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1 Introduction In [2], J. C. E. Dekker showed that the class ΛR of
regressive isols is not closed under addition (equivalently, in view of [2],
Proposition P 18, ΛR is not closed under multiplication) within the ring Λ*
([4]) of isolic integers. In [l], Barback gave a different proof of additive
non-closure which, in contrast to Dekker's proof, does not appeal to the
notion of degree of unsolυability (of a regressive isol; see [2]). Since
Barback's proof makes no use of degrees, one is naturally led to wonder
whether the failure of additive closure for ΛR is totally independent of
degree, in the sense that if dγ and d2 are any given nonzero degrees of
unsolvability then there exist retraceable sets a and β such that a e du βtd2,
and the respective isols A and B determined by a and β fail to have a
regressive sum. In view of [5], Theorem T2 and [2], Proposition P 17, this
is always the case when dλ Φ d2; so we need only concern ourselves with the
realization of additive non-closure within a given degree. Barback's proof
of additive non-closure can easily be embellished with enough auxiliary
coding to produce one particular well-behaved class of degrees d for which
the additive non-closure of ΛR can be realized within d; the class we here
have in mind is {d\d ^ φ"}. As an immediate corollary to the main result of
section 3, we shall conclude that each element of the larger class {d\d = φ'}
bears internal witness to the additive non-closure of ΛR ({d\d ^ φ'} is well
known to have the interesting property of being co-extensive with the range
of the jump operator ([8])); thus, we have total independence of degree for
additive non-closure of ΛR within the class {d\d £ φ'}. (This much, in fact,
is very easy to prove without any appeal to the limiting procedures
employed in our proof of Theorem 3.1. Theorem 3.1, however, goes a bit
further with respect to the form of the summands and the extent of their
illrelatedness.) In section 4 we shall prove that the one-sidedness of
condition (iii) in the statement of Theorem 3.1 is inescapable, at least for
n0 = 0. In section 5, we restrict our attention to the subsemilattice of
recursively enumerable degrees; there we shall establish, by means of a
suitable elementary priority construction, that, for the entire class 3- {φ}
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of nonzero recursively enumerable degrees, the additive non-closure of ΛR

is indeed a totally degree-independent phenomenon.

2 Preliminaries We shall, as far as possible, follow the notational and
terminological conventions of [l] and [3]. However, we shall employ a
number of concepts and notations not mentioned in [l] or [3]; these
additional concepts and notations (with the exception of "movable marker"
notations, which are exploited in sections 3 and 5) will be either explicitly
explained or appropriately referenced in the present section. To begin
with, we find it convenient to supplement the notation of [l] with an
alternative convention regarding isols: Barback in [l] uses upper-case
Roman letters to denote isols; we shall do the same, but shall occasionally
also employ [a] as a notation for the isol determined by the set a. Next, we
recall that by Kleene's Normal Form Theorem there exist a fixed
recursive predicate T (n, x, y) and a fixed recursive function U such that
{U((μ;y)T(tt, x, y))\n= 0, 1, 2, . . .} = the class of all partial recursive
functions of one variable; here, as usual, μ denotes the least num-
ber operator. We shall denote the n-t\\ partial recursive function,

U((μ;y)T(w, x, y)), by φn; and for each n and s we set

<P»s) = {\{x, y)\(3z)[z s s & T(w, x, z) & (Vw)(w< z =ΦiT(», x, w)) by

= ϊl(*)]},
where j is the recursive pairing function used in [l]. Note that φ^ is a
coding of a finite subfunction of φn, that the graph of φn is equal to

U {(x, y)\\(x, y)e ψn }, and that both the characteristic function and the
s = O , v

cardinality of the finite set φn can be effectively determined from n and s.
As in [1], ε denotes the set {0, 1, 2, . . .} of all natural numbers. A set
a c ε is said to be recursively enumerable (abbr.: r.e.) <#=̂ > α̂? = the
domain, δφn, of some partial recursive function φn. These notions can (as
is very well known; see [13]) be relativized in a uniform way: there exists
a fixed recursive predicate Ί(X, n, x, y) of one set-theoretic (i.e., second-
order) variable and three number-theoretic variables, such that (Vα) [a g

ε=Φ({U((μy)τ(α> n> x> 3;))lw = °> *> 2> •} = t h e class of all one-place
functions partial recursive in a)]; then, setting ψn=df U((μ3>)T(α, n, x, y)),
we may define φ%' s from φa

n exactly as in the previous ("unrelativized")
case, and then observe that the characteristic function and the cardinality
of ψn can be effectively determined from n, s, and a. (The classes
{φn\ne ε} and {φ$\ne ε} are equal, though it is not necessarily the case that
φn = ψt holds for a given n.) Since we shall use them in section 5, we call
attention to the two-variable counterparts, φ\ and φ\ , of φn and φn

s)\ for
explicit definition of φ% and (uncoded) φl'(s\ see [12], Often, especially in
section 5, we shall identify φn

s) or φ2

n' with the finite function which it
codes. The classes Σ(

w

s) and Π(

w

s) of second-order sets and relations,
involving in their definitions both free number-theoretic variables and free
set-theoretic variables but with quantification restricted to number-
theoretic variables, are as in [17], section 15.1. If an element of the class
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Σn involves exactly one set-theoretic variable in its definition and if we
substitute the particular set a for the set-theoretic variable in question,
then we say that the resulting set or predicate of natural numbers belongs
to Σ%; a similar meaning attaches to the notation Π .̂ We shall assume
familiarity on the reader's part with the concept of degree of unsolυability
of a set of natural numbers ([18]) and with the more elementary properties
of the collection of all such degrees; in particular, we assume familiarity
with the notion of the jump, df, of a given degreed ([18], section Ί). We
always use boldface, lower-case, Greek or Roman letters to denote degrees
of unsolvability, with the exception that φ is used to denote the zero degree
(i.e., the degree of the empty set 0). For each a c ε, a denotes the degree
of unsolvability of a; symbols such as d simply denote degrees, without
reference to specific representatives. If d is given degree, then dr, d",
d"', . . . is the sequence of finite-order jumps of d; we also denote by dM

the n-th jump of d. (For a precise definition of the jump operator, see
[18], section 1, p. 2.) We recall from the strong form of the Hierarchy
Theorem ([17], section 14.5) that the sets r.e. in cr(n) (i.e., the sets of form
bψm for some m and some β such that β = a ) are just the sets belonging to
the class Σ"+1; the latter class, of course, contains sets of degree cr(w+1). A
degree d is said to be complete <^>df (3β)[β g ε & d = β']. Friedberg's
famous characterization of the complete degrees ([8]) states that d is
complete <€Φd £ φ*.

In section 5 we shall make use of the notion of a semirecursiυe set
([10], [11]). For an extensive list of useful properties of semirecursive
sets, the reader is referred to [11]. As to the definition, we remark that
one characterization of semirecursiveness reads as follows ([11], Theorem
4.1): a is semirecursive <#Φ>α is a lower cut in a recursive linear
ordering of ε; this characterization is often useful for proving "positive"
results about semirecursive sets (for illustrations of this utility, see [ll]).
On the other hand, in proving Theorem 5.1 (which has a "negative" flavor)
we find it convenient to make use of the original definition ([10], [ll]),
which reads as follows: a is semirecursive #Φ there is a total recursive
function/(ΛΓ, y) such that (V#)(V;y) [f(x, y) e {x, y] & ({x, y} Π a Φ φ H> f(Xf y) e
a)]. We shall also have occasion (in section 4) to consider the notion of
point-de compos ability. An infinite set a of natural numbers is said to be
point-decomposable ([16]) if there is a recursive function / such that

(i) nΦ m =Φ δφf(n) Π 6φfM = 0 , (ii) a c L J bφf{n), and (iii) (Vw) [a Π δφf(n)

is a singleton].

By a tree we shall mean a function T: ζ —> ε, ζ c ε, having the property
that pT c δT& (VAT) [xeδT => {x, T(#), T(T(#)), . 7.} is a finite set] &
(Vx)(Vy)[(xeδT byeδT &ye{x, T(x), T(T(#)) , . . .}& x Φ y) ==> xfl{y,T(y),

T(T(;y)), . . .}]. (The last conjunct asserts that the graph of T has no proper
loops.) In the foregoing, pT denotes the range of T and δT denotes the
domain of T (as in [l]). If T is a tree, and if xe δT, then by the T-height,
T*W, of x we mean the number (μy)[Ty(x) = Ty+1(#)]. (fy(x) is defined
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inductively by the equations f°(x) = x and fn+1(x) =f(fn{x)).) Let / be a
function from ζ into ε, where ζ c ε ; and suppose p / c δf. Then if xe δf, we
denote by f(x) the set {x, f(x), f{f{x)), . . .}. A tree T is said to be recursive
if {i(#, y)\T(x) is defined and = 3;} is a recursive set; and T is said to be
well-branched if δf c p/.

Finally, we wish to explicitly recall Barback's definition of the relation
^between regressive isols. If (an)™=0, {bn)^L0 are regressive sequences of
natural numbers (Barback uses simply an and bn as notation for such
sequences), and if a and β are the respective ranges of the sequences (an)™=0

a n d (bn)%ί0, t h e n (an)™o Φ (bn)T=o i s d e f i n e d t o m e a n t h a t a\β & (3p) [pis a.
partial recursive function & (Vn) [either αne δp & p(αn) = bn or bneδp&
p(bn) = αn]]; h e r e , a s in [ l ] , α\β m e a n s that (3n){3m)[α c δφn & β c δφm &

δφnnδφm=0l As Barback has noted in (1), if (an)?=0, (bn)Zo, (O~o, and
(dn^o are regressive sequencings, respectively, of the infinite regressive
s e t s a, β, γ, a n d δ , a n d i f a & γ & β ** δ & a\β & γ\δ, t h e n ( a n ) Z 0 $ ( b n ) ? = 0 Φ = $ >
(cn)^L0 tl (dn)^=0; hence, the relation tf can be defined for pairs of regressive
isols without any restrictions on choice of (separated) representatives or
on choice of regressive sequencings of (separated) representatives. Theo-
rem 1.2 of [1] states that [A + B e AR & A infinite & B infinite] =Φ A$B.
Therefore, in order to produce infinite regressive isols A and B whose sum
does not belong to ΛR, it is enough to arrange that A e Λ^ & B e Λ^ &

' l(A ty B); here we are using Λ^ to denote the class of infinite regressive
isols. The existence of such isols A and B is precisely the content of
[1], Theorem 1.3; while the impossibility of having l(A $ B) with both A
and B co-simple is the content of our Corollary 4.2.

3 Complete Degrees

Theorem 3.1 Let d be a degree of unsolvability satisfying d ^ 0r. Then
there exist retraceable sets βι and β2 such that (i) βx = β2 = d and (ii) ΊflX] ^
[£2]). If, in addition, d satisfies the equation d- φ(n°+1^ {here n^ can be any
fixed natural number) then we can further require: (iii) ε - β2 is r.e. in
•(" );i.e.,ε-/3 ί6Σ*0+1.

Proof: We start by defining a certain binary-branching, well-branched
recursive tree T. (By "binary-branching" we mean that exactly two
branches of T emanate from each node of T, i.e., that T*"1^) has exactly
two (exactly three) elements for every xe δT such that T(x) Φ x (such that
T(ΛΓ) = x). For ie{0, 1, 2}, let τ, =df {n\n = z(mod 3)}. We take T to be the
tree determined by the following equations:

δT = pT = { 0 } u ( ε - τo);
T"1(0)= {0,1,2};

Ί'\n + 1) = {3(n + 1) + 1, 3(w + 1) + 2}, for n + 1 e ε - τ0.

Obviously T is recursive, well-branched and binary-branching. Next, by
means of an elementary priority scheme, we shall construct a co-r.e.
retraceable set β such that β = φ' & no infinite branch {t(n)\ne ε} of T is
^-related to an infinite retraceable subset γ of β unless γ ^* pt. (For the
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definition of s*t see [l]. When we say that {t(n) \n e ε} is a branch of T, we
mean that (Vw) [t(n) e δT & t(n + 1) e δT & T(t(n + 1)) = t{n) & T(*(0)) = *(0)].)
β will be a subset of τ0 - {θ}; hence, we automatically have β\pt for every
infinite branch {t(n) \ne ε} of T. The construction of β (more precisely, the
construction of ε - β), together with that of a partial recursive function p
such that p retraces β, is carried out in stages according to the following
prescriptions.

Stage 0 Set /3(0) =<// (ε - τ0) u {θ}; attach the marker Λo to the number 3;
define p(0) = {<3, 3)}; then proceed to Stage 1.

Stage s + 1 In the description which we are about to give, we understand λs

e

as denoting 0 if the marker Λe is not attached at the conclusion of Stage s;
otherwise, λe =df the number to which Ae is attached (sometimes referred to
as the position of Ae) at the conclusion of Stage s. No marker will ever be
attached to 0. The procedure as a whole will be such that there exists a
recursive function m(x) with the property that (Vs)(Ve)[(e Ξ m{s) =̂> λe >
0) & (e > m{s) =Φ λe = 0)]; this function will be used in describing Stage
s + 1, to the extent that at Stage s + 1 we take the value of m{s) as known
(which assumption will readily be seen to be justified once the construction
has been fully described). We are now ready to set forth our procedure at
Stage s + 1. There are two principal cases.

Case I s is even. In this case, we attack the usual "domination require-
ments" relevant to securing the relation β = φ*, as in [21], proof of
Theorem 3. First, suppose that there exist numbers k, I, r, and y such
that 0 < k * m(s) & I s k & r s k & \(l, y) e φ[s) & y z λf. Let k0 be the
smallest k for which such I, r, and y exist. Detach all markers Aq such
that Λ| >J) & q ^ k0. Define u0 = (μ.u) [u^δp(s) U β ( s )]. Attach Λ ô to u0. Set
β{s+l) =dfβU) U {w\λs

kQ ύw< uo}, and define £ ( s + 1 ) = pis) U {(u0, λio-i)}; then

proceed to Stage s + 2. (Note that m(s + 1) = k0 in this instance.) If, on the
other hand, no such numbers k, Z, r, and 3; exist, then we define uΌ as
before, set β ( s + l ) =dβ

(s) U {w I λs

m(s) <w<uo\ define ^ ( s + l ) = p(s) U {(u0, λs

m(s))l
attach Am(s)+1 to u0, and proceed to Stage s + 2. (Here, m(s + 1) = m(s) + 1.)
We remark that it will be clear, when our description of the construction is
complete, that in this second subcase (i.e., when numbers k, Z, r, and y of
the indicated type do not exist) we can equivalently define β ( s + l ) = β ( s\

Case II s is odd. Here we shall attack requirements relevant to insuring
that if {t(n) \ne ε} is a branch of T and γ is an infinite retraceable subset of
β then [pt] % [γ] =̂> γ =* pt. First, suppose that there are numbers w9 k, I,
and r such that 0 < k ^ m(s) &Z^fc&r€δT& T*(r) = k & j (r, w) e φ^ &
w ^ λ|. (Recall thatT*(r) is our notation for the T-height of r.) Then we
take k0 to be the least k for which such numbers w, Z, and r exist and
proceed exactly as in the first subcase of Case I. If no such numbers w, kf

I, and r exist, then we proceed exactly as in the second subcase of Case I.
00

That completes our description of Stage s + 1. We set a -df U β ( s ) and
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oo

p =df U p(s). Clearly, a is an r.e. set and p is a partial recursive function.

As usual with such constructions our first concern is to verify that all
markers attain final positions, i.e., that (Vn) [s '-̂  oo χs

n exists and is >0].
This is accomplished by a straightforward inductive argument. Clearly,
λo > 0 for all s; moreover, it is obvious that Λo is not detached at any point
in the construction subsequent to the end of Stage 0. Thus s ' ^oo λj exists
and is >0. Now suppose that s '-̂  °o \s

n exists and is >0 for all n ^ k. Let
s0 be the smallest number 5 such that (Vw)[w ^ s =Φ (Vn)(n ̂  k =̂> λ« =
t '-̂  oo χ«)]. Then, in view of the manner in which markers are attached and
detached in our construction, we see that λ&+i > 0 for all s ^ s0 + 1. In
addition, it is clear that Λ&+1 can be moved during Stage s, s ^ s0 + 1, only
if either s i s even & (3l)(3r)(3y) [I s k + 1 & r ^ k + 1 & \(lf y) € φ{

r

s) & y ^

λs

k+ί] or s i s odd & (3w)(3ΐ)(3r)[ j (r, w) e φ\s) & I ^ k + 1 & re δ T & T*(r) =

k + 1 & w ^ λl+i]; in either case, since markers move only from smaller to
larger numbers, it is evident that only finitely many such moves can occur.
Hence s '-̂  <» χs

k+1 exists and is >0. By induction, s '-̂  oo λ* exists and is >0
for all values of n. From here on, we denote lim λ̂  by λw. It is plain from
our description of the construction that (Vn) [λn < λn+i] and that p retraces
{λjne ε}. We define β = {λjne ε}; then, it is easy to see that a = ε - β. Let
g be an arbitrarily given partial recursive function of one variable; and let
n0 be the least positive number n such that g = φn. Then it is clear from
the description of Stage s+ 1 for even values of s that (Vra) [m > n0 & Ψno(

m)
defined =#> λm > <P«0(m)]. Thus, each partial recursive function of one
variable is eventually majorized by the sequence {λkh^; hence ([21],
p. 465), β^ψ f . Since β has r.e. complement, β=φ*. Next, suppose that
{t(n) I ne ε} is a branch of T and that [pt] tf [β]. Let hbe a, partial recursive
function of one variable such that (Vn) [(t(n) ebh& h(t(n)) = λ j or (λne δh &
h(\n) = t(n))]. Let m0 be the least positive number m such that h = φm. We
see from the description of Stage s + 1 for odd values of s that (Vn) [n >
m0 => (λne δh & h(\n) = t(n))\ since for all n> m0 we have λn > h(t(n)).
From this last statement it readily follows that β ^* pt is witnessed by
some finite modification of the function h. But α fortiori, if γ is an infinite
retraceable subset of β and the relation [pί]^[y] is witnessed by the
partial recursive function h then γ ^* pt holds via some finite modification
of h; for, given any number k, if λ ê γ then the &-th member of γ (in order
of magnitude) is ^ λ̂ . Thus, β has the desired properties. (At this point we
would like to interject the remark that the existence of a co-r.e. re-
traceable set β of the type just constructed is a trivial corollary to a
general ''thinning theorem" contained in the author's paper [15]. We have
here included a detailed construction of β, rather than a mere reference to
[15], because the priorities needed to obtain β from scratch are completely
straightforward.)

Next we shall select from T a branch {t(n)\ne ε} such that pt= φ' &
~l([p£] ^ [β]) Because of the properties with which we have endowed β, it
will be sufficient to arrange that β ^* pt in order to insure that [pt] and [β]
are not ^-related. We define t as follows:



DEGREES OF UNSOLVABILITY 551

ί(0) = 0;

ink) [fee T W ) & (ίPgiita+i) is defined =Φ

φΐ+i(λn+1) * k)] if n + 1 is even,

(|ώ[*e T " 1 ^ ) ) & k = Hmoά 3)] iί

t { n + 1 ) = n+lisoddandfeβ,

( μ . k ) [ k e l'\t{n)) & k = 2 ( m o d 3 ) ] if
Ύl

n + 1 is odd and -ft β.

Clearly, pt% φr. Conversely, it is easily shown that φf ^ pt. For, given any
number n, we can check whether n belongs to β by determining whether
t(2n + 1) = l(mod 3); so, since β = φ', we obtain φ* ̂ pt. Finally, suppose
β ^* pt. Then by [2], Proposition P l l there must exist a partial recursive
function q such that β c δq & (Vή) [q(λn) = t(n)]. Let m0 be the least
nonzero number m such that q = φm* Since we have defined / in such a
way that t(2m0) Φ φmo(λ2mo), we obtain a contradiction. Therefore, we
conclude that β $* pt and hence that [pt] is not ̂ -related to [β]. Thus the
theorem is proved, for the particular case d = φr. We shall extend the
result to all d> φ' with the aid of [5], Propositions P2 and P4 and [12],
Theorem 4.14(2). Let d be a degree strictly greater than φ'; and let r be a
retraceable set belonging to d. As in [5], let pτ denote the uniquely
determined function h: ε —> ε such that h is strictly increasing and ph = r.
By [5], Proposition P4, the strictly increasing sequence {λpτ{n))t=o is
retraceable. Let δ = p((λpτ(n))T=o) Since ppτ = d > β & δ c / 3 , we have δ ύ d.
On the other hand, since δ ̂  β holds by [5], Proposition P2, we can compute
ppτ from δ; hence d$ δ and so d = δ. By [12], Theorem 4.14(2), if d =,fΛ+l)

for some n ^ 1 then the set r can be chosen from the class H?+i. Since β
belongs to the class πf, it follows that we may assume δ e Π%+1 in case
{3rd [n * 1 & d = φ(n+l)]. But then ε - δ e Σ^+1 (equivalently, ε - δ is r.e. in
φ ( n )). It remains to choose from T a branch {u{n) I n e ε} such that pu = d &
~l([pw] ty [δ]). Since δ is an infinite retraceable subset of β, it suffices (in
view of the properties of β relative to T) to arrange that δ ̂ * pu in order to
insure that [pu] and [δ] are not ̂ -related. Letting />g be the function which
enumerates δ in increasing order of magnitude, we proceed with the
definition of μ just as we did with the definition of t in the case d = φ':

u(0) = 0;
(ilk) [ke T"1(M(W)) & ((pn±i(Ph(n + 1)) is defined =#>

2

(Pn+aPzin + 1)) Φ k)] if n + 1 is even,

(μk) [keJ-\u(n)) & k = l(mod 3)] if
u(n + 1) = J J w

n + 1 is odd & -e δ,

(μtXfteΓ'WB)) & * s 2(mod 3)] if

n + 1 is odd & ~ / δ .
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Exactly as in our treatment of the case d = φ f, we verify that pu-dh
δ ^* pu; this shows that if βγ = pu and β2 = δ then βu β2, satisfy conditions
(i), (ii), and (subject to the indicated provision regarding d) (iii), and
concludes our proof of Theorem 3.1.

Corollary 3.2 If d is a degree such that d ^ 0 f , then there exist retraceable
sets βu β2ed such that β1 \ β2 & βi U β2 is not regressive.

Proof: Theorem 3.1 and [1], Theorem 1.2. (As mentioned in section 1,

Corollary 3.2 admits an easy proof not involving limiting considerations.

Most of the maneuvering in our proof of Theorem 3.1 relates to condition

(iii).)

Corollary 3.3 If d is restricted to vary over the class of all complete
degrees, then the failure of additive closure for ΛR is totally independent of
d {in the sense explained in section 1).

Proof: Corollary 3.3 follows immediately from Corollary 3.2 and [2],
Proposition P 17(d).

Before leaving section 3 we remark that, degrees of summands aside,
the following very simple result covers a number of examples of ΛR +
ΛR ^Λ R :

Theorem 3.4 Let 3 be a subclass of 2ε such that 3 is closed under relative
recursive enumerability (i.e., [cue 3 & β r.e. in a] =$> βe3); and let C be a
nonempty countable collection ofinfinite, regressive, non-r.e. subsets oft,
such that f c 8 . Let T(C) = {A \A e AR & (3γ) [γ e C & A + [y] e ΛR]}. Then
T{C) is a countably infinite subclass of the i$-isols.

(By an 3-zsoZ we mean an isol A such that A Π 3 Φ φ.)

Proof: Let C* = {δ I (3y) [γ e C & γ « δ]}. If % is the collection of all sets a
such that a % δ f holds for some δ e C*y then 51 contains a representative of
each isol A such that A e Γ(C). For i f A e Λ ^ & α e - A & δ e ^ & α l δ & α u δ
is regressive, then, since a U δ is r.e. in δ and a is recursive in a U δ, we
see that a ̂  δ f . Since 51 is countably infinite, T(C) is countable. Moreover,
it is easily seen that {[γ]\γe C] c Γ(C); hence T(C) Φ φ. By a routine
deletion argument, T(C) φφ =#> T{C) is infinite; thus, we have T{C)
countably infinite. Finally, if A e T(C) then (3a) [aeAΠ 3]. For, by defini-
tion of Γ(Γ), we have [a] + [y]eΛR, with a\γ, for some at A and γe C. Since
C c 3 , γ e 3 . But α ϋ y i s r.e. in y; so, since a\γ, a is r.e. in y. Thus ae 3,
since 3 is closed under relative recursive enumerability. That completes
the proof.

As one rather obvious instance of Theorem 3.4, let C0 = {γ\γ is
non-r.e. & y is regressed by a partial recursive function p such that p
regresses at most No infinite sets}. A partial recursive function p is a
countable regressing function (cf. [12]) if p regresses a total of K infinite
sets, where 1 ̂  K ̂  No It is easily seen that Co is a nonempty subclass of
the class HYP of all hyperarithmetical sets; and, of course, HYP is
countable and is closed under relative recursive enumerability.
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In connection with the class Co, one might very naturally inquire
whether T(C0) g{[γ]\γeC0} holds as well as {[γ]\γeC0}c. T(C0). We con-
jecture this to be the case. It is easy to give examples of countable classes
C for which the identity in question does (does not) hold. For instance, let
Ck be any countable collection of non-r.e. regressive sets such that
(Vβ)(Vy)[(βe Ck & y r.e. in β & γ non-r.e. and regressive) => ye £&]; the
class of all non-r.e., arithmetical regressive sets and the class of all
non-r.e., hyperarithmetical regressive sets are two particular classes
which satisfy this condition. Since (β\γ & β U y is regressive & β is
infinite) =#> y is r.e. in β, we have Γ(f&) c {[y]|ye Ck}. For an example of
Γ(£) <t {[y]lye C}, we call upon a theorem of Hassett's concerning universal
elements of Λjf. (The notion of a universal isol was first defined and
studied in [6], where it was shown that such isols are abundant in the sense
of Baire Category.) Hassett showed (in an as-yet-unpublished manuscript)
that there exists a universal regressive isol A such that A = 2B + C for
certain isols B and C with B infinite. (I.e., he showed that universal
regressive isols need not be multiple-free in the sense of [4].) By a
theorem of Ellentuck's, the isol C in the above equation cannot be of the
form 2Ώ + E where E is finite. Hence, if we take A = 2B + C with A a
universal element of Λjf and with B infinite, then the collection C =
{2nB I n e ε, n ^ l} (consisting of the non-trivial even multiples of B) is such
that{[y]|yeC}ζ£ Γ(C). (In particular, we have CeT(C) - {[y]ly€C}.)

4 Any two co-simple regressive isols are ^/-related It is natural to inquire
whether condition (iii) in the statement of Theorem 3.1 can be made to
apply simultaneously to the sets βγ and ft>. The answer is in the negative,
at least at the bottom level n0 = 0.

Theorem 4.1 Let a and β be infinite, point-decomposable sets such that
a\β & ε - a is r.e. & ε - β is r.e. Letf and h be recursive functions such

that (a) U δψf(n) is disjoint from U δ^(n), (b) (δ<fy(n)) 0̂ witnesses point-
decomposability of ay and (c) (δφ^(w))^0 witnesses point-de compos ability of
β. Then there exists a partial recursive function p such that (Vx)(Vy)(Vz)
[(xe a Π δφf(z) & ye β n δφhω) => [(xe δp & p(x) = y) or (yeδpb p(y) = x)]].

OO

Proof: Let k0 and l0 be numbers such that δφko = U δψf{n) and δψιQ =

U δφ^n). Let gu g2 be recursive functions such that pgλ = δφkQ - a and

pg2 = δψιQ - β. (Such functions exist because a and β are co-r.e. sets with
a c δφk & β c δψi .) Given a natural number n, we shall make a stage-by-
stage construction of a partial recursive function rn such that δrn U prn c
δψf(n) U δ /̂j(n) & (rw(β) = 5 or rn(b) = α), where a is the unique element of
a Π δ </?/(„) and b is the unique element of β Π δψh{ny, it will be clear that the

construction of rn is uniform in n, so that U rn will be a partial recursive

function having the property required by the theorem. At Stage s of the
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construction, we shall add either one new pair or no new pairs to rn; each
pair put into rn during the construction will be of the form (x, y) where

(3n)[(xe bφf{n) & yeδφhM) or (xe δφh{n) & ye δφf(n))].

Immediately after a pair (x, y) has been added to r«, x will bear the tag D
(for "domain") and y will bear the tag R (for "range"); if either x or y
subsequently shows up in ρgλ U pg2, it will then lose whatever tag (or tags)
it has acquired prior to its entry into pgx U pg2. Let ψu ψ2 be recursive
functions such that pψx = δ</>/(») & pψ 2 = δψHn)- Our exact procedure is as
follows:

Stage 0 Set r<0) =df {(^(O), ψ2(0))}; give ψM a tag D and give ψ2(0) a tag
R; then go to Stage 1.

Stage s + 1 There are two main cases.

Case I s is even. Subcase IA Some pair (x, y) in ris) has the property that
x currently bears a D , y currently bears an R and g^s) e {x, y}. As will be
clear when our description of the construction is complete, x and y are
uniquely determined by these conditions. If g^s) = x, proceed as follows.
Remove D from x and set ris+l) =dfris) u {(ψi(zώ,y)}9 where z0 = (μz) [ψίiz) {
δr(

n

s) u {gi(t)\t ί s + l}]. (Such a number z0 must exist, since a Π δφ/(n) Φ φ
and since, as will be clear when our description of the construction is
finished, no number m ever loses a tag D at Stage s, s > 0, unless all the
elements of δr^'^ have already been enumerated in pgi U ρg2.) Give ψi(z0)
a tag D. Then go to Stage s + 2. If, on the other hand, gι(s) = y, proceed in
the following way. Remove R from y and set r^ s + l ) =df Λs) U {(ψi(w0), x)},
where w0 = {μw)[\^/^w) jί δr^s) ^{g1(t)\t ^ s + l}]. (Such a number wΌ must
exist, for reasons parallel to those given in support of the existence of z0 in
the case £Ί(S) = x.) Give ψi(w0) a tag D and give x a tag R. Then go to
Stage s + 2.

Subcase IB There is no pair (x, y) e ris) such that x currently bears a D, y
currently bears an R and gi(s)e{x, y}. Set r i s + l ) =df r^s); then proceed to
Stage 5 + 2.

Case II 5 is odd. Subcase ΠA Some pair (x, y) in ris) has the property
that x currently bears a D, y currently bears an R and g2(s) e {xf y}. As in
Subcase IA, these conditions uniquely determine x and y. If g2(s) = x,
proceed exactly as in the gχ(s) = x alternative under Subcase IA, but with £Ί
replaced by g2 and ψλ by ψ2. If g2

s) = y, proceed exactly as in the gι(s) = y
alternative under Subcase IA, but with gx replaced by g2 and ψι by ψ2.

Subcase IIB There is no pair (x, y) e r^s) such that x currently bears a D, y
currently bears an R and g2(s) e {x, y}. Set r^ s + 1 ) =df ?i s ); then go to
Stage s + 2.

That completes the description of the construction; clearly, the

function rn defined by rn = U r^ is partial recursive and has both its range
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and its domain included in δφ/(n) U δφh(n)- Moreover, it is plain that
(x, y) ern ==> [(xe δψf{n) & y € δφh(n)) or (x e δφhin) & y e δφf („))]. By induction
on s, we readily establish the following two assertions: (1) at the end of
Stage s, exactly one pair (x, y) e rn has the property that neither x nor y has
yet been ruled out of a U β by virtue of appearing in pgx U pg2, and (2) a new
pair (x, y) enters rn at Stage 5 + 1 if and only if this is necessary in order
to preserve (1) from Stage s to Stage 5 + 1. Since a Π δψf{n) and β Π δ<Ph(n)
are singletons, and since ψl9 ψ2 respectively enumerate δφ/(n), δφh(n), it is
therefore clear that there exists a stage s0 such that

(Vg)[sϊso=ϊr(

n

s) =r(

n

So)]&
(3x)(3y) [(x, y) e r[So) & [({x} = a Π δφ/(n) & M = β Π δφhin))
or ({x} = β Π δ<ρAOl) & {3;} = α Π δ <?/<„))]].

OO

Hence U rn is a partial recursive function /> as required for the theorem.

Corollary 4.2 If[a]eAR &[β]eti% & ε - a is r.e. & ε - β is r.e., then [a] $

[β]

Proof: We may suppose, with no loss of generality, that a\β. Let
a ί δ ^ 0 & β c δ< /̂0 where δ ^ 0 Π δ< /̂o = 0. Let p be a partial recursive
function such that £ regresses a & p£ c δ/> c δψk0 & (VΛΓ) [Λ:€ δ/> =#> (33;)
(py+1(x) = py(x))]; and let (7 be a partial recursive function such that q
regresses β & pq c δtf c δ< /̂0 & (VΛ:)[Λ:€δ(7 =Ξ> (33;)(^y+1(Λ:) = ̂ (Λ:))]. Let
p*, q* be related to p, q, respectively, as indicated in section 2. Then there
exist recursive functions / and h such that (Vn)[δφ/(n) = {x\xe δp & p*(x) =
n} & δ<pA(,,) = {jvUeδ^ & <7*(ΛΓ) = w}]. Corollary 4.2 now follows from
Theorem 4.1, using / and h.

Remark 4.3: The class P of co-r.e., point-decomposable sets is more
extensive than the class SI of co-r.e. infinite regressive sets; for, the isols
determined by elements of P are closed under addition.

Remark 4.4: It would appear difficult to extend Theorem 4.1 in any very
significant way. For, by means of an easy priority argument of the
classical "finite injury" type, one can establish that if a is any infinite
co-r.e. set then there exists an infinite co-r.e. set β for which no partial
recursive function p exists with the property that (VAT) [(/> (x) e δp & p(pa(x)) =
pβ(x)) or (pβ(x) e δp & p(pβ(x)) = pa(x))]. (Here, of course, pa and pβ are the
functions which enumerate a, β, respectively, in order of magnitude.)

5 Recursively enumerable degrees Our principal result, to be established
in this section, is that for any non-zero recursively enumerable degree d
there exist two co-r.e. retraceable sets a and β, both in d, such that
Oί\β & ot U β is not regressive. In view of Corollary 4.2 above, we cannot
hope to arrive at this result by forcing i([α] $ [β]), as we did in the case of
Theorem 3.1. With the ^ relation no longer available for spoilage, we
could simply make a direct attack on regressiveness; this would involve the
spoiling of obvious and easily-handled threats. However, with no more
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effort we can spoil semirecursiveness, which, as was demonstrated in [11],
is a weaker property than regressiveness for the sets now under con-
sideration. Our proof will be a "finite-injury priority argument" which
combines the following three features: (a) a procedure employed by
Jockusch in [10] is used to secure non-semirecursiveness of a u β; (b) the
Friedberg-Yates "permitting" technique ([21], proof of Theorem 2; see
also [19]) is applied to insure a ^ d & β ^ d; and (c) special "marker
coding" is used, in order to insure d£a&, d£β. The entire construction
is undoubtedly an instance of the type of priority procedure guaranteed to
succeed in virtue of the general considerations in Soare's paper [19]; we
think, however, that the proof will be more readable if we do not attempt to
cast it in the very general form discussed by Soare.

Theorem 5.1 Let d be a non-zero degree of unsolυability containing a
recursively enumerable set. Then there exist two recursively enumerable
sets α, β such that

(1) ε - α l ε - β,
(2) a = β = d,
(3) ε - a and ε - β are retraceable,

and

(4) (ε - α() U (ε - β) is not semirecursive.

Proof: We shall construct a and β in stages, together with partial recursive
functions p and q which retrace t - a and ε - β respectively. We shall need
a specific enumeration of an r.e. set of degree d; so let H e a one-to-one
recursive function such that ph= d& Ofίph. As in our proof of Theorem
3.1, we make use of movable markers; this time, however, we require two
sequences of such markers, one for ε - a and the other for ε - β. We shall
use markers Λo, Λx, Λ2, . . . to keep track of the "approximate comple-
ment", ε - α ( s ) , of a; and we shall employ markers Σo, Σ l 5 Σ2, . . . to
perform a corresponding service relative to β. In addition, we shall define
a two-place partial recursive function g, with δg = {2n\ne ε}x ε, whose
intuitive significance will be as follows: for each s, g(2x, s) = z means that
the markers A2x and Σ2x carry responsibility for the z-th requirement at
the conclusion of Stage s. (By "the z-th requirement", we here mean the
statement that φ\ is not a total recursive function witnessing semirecur-
sivity of (ε - a) U (ε - β).) Finally, we shall define, along with the
construction of a, β, p, and q, a recursive function m(s) with the property
that (Vs) [exactly the markers in {Λf | i Ξ m(s)} U {Σ, | i s m(s)} are attached
to numbers at the end of Stage s]. As in our proof of Theorem 3.1, we
denote by λf the number to which Λt is attached at the end of Stage s, if
i% m(s); similarly, σ̂  denotes the position of Σf at the end of Stage s,
provided i ^ m(s). Since odd-numbered stages are divided into two "s teps"
each, we shall denote by λ^'s the position, at the end of Step A, of Λf ,
provided Aj is attached at the end of Step A of Stage s, s an odd number;
similarly for the notation σf's relative to Σ, . The construction will be so
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arranged that, for all s and all i ^ m(s), min{λ;, σj}> i. Because we intend
to exploit the definition of semirecursiveness given in terms of two-place
recursive functions, we shall need to work with the arrays (ψn)T=o a n c*
(φl'^s))™=Ό,7=o i n t n e construction and proof which follow. Our procedure for
insuring property (4) was employed by Jockusch in his thesis [10]. (The
procedure in question was not subsequently published by Jockusch, pre-
sumably because he did not require it for the presentation of the material
in [11].) The device used to insure d ^ c r & r f ^ β i s a straightforward coding
procedure (via marker-displacements) of a type which has been used (for
example) by A. H. Lachlan in an unpublished simplification of Martin's
proof ([14]) that maximal r.e. sets inhabit all r.e. degrees having jump 0".
(We remark in passing, in this connection, that Leonard Sasso has obtained
a fairly general theorem concerning "trapping" constructions, in which
degrees are constrained precisely. In the present instance, however, our
specific coding device would appear to be easier to digest than is the
framework of Sasso's general theorem; hence, we do not attempt to place
Theorem 5.1 explicitly within the scope of Sasso's result (though in all
likelihood it does fall there).) Our stage-by-stage construction proceeds,
in detail, as follows.

Stage 0 Attach Λo to 2 and Σo to 1, and give 0 a *. Set p(0) = {(2, 2)}, q(0) =
{<1, 1>}, a(0) = β(0) = {0}, m(0) = 0, and g(2x9 0) = x for all x. Then go to
Stage 1.

Stage s + l , s + l = l (mod 2) We divide our procedure into two steps.

Step A There are three principal cases to be considered. Case Al
(3k)(3e) [0 < k ύ m(s) & k is even & e s k & g(k, s) = e & (VI) [(0 < I z k & I
even & g(l, s) = e) => (φl'{s) (λs

h σp is defined and belongs to {λf, σf})]&
h(s + 1) ^ mίn{λ|, σ|} & e does not bear a * at the end of Stage s]. Among all
such k, let kι, . . ., kt be those for which the corresponding e has minimal
value; let k0 = min{&1, . . ., kt}; let kt+ι = mαx{&i, . . ., kt}; and let e0 be the e
corresponding to k0 (equivalently, to kt+ι).

Subcase Al(i) φl^s) (λ^o, σ ô) = λ|Q. Here we begin by detaching all markers
Λ& such that ko^k % m(s) and all markers Σ& such that ko< k ^ m(s); at the
same time, we remove * from all those numbers e > 0 (if indeed such e can
be found) for which (3k) [k is even & k0 < k Ξ m(s) & g(k, s) = e & e bears
a * at the conclusion of Stage s] . We then give e0 a * and attach Λ&o to 2j0,
where j 0 - (μ j ) [ j > max{#|#e δp^ U δ^ }]. We say that e0 has its * on
account of k0. Next, we set ^ s + 1 ) = p(s) U {(2;0, λ|0-,>}, ^ s + l ) = ̂ ( s ) . Finally,
we define mo(s + 1) = k0 and^ (2Λ:, s + 1) = g(2x, s) for all x\ then we proceed
to Step B.

Subcase Al(ii) ψl'^s)(^l^ σD = σk0

 W e detach all markers Λ^ such that
k0 < k ^ m(s) and all markers Σ& such that kQύ k ^ m(s); we remove * from
all numbers e > 0 (if any such e exist) for which (3&) [k is even & k0 < k ^
m(s) & g(k, s) = e & e bears a * at the conclusion of Stage s]; we give e0 a *
and attach Σ^o to 2l0 + 1, where l0 = (μΐ) [l > maχ{x\xe δp(s) U δ^(s)}], and we
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stipulate that e0 has its * on account of ko; we set p\f+l) = ί ( s ) and qoS+l) =
q(s) U {<2Z0 + 1, σ£0-i>}; we define mo(s + 1) = k0 &ndg(2x, s + 1) = g(2x, s) for
all x; then we go on to Step B.

Case A2 Case Al does not hold as stated, but does hold if we delete the
conjunct "k(s + 1) Ξ mίn{λ^, σ|}'\ Let k0, e0, and k / + 1 be defined exactly as
in Case Al. If (VZ) [21 > kt+1 ==> g{2l, s) Φ e0], we define: p(

o

s+l) = p(s),
^(s+i) = qίs) ^ m ^ s + 1 } = m ( s ) j ^ ^ S + 1 } = ^ ^ 5 ) f o r χ ^ _ ^ a n d

/ /kt+1 \ \
g[ 21 — — + x + 1), s + 11 = e0 + x for all x; we remove * from any number

e > 0 which has a * on account of a number 2k satisfying 2k > fe/+i; then we
go to Step B. Otherwise, we s e t ^ s + l ) =pω , #|> s + l ) = q(s\ mo(s + 1) = m(s),
and g(2x, s + 1) = ̂ (2ΛΓ, S) for all ΛΓ; then we proceed to Step B.

Case A3 Neither Case Al nor Case A2 holds. In this event, we set p(

o

s+l) =
Pis\ qίs+l) = 4(s), mo(s + 1) = m(s), and g(2x, s + 1) =g(2x, s) for all x; then
we go to Step B.

Step B Here, there are two cases.

Case Bl 2h(s + 1) + 1 Ξ mo(s + 1). There are two subcases.

Subcase Bl(i) l(3j)[2j > 2h(s + 1) + 1 & g(2h(s + 1), s + 1) currently bears
a * on account of 2j&^(2«s+i) f s+i)(λ^fc+i), σ£h(£i)) is defined and belongs to
{λ2AU+1i)> or2A(s+i)}] In this event, we proceed as follows. First, we remove
all markers Λ^ and Σ^ such that 2h(s + 1) + 1 s k ^ mo(s + 1); then we
remove * from those numbers e > 0 (if any) such that e bears a * at the end
of Step A and l(3k) [k is even & k < 2h{s + 1) + 1 & e has its * on account

of k]. We then set α ^ = a(s) u {x\ xe δp(

o

s+1) - pf** (λ&tSi))} and β ( s + l ) =
β(s) U {x\ xe δq{

o

s+l) - q{

0

s+l)(v2h(s%)}. (When our description of the construc-
tion is complete, it will be clear that at the end of Step A we have A2h(s+i)
and Σ2^( s + 1) attached to elements of δpo , δqo , respectively, provided
2k(s + l) + 1 ̂  mo(s + 1); it will, moreover, be evident that ρp(

o

s+l)g δ ^ s + 1 ) &
Pdίs+ί) c δ ^ s + 1 ) & (Vx) [ ( x e δ p (

o

s + l ) ^ p (

o

s + 1 \ x ) ί x ) & ( x e δ q (

o

s + l ) =Φ q (

o

s + 1 ) ( x ) ί
x)]. Thus, our definitions of α ( s + 1 ) and β(s+l) make sense.) We attach
Λ2A(S+I)+I to 2m0 and Σ 2 A ( s + l ) + 1 to 2m0 + 1, where m0 = (μm)[m > max{j\rUe
δ ^ s + 1 ) U β*ί ί+1)}]; and we define p(s+l) = ̂ s + l ) u { ( 2 m 0 , λfaW})}, q(s+1) =
^ s + l ) U {(2m0 + 1, σ^fsΐi))}. Finally, we set m(s + 1) = 2h(s + 1) + 1; then
we proceed to Stage s + 2.

Subcase Bl(ii) Otherwise. First, suppose ^aMs+iλs+oίλίAfsΐi), °2h(s%) =
λ̂ ACs+i). Remove all markers Ak such that 2h(s + 1) s k ^ mo(s + 1) and all
markers Σ^ such that 2h(s + 1) < k ^ mo(s + 1); remove * from all numbers
e (including g(2h(s + 1), s + 1)) such that e bears a * at the end of Step A &
~λ{3k) [k is even & k < 2/z(s + 1) + 1 & e has its * on account of k]; give
£-(2ft(s + 1), s + 1) a fresh *, with the stipulation that g(2h(s + 1), 5 + 1) now
bears * on account of 2h(s + 1); attach Λ2A(S+I) to 2m0 where m0 is defined
as in Subcase Bl(i); define a(s+l) = ais) U {* |δ^ s + l ) - ^s+l)(λ2

4A(S

s+
1

l)-1)} and
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/3 ( s + l ) = βis) U {x\xeδq{

o

s+l) - ^ ( σ ^ ΐ ) ) } ; set p(s+ι) = p(

o

s+l) U {<2m0,
λ2

ΛA(S5Ϊi)-i)}and q{s+ι) = ̂ s + l ) ; define m(s + 1) = 2/z(s + 1); then go on to Stage
«. *τ . 2,(s) / A,s-fi A,s+i v A.s+i

s + 2. Next, suppose ^( 2A( s+i). s+i)(λ2A(s+i)» ^Λίs+i)) = CΓ2A(S+I). Remove all

markers Λ̂  such that 2h(s + 1) < k ^ mo(s + 1) and all markers Σ^ such that
2h(s + 1) ^ k Ξ mo(s + 1); remove * from numbers under the same condi-
tions as in the case φ2gω!(s+i),s+i)(λ2h{*+i)9 ^Msΐi)) = λ^Msΐi); give ^(2/z(s + 1),
s + 1) a fresh *, on account of 2h(s + 1); attach Σ 2 ^ ( s + l ) to 2m0 + 1, where ra0

is defined as in Subcase Bl(i); define a ^ = a(s) u {xIxe δp(

o

s+l) - p(

o

s+l)

(λ&ϊ i ) ) } and β{s+ί) = β ( s ) U {*|*6 δ ^ s + 1 ) - ^ ( σ ^ ΐ o - i ) } ; set p ( s + l ) = ^ s + l )

and ^ ( s + l ) = ^ 5 + l ) U {<2m0 + 1, σ2l'(
S

s+
1

l)-1>}; define m(s + 1) = 2h(s + 1); then
proceed to Stage s + 2.

Case B2^2h(s + 1) + 1 > mo(s + 1). Here, we define: a{s+l) = a(s) u{x\xe

OPo Po \λ»ιo(s+l)//> P - P U\ΛΓ|ΛΓ€O^o ^o Wwo(s+l)//> P

pos+l); <7(s+l) = <?os+l); M s + 1) = ̂ 0 ( s + 1). (Again, once our description of
the construction is complete, it will be clear that this definition makes good
sense: yno{s + 1) is so specified, in Step A, that precisely the markers Λ,
and Σj with i ^ mo(s + 1) are attached to numbers at the conclusion of
Step A.) We then proceed to Stage s + 2.

Stage s + l , s + 1 = 0 (mod 2) Let r 0 = (μr)[r> maχ{x\xe δp(s) Uδq(s)}]. We
attach ΛOT(S)+1 to 2r0 and Σm(s)+1 to 2r0 + 1; we define pis+l) = p(s) U {<2r0,
λ ^ j X U n d ^ ( s + 1 ) = q{s) U {(2r0 + 1, σ«(s)>}; we set a{s+ι) = a{s) u{x\x% 2r0 &

xfίp(^(2r0)} and β ( s + 1 ) = β(s) U {Λ U ^ 2r0 + 1 & xif^{2r0 + 1)}|; and we
let m(s + 1) = m(5) + 1, g(2x, s + 1) =£"(2^, s) for all ^. Then we proceed to
Stage s + 2.

That completes our description of the construction. We define
oo oo oo oo

a = U α ( s \ β = U βis\ p = Ό Pis\ and q = U ^ ( s ) . It is obvious that α, β, p,
S=0 S=0 S=0 S=0

and q, thus defined, are recursively enumerable, and that p and q are
functions. It is, moreover, trivial to verify by induction on s that (Vx) [(x e
δ£ = Φ /,(#) s x) & (xeδq ==> q{x) s Λ:)], that δp = {y |(3s)(3i) [z i m(s) & (3? = λ̂
or 3; = λf's)]}& δq = \y\(3s)(3i) [i s m(s) & (y = σ* or y = σf's)]}, and that
δp c.{χ\χ is even}& δ^ g {Λ;|Λ: is odd} (whence, automatically, ε - α | ε - β
holds provided that £ retraces ε - a and q retraces ε - β). Next, we
observe (the formal proof by induction on s is trivial) that g{2x, s) is
non-increasing as a function of s for fixed x, thatg (2Λ;, s) is non-decreasing
as a function of x for fixed s, and that for each fixed value of s the function
g(2x, s) is strictly increasing with x for all sufficiently large x; moreover,
it is plain that pg(2x, s) = ε for each fixed value of s.

As the first step in establishing that the construction "sett les down" in
a suitable way, we shall verify that lim λv and lim σf exist for every i (which
assertion is understood to entail that Λt and Σ f are attached at the end of
Stage s for all sufficiently large s), that, similarly, lim λ{'

s and Πm σi

 >s

exist for each i > 0, and that

i > 0 =#> (lim λ?'s = lim Xs. & lim σf's = lim σ ).
s^oo s->oo * s->oo s-^00
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It is evident from our statement of the construction that Λo and Σo remain
attached to 2 and to 1, respectively, from the end of Stage 0 onward. To
proceed by induction, assume that s0 is an even number such that

(W) [(0 < s0 ^ t & 0 < is i0) =Φ (i s m\n{mo(t), m(t)}

In view of our choice of s0 and our procedure at even positive stages of the
construction, the markers Λ,o+1 and Σ t o + 1 must be found attached to
numbers at the end of some stage t satisfying s 0 s t s s0 + 2; let t0 be the
least such t. Now, if Λ, o + 1 or ΣiQ+1 is detached subsequent to the end of
Stage tθ9 it is immediately reattached elsewhere; moreover, clearly,
neither Λ/o+1 nor Σf Q + 1 can be detached more than once as a result of
Case Bl holding at Step B of an odd stage >s0 (recall that h is one-to-one).
Let tx be the least number greater than t0 such that for no odd stage t ^ tx

does Case Bl of Step B induce detachment of Λ;o+1 or Σ ί ( ) + 1; then if either
Λ, 0 + i or Σ, o + 1 moves subsequent to Stage tγ - 1, it does so via Case Al of
Step A (with k0 = ί0 + 1). But it is clear that any move of Λ/o+1 or Σ^o+1 via
Case Al of Step A at an odd stage t ^ t u with k0 = i0 + 1, results in a
permanent location of that marker, unless (3u) [u> t & g(i0 + 1, u) < g(i0 +
1, t)]. (For, the move in question causes i0 + 1 to endow g(i0 + 1, t) with a *,
which, since t > mαχ{ίb s0} and g(2x, s) is non-increasing in s for fixed x9

is thereafter a barrier to the movement of Aio+1 or Σ/o + 1 unless i0 + 1
lowers its "g -associate" at some stage later than t.) Hence, if we let t2 be
a number ^ tx such that (Vί) [t z t2 =Φ> g(i0 + 1, t) = g(i0 + 1, t2)] then neither
Λ/o+1 nor Σ; o + 1 can move more than once subsequent to Stage t2. So, since
it is clear from the construction that λ^+i = λf0+i and σ '̂+i. = σ^0+1 provided
both ΛjQ+1 and Σ / o + 1 remain attached, with no movement, throughout Stage s,
we see that

(t* t3 & 0 < is i0 + 1) =̂ > (i s m\n{mo(t), m{t)} & λ = λf' = λ|3 & σ*'* = σ/3)

where t3 is a number greater than t2 such that neither Λ / Q + 1 nor Σ f Q + 1 moves
subsequent to the end of Stage t3 - 1. That completes the induction step
from i0 to i0 + 1. From now on, we use λ, to denote lίm λ̂  and σ? to denote
lim σ̂ ; and we shall denote lim g(2x, s) by g(2x). It is obvious from the

s -»oo s -»oo

construction that

(Vs)(V*) [0 < i § m(s) *Φ ((Xs

h λUάep^ & <σ,s, σ/.,) e ? ( s ))];
OO OO

so, since p = U p(s) & q = U q(s) and since λo = 2 for all s and σξ = 1 for all
s=0 S=O

s, we see that p retraces the set {λ U'e ε} and q retraces the set {σf U'e ε}.
But, in view of the construction of the sequences (α ( s ) )^ 0 and (β^s))T=0 and the

oθ oθ

definitions of a and β as U α ( s ) , U β ( s ), respectively, we have: ε - a =
s=0 s=0

{λz U*€ ε}, ε - β = {σ/U'e ε}. Thus, /? retraces ε - a and # retraces ε - β.
Since δ^|δ^, we conclude that ε - α |ε - β; thus (1) and (3) are established.

To prove (4), we must first show that (Ve) [{2j\(3s)[g(2j, s) = e]} is
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finite]. We shall verify this by induction on £, noting that since no attempt
is ever made to move Λo (to move Σo) from 2 (from 1) subsequent to Stage
0, we have (Vs)(Vj)[^ (2j, s) = 0 =#> j = 0]. Assume that (Ve) [e s e0 =̂ >
{2j\ (3s) [g(2j, s) = e]} is finite], and let j 0 = (μj) [(Vs)(V&) [k ϊj=Φg(2k, s) >
eΌ]]. Suppose, for an argument by contradiction, that { j | (3s) [g(2jf s) =
e0 + 1} is infinite. Let s0 = (μs) [(Vj)(W)[(f £ s & j * j0) => (h(t) > j 0 &
g(2j, t) = g(2j, s) & 2j Ξ mo(t) & λ27= λs

2j & σ2/- = σ2

s/)]]. Observe that since
pg(2x, s) = ε for each fixed value of 5, and since g is non-decreasing in x
for each fixed s and non-increasing in s for each fixed x, we must have
(Vs) [s ^ s0 =̂ > g(2j0, s) = g(2j0) = e0 + 1]; moreover, in view of our require-
ments for changing (some of) the values of g during Step A of an odd stage,
we see that there must be an initial stage sx ^ s0 such that 2(j0 +1) s m{s^j &
£<2(A>+ 1), s j = e0 + 1 & (VZ) [(0 < Z I jo + 1 & 3<2Z, s j = e0 + 1) =Φ ^ +ί^λli,
σg/) is defined and belongs to {λs

2), σ*}}]. We now claim that λ^(; 0 + 1) = λ 2 ( / 0 + 1 ),
that α^-o+i) = σ2(7 0 + 1 ) , s and that (W)[* > s x =Φ> Λ(ί) > min{λ2(, 0+i) vs

2lJ0+1)}l If
λ2(;0+i) * λ2(/0+i) or σ2(/o+i) ^ σ2(; 0+i), then there is a smallest number t, say
ί0, such that t is odd and t>sx and either Λ2(7 0+i) or Σ2( ; o + 1) is detached
during Stage t. Suppose that Λ2(/0+i) is detached during Step A of Stage t0.
Then h(t0) 5 m i n ί ^ : ^ ) , σ ^ ) } = m i n ^ . ^ ) , ^ljo+l)}, and (since t0 > Sl *
s0) e0 + 1 receives & * on account of 2(j0 + 1); this * is never subsequently
lost by e0 + 1, since such a loss could only occur if h(u) = j 0 for some u ^ t0

(which equation is impossible in view of the fact that to>so). Since a
permanently-held * on e0 + 1 contradicts the infinitude of {j I (3s) [g(2j, s) =
e0 + l]}, we conclude that Λ2(/0+i) cannot, in fact, be detached during Step A
of Stage t0. For precisely parallel reasons, Σ 2( ; o + 1) cannot be detached
during Step A of Stage t0. Suppose, on the other hand, that Λ2(;0+i) or
Σ 2( ; 0+i) is detached during Step B of Stage t0. Since t0 > s0, this cannot
happen because Subcase Bl(i) causes Λ2 / o + 1 and Σ2y0+i to move; hence, it
must occur via Subcase Bl(ii). But, then, e0 + 1 receives a * on account of
2( jo + 1); since this * is never subsequently lost, we again have a contradic-
tion to the infinitude of {j\(3s) [g(2j, s) = e0 + 1]}. Thus we are forced to
conclude that, in point of fact, λs

2ljQ+1) = λ 2 ( ; 0 +i) and σ2(

1

/o+1) = a 2 ( / o + 1 ) . It now
follows that for every t> Sx we have: 2(j0 + 1) s m{t) & (VZ)[(O < Z ^ j 0 + 1 &
£ (2Z, t) = e0 + 1) => ψeό+hλli, σίi) is defined and is a member of {λί/, σί/} =
{λ2/, cr2/}]. Hence, further, t>s1=$> h(t) > min{λ2(7 0 + i ) , σ2(y0+1)}; for other-
wise, one of the markers A2(/04-!), Σ 2( / o + 1) would be obliged to move at a
stage later than s1# Now let s 2 = (μs) [s > sλ & g{2( j 0 + 2), s) = e0 + 1 &
2(j 0 + 2) = m(s) & <Pβo+i(λ2(;o+2), cr2(/0+2)) is defined and belongs to {λ2(/0+2),
cr|(/0+2)}]. We claim that s λ 2 ( / o + 2 ) = λ2(y0+2), cr2(

2

; o + 2 ) = σ 2 ( / o + 2 ), and (Vί) [t >

S2 =φ k(t) > min{λ2(; 0 + 2 ) , ^2(;0+2)}]. If λ2(;0+2) Φ λ2(/0+2) 0 Γ σ2(y0+2) Φ σ2(j0+2),
then there is a first stage ί, say ^ , such that t > s 2 and one of the markers
Λ2(;0+2), Σ 2 ( ; 0 + 2 ) is detached during Stage t. Suppose, e.g., that Λ2(y0+2) is
detached during Step A of Stage tlm Then m i n ^ Γ ^ , v^lϊo+i)} = m'miλ2(j0+i),
cr2(;0+i)} < h(tλ) ^ min{λί(;

7

0+2), V2U0+*)} = m'n{x2(;0+2), cr2(/0+2)} and e0 + 1 re-
ceives a * on account of 2( j 0 + 2); since, as an obvious consequence of the
construction, we have 2(j 0 + 1) + 1 ^ min-jλij/o+ib or2(;0+i)}> and since ^(2(j 0 +
2), ίi - 1) = ^(2(j 0 + 2)), this * remains attached to e0 + 1 forever, in
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contradiction to the assumed infinitude of {j\(3s) [g(2j, s) = e0 + l]}. We
conclude that, in fact, Λ2(/0+2) cannot be detached during Step A of Stage tλ.
By a precisely parallel argument, we see that Σ 2( / 0 + 2) is likewise restrained
from detachment during Step A of Stage tlt If, on the other hand, Λ2(; 0 + 2) or
Σ 2 ( / 0+2) is detached during Step B of Stage tu then, since 2(j0 + 1) + 1 s
minW(1;"0

1+i)>or2(;0+i)}> t h i s must occur under Subcase Bl(ii). But then e0 + 1
receives a * on account of 2(j0 + 2); since this * cannot subsequently be lost
by e0 + 1, we have a contradiction, once again, to the infinitude of
{j\(3s)[g(2j, s) = e0 + l]}. So, we must conclude that X2(/o+2) = λ2 ( / 0 + 2) &
CΓ2OΌ+2) = cr2 ( / o + 2 ). It follows that (W) [t > h =^ φ2

e%(λίUo+2), σ2'(/ 0 + 2 ))] is
defined and belongs to {λ2(/ 0 + 2 ), σ2(yo+2)} = {λ2(; 0 + 2 ), cr2 ( / 0 + 2 )}; whence, if e0 + 1
is not eventually to receive a permanently-held *, we must conclude that

(Vt)[t > tλ =Φ h(t) > min{x2(/0+2), a2(/0+2)} = min{λ2(/0+2), σ2(/0+2)}].

Now replace "s2" by "s3", "s," by "s2", and "j0 + 2" by "j0 + 3 " in
the above definition of s2, and repeat the argument; if this procedure is
iterated to infinity then, since min{x̂ , σk}< mίn{λ&+i, σk+ί] holds for all k,
we obtain effectively computable sequences (ui)fL0 and (wj)fL0

 s u c n that

(Vi) [ui < ui+1] & (VJC) [xίUi=Φ (xeph<Φxe {h(w) \w * Wi})].

But this means that ph is recursive: contradiction. Hence, {j\(3s)[g(2j, s) =
e0 + 1]} is finite. By induction, then, {j \ (3s) [g(2j, s) = e]j is finite for all e.
We are now in a position to verify (4). If (4) is false, then there is a
smallest number e, say e0, such that

φ\ is total & {Vx){Vy) [φ2

e(x, y) e {x, y} & [(x e (ε - a) U (ε - β)
Vy e (ε - a) U (ε - β)) =Φ φϊ(x, y) e (ε - a) U (ε - β)]].

We may safely assume e0 > 0, either by requiring e > 0 in the preceding
statement, or else by insisting upon the "usual" enumeration (φ%)T=o (i e ,
that of [13]), in which φ\ = φ. Let Ό = max {j I α(2j) = e0}; and let

u0 = (μu) [(Vs) [s z u =Φ> (2j0 ^ m(s) & λs

2JQ = \2JQ & σs

2JQ = σ2j & g(2j0, s) = eo&

(VZ) [(0 < I ί jo & g(2lf u) = e0) ^ [g(2l, u) = g(2l) & « ( s ) (λ 2

s / , σ2

s/) =
ΨI'QS\^21, σ2/) is defined and belongs to {λ2/, σ|/}= {λ2/, σ2/})]])]].

If ô does not already bear a * at the beginning of Stage u0 + 1, then it (if not
some even smaller e) must receive one at Step A of the first odd stage u,
say ul9 such that u ^u0 + 1 (since otherwise it would be the case that
g(2(j0 + 1)) = e0); the reception of this *, in view of our specifications of j0

and u0, must be on account of some number %2j0, and so either Λ2/o or Σ 2 / o

(or both) must be detached during Stage uγ\ contradiction (to the choice of
u0). So, in fact, e0 must bear a * at the outset of Stage u0 + 1. Let w0 be
that stage prior to Stage u0 + 1 during which the particular * in question
became attached to e0. (Possibly, w0 = u0.) Since e0 > 0, we have w0 > 0,
and the attachment in question had to be on account of some number 2l0

where l0 ^ j 0 & g(2lθ9 w0) = e0. But then e0 = jin^ g(2l0, s) =g(2l0), since
otherwise Case A2 of Step A would have forced removal of * from e0 during
some stage υ such that w0 < v ^ u0. If the * in question was received by e0
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during Step A of Stage w0 then we must have: 2Z0 § m(w0 - 1) & φ2e0(λ%ι°~\
σ^"1) is defined and is not a member of (ε - oί) U (ε - β). But since eQ does
not lose the * in question, which it has on account of 2l0, between the end of
Step A of Stage w0 and the end of Stage u0, we see from the construction that
A2ι0 and Σ2(Q suffer no detachments either during Step B of Stage w0 or
during stages v such that wo<v^uo; hence, ^ ( λ ^ α ^ ' V k - ^ U
(ε - β), although either λ^"1 = λ2ιQe ε - a or σ^"1 = σ2/oe ε - β is true:
contradiction. If, on the other hand, the * in question was received during
Step B of Stage wOy we must have: 2/0 Ξ mΌ(wQ) & φlo(λ£ζ°, <*2iζ°) is defined
and is not a member of (ε - oΐ) U (ε - β). But then, as in the case of
reception via Step A, we obtain a contradiction. We must conclude, there-
fore, that our "minimal counter example", Ψe0, is not in fact a counter-
example; i.e., (ε - a) u (ε - β) is not semirecursive. It now remains only to
verify the degree-inequalities (2). To see that a ύ d, assume that (using d)
we have computed the first n + 1 elements λ0, λi, . . ., \n of ε - α. To find
the next element, λw+1, of ε - α, we wait for a stage sn such that (Vs)[(s 2
sn & i 5 n) =Φ (i ^ m(s) & λ* = λi)] & n + 1 ^ m(sj. If w + 1 is odd, say,
n + 1 = 2m + 1, then λ̂ +i = λw+i unless m = ̂ (^) holds for some number
& > sn. If w + 1 = 2m + 1 & (3&) |> > 5n & /*(&) = m], then λ̂ +i = λ»+i where
^i = (μk) [k > sn & /z(&) = m]. If, on the other hand, n + 1 is even, then λ̂ +i =
λn+1 unless An+i gets moved at an odd stage t > sn via Case Al of Step A

with ko = n + I or via Subcase Bl(ii) of Step B with ~ — = h(t). But if such

a move has not occurred by the time all members of oh which are
= min{λ^+i, σ̂ +i} have appeared in ph, it can never occur. So, we wait for a
stage tr>sn such that (Vt)[t> t ' ^ k(t) > m\n{λ£.l9 σ^}]. If Λw+1 has
moved from λ«+i by Stage t', we find its next location after λ̂ +i and repeat
the foregoing observations. Since Jim λj+ i exists, we shall locate it in this
fashion after finitely many tries. So, since the entire procedure is clearly
recursive in d (uniformly in n), we get a = ε - a £ d. By a parallel
argument, β = ε - β i d. Finally, it is clear from the construction that, for
every n, we have

neph <£=>ne {h{u) \u i (μs)[2w + 1 ^ m{s) & λfΛ+1 = λ2*+i]} ^ ^
n € {ft(w) |iέ ^ (μ.t) [2n + 1 ^ m(t) & σ^+i = σ2w+1]};

hence d^t-a^a&dsε-β^β. The proof of Theorem 5.1 is complete.

To conclude this section, we offer a few remarks on relativization.
Let an infinite subset β of ε be called a-retraceable, a = some fixed subset
of ε, just in ca.se

(Be) [β c δ<pe

α & (vn) [</£(/>β(n + 1)) = pβ(n)] & ^e

α(pβ(0)) = pβ(0)].

The notions of α-sernirecursiυeness and α-regrβssweness are correspond-
ingly obvious relativizations to α of the ordinary semirecursivity and
regressiveness concepts. The proof of Theorem 5.1 relativizes routinely
to a proof of
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Theorem 5.1R Let c, d be degrees of unsolυability such that c s d & c Φ d &
d is r.e. in c; and let ae c. Then there exist a-retraceable sets γu γ2 such
that γ1\γ2, γi is r.e. in a, γ2 is r.e. in a, γλ = γ2 = d & yγ U γ2 is not
a-semirecursive.

Since [11], Theorem 3.2 relativizes straightforwardly, the failure of
α-semirecursiveness for γγ U γ2 in Theorem 5.1R implies the failure of
[γi U γ2] to be an α-regressive isol. This of course falls short of giving an
actual extension of Theorem 5.1, since we have γ{ merely α-retraceable for
i = 1, 2, rather than retraceable. On the other hand, Theorem 5.1R does
pertain to a class of degrees not covered by the combination of Theorems
3.1 and 5.1, namely, those degrees d which are incomplete, non-r.e., and
r.e. in some smaller degree. The existence of such degrees d is doubtless
known on the basis of direct construction; however, we shall point out a
very simple method of obtaining such d from two theorems, due to Yates,
which are most certainly well known. In the first place, if we relativize
completely the proof of [22\ Theorem 1 we obtain for any fixed degree a a
pair α, β of sets such that

a^a&βZa&aΦa&βΦa&a is r .e. in a & β is r .e. in a

& ( V δ ) [ ( δ i o f t δ l f l ^ δ l f l ] .

Now, by [23] the degree a with which we start can be assumed to satisfy the

condition

O£«^O f &O*Λ&O f : ϊ f c 0& (Vδ) [(b an r.e. degree

& ΐ δ £ α v 0 ^ δ ] ) => (δ = 0vδ = 0f)]

If in fact we start with such an a, it is easy to see that at least one of the

degrees a, β arising from the relativization of [22], Theorem 1 to a must be

"both incomplete and non-r.e.

6 Conclusion It was shown by Hassett, in [9], that the class of well-
behaved number-theoretic functions of two arguments which fail to map
Λ£ x Λ£ into ΛR is very extensive; similar results, set within a very
general framework, have since been obtained by Ellentuck in his re-
cent paper [7]. One could attempt to extend the results of the present
article to the wider context of [7]; [9]; however, it seems to us more
immediately interesting to give a full answer to the question only very
fragmentarily dealt with in the preceding sections: is the failure of additive
closure for ΛR completely degree-independent? In particular, what about
the class of minimal degrees? (The proofs given in sections 3 and 5,
above, are applications of standard techniques; this is especially so in
regard to section 5. Minimal d, on the other hand, might be resistant to
conventional procedures.)

Conjecture ΛR + ΛR i ΛR is totally independent of degree.
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