-) = 1.
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In section 1, we proved that modal system X may alternatively be

axiomatized by appending both

D32 CMMpLMMp

and

D45 CMLpLMLp

to the axiomatic basis of T. Thus, in order to prove the soundness theorem

for X, we need only show that both D32 and D45 are X-logically true. Let

us begin with D32. Assume for the sake of reductio that D32 is not

X-logically true; i.e., that V'{CMMpLMMp, wt) = 0. Clearly it follows that

both

1 V(MMp, w{) = 1

and

2 V(LMMp, Wi) = 0.

From 2 it follows that

3 V(MMp, Wj) = 0.

Hence, in view of the iterated modality requirement, it follows from 1 that

4 V(MMp, Wj) = 1

which contradicts 3. Consequently, V(CMMpLMMp, w{) = 1.

Now let us consider D45. Assume for the sake of reductio that

V(CMLpLMLp, w{) = 0. Obviously we have

1 V(MLp, Wi) = 1

and

2 V(LMLp, Wi) = 0.

Thus it follows from 2 that

3 W(MLpf wf) = 0.

But because of the iterated modality requirement it follows from 1 that

4 V(MLp, Wj) = 1

which is, of course, inconsistent with 3. Therefore, V(CMLpLMLpf w ) = 1.

In order to prove the completeness theorem for X, we must show that

the iterated modality requirement holds among maximal consistent sets.

Let Γ be a whole system of such sets and let every Γf e Γ be maximal

consistent with respect to modal system X. Let β also be any wff which is

an iterated modality. Clearly what we must show is that if there exists a

Γ7 € Γ such that βe Γ; , then β is in every Γ\ € Γ. But Γ; may possess either

one of two characteristics; it may be such that (a) it has subordinates or

subordinates* to it {cf. [ l ] , pp. 157 and 158 for definitions of 'subordinate'
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and 'subordinate*') or (b) it is itself a subordinate or subordinate* of any
Γ, . Let us begin with (a) first.

(a) Clearly what we must show here is that if β is in Γy, then β is not only
in every subordinate of Γy, but also in every subordinate* of Γy. Let Γ& be
a subordinate of Γy and Γ/ a subordinate of ΓV More specifically then, we
must show that if βe Γy, then βe Tk and βe Γ/. Now in section 2 we proved
that every iterated modality in X is reducible to an iterated modality
containing no more than two modal operators. But this means that every
iterated modality is equivalent to any one of LL, MM, ML, or LM since
these are the only irreducible iterated modalities in X. Consequently, if β
is an iterated modality, it must be equivalent to any one of the following:
LLγ, MMγ, MLγ, or LMγ. Now in order to prove (a) it will be required
that we demonstrate that

(i) if LLγe Γy, then LLγe Tk and LLγeTi;
(ii) if MMγ e Γy, then MMγ e Γ̂  and MMγ e Γ/;
(iii) if ML γ e Γy, then ML γ e Tk and MLγ e Γ/;
(iv) if LMγ e Γy, then LMγt Tk and LMγ e Γ/.

At this point we remind the reader that the lemmata employed are taken
from Hughes and Cresswell in [l], pp. 152-154.

(i) If LLγeΓj, then since CLLγLLLγ is a thesis of X (D59), we have
CLLγLLLγe Γy and so (by Lemma 3) LLLγe Γy. Thus (by construction of
Tk) LLγe Γ .̂ But CLLγLLLγe Γ& also, hence (again by Lemma 3) LLLγe
Tk and so LLγe Γ/ (by construction of Γ/). Now by induction on subordina-
tion, the result holds for any subordinate* of Γy.

(ii) If MMγe Γy, then since CMMγLMMγ is a thesis of X (D32), we have
CMMγLMMγ e Γy and so (by Lemma 3) LMMγ e Γ{. Thus (by construction
of Tk) MMγeTk. But CMMγLMMγ eTk also, hence (again by Lemma 3)
LMMγe Tk and so MMγe Γι (by construction of Tt). Now by induction on
subordination, the result holds for any subordinate* of Γy.

Quite obviously steps (iii) and (iv) will proceed similarly using

D45 CMLγLMLγ

and

D65 CLMγLLMγ

respectively. Consequently, we leave proof of these steps to the reader.

(b) Taking Γy itself to be either a subordinate or a subordinate*, we
proceed as follows: let Γy be either Γm or ΓM; also let Γm be subordinate to
Γ, and Tn subordinate to Γ*. Where β is again any iterated modality of X,
what we have to show is that if either β e Γm or β e Tn, then β e Γt . We prove
this by showing that if β^Tu then both βfίTm and β^Tn. Now for the same
reason given above, β is of any of the four forms: LLγ, MMγ, MLγ, or
LMγ. Hence what we now must show is
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(i) if LLγfί Γ t, then both LLγ{Tn and LLγi Tn;
(ii) if MMyiTu then both MMγίTn and MMyiTn\
(iii) if MLγi Vu then both MLγίVm and MLyiTn\
(iv) if LMyiVi, then both LMγiTm and LMy/Γw.

(i) Suppose that LLγfίTi. Then (by Lemma 2) NLLγe Γ£, and hence, since
CNLLγLNLLγ is a thesis of X (from D31 and transposition), we have (by
Lemma 3) LNLLγeTi. Thus (by construction of Tm) it follows that
NLLγeTm and so (by Lemma 1) LLγiTm. But again because CNLLγLNLLγ
is a thesis of X, we have CNLL γLNLL γeTm and so (by Lemma 3)
LNLLγe Tm. Hence (by construction of Γn) we have NLLγe Tn and so
LLγiYn (by Lemma 1).

(ii) Assume that MMyeΓ, . Then (by Lemma 2) NMMγeTi, and hence,
since CNMMγLNMMγ is a thesis of X (from D60 and transposition), we
have (by Lemma 3) LNMMγ e Γ, . Now (by construction of Tm) we have
NMMγeTm and so (by L e m m a 1) MMγiYm. But a g a i n because
CNMMγLNMMγ is a thesis of X, we have CNMMγLNMMγe Tm and, con-
sequently, LNMMγ eTm (by Lemma 3). Thus (by construction of Tn) we
have NMMγ e Tn and so (by Lemma 1) MMγfίΓn.

Quite obviously steps (iii) and (iv) will proceed similarly using

D80 CNML γLNML γ (from D66 and transposition)

and

D81 CNLMγLNLMγ (from D44 and transposition)

respectively. Consequently, we consider the completeness theorem proved.

4 Before concluding this paper, we raise two open questions. First, do
there exist other modal systems which are properly independent of both B
and S4 with respect to S5? One way of answering this question affirmatively
would be to determine that there are systems properly between X and S5;
that is, that there exist extensions of X properly contained in S5. I must
confess that I have been unable to determine this. In any event, it is clear
that there do not exist non-Lewis extensions of X in the sense that there
are non-Lewis extensions of S4; at least none which are axiomatized by
appending

K1 CLMpMLp

to the axiomatic basis of X or any of its Lewis extensions (if there are
any). To show this, assume K1 and the field of X:

1 CLMpMLp K1
2 CMLLpLLp D31
3 CMLpLMLp D45
4 CLpp A5
5 CLLpLp 4,P/Lp
6 CLMLpMLLp l,P/Lp
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7 CLMLpLLp 2, 6, Syllogism
8 CLMLpLp 5, 7, Syllogism
9 CMLpLp 3, 8, Syllogism

10 CMpLMp 9, R4
11 CLMpLp 1, 9, Syllogism
12 CM/>L/> 10, 11, Syllogism
13 CpMp 4, R4
14 CpLp 12, 13, Syllogism

Clearly, appending K1 as an axiom to the basis of X collapses it into the
Classical Propositional Calculus.

Finally, the next question I would like to raise is this: does there
exist a system which is properly independent of B, S4, and X with respect
to S5?
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