Notre Dame Journal of Formal Logic Volume XVIII, Number 4, October 1977 NDJFAM

PATHOLOGIES IN THE ED-REGRESSIVE SETS OF ORDER 2

SETH CATLIN

1 Introduction Ed-regressive sets of order n were introduced in [1]. Concerning ed-regressive sets of order 2, it is natural to ask which properties they share with the infinite regressive sets. In this paper, six of the well-known properties of (infinite) regressive sets and (infinite) regressive isols are shown not to hold for the two-dimensional case. They are:
(1) Every (infinite) retraceable set is the range of exactly one retraceable function.
(2) Every (infinite) separable subset of a regressive set is regressive.
(3) If A is a (infinite) regressive isol, then so is $A-1$.
(4) If α is retraceable and β is an infinite separable subset of α, then α and β are Turing equivalent.
(5) If α and β are infinite regressive sets, and $\alpha \subseteq \beta$, then $\alpha \leqslant_{*} \beta$.
(6) If T is a (infinite) regressive isol, and a_{n} is a recursive function, then $\sum_{\mathrm{T}} a_{n}$ is a regressive isol.

2 Preliminaries it is assumed that the reader is familiar with degrees of unsolvability and the main properties of regressive sets. The set of non-negative integers will be denoted by E. For $m \in E, \nu(m)$ will be $\{0,1, \ldots, m-1\}$. For any function b from E^{n} into $E, \rho b$ will denote the range of b. For functions f and $g, f g(x)$ will denote $f(g(x))$. Define $j(x, y)=$ $(x+y)(x+y+1) / 2+x$. It is well known that j is one-one, recursive, and maps $E \times E$ onto E. Therefore, the functions $k(x)$ and $l(x)$, defined by $j(k(x), l(x))=x$ are well-defined and recursive. If we let $j_{2}=j$, then, for $n \geqslant 2$, define j_{n+1} by

$$
j_{n+1}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=j\left(j_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{n+1}\right) .
$$

Then each j_{n} is recursive, one-one, and maps E^{n} onto E. Define, for $n \geqslant 2$, the functions $k_{n, 1}(x), \ldots, k_{n, n}(x)$ by

$$
j_{n}\left(k_{n, 1}(x), k_{n, 2}(x), \ldots, k_{n, n}(x)\right)=n
$$

Req α will denote the recursive equivalence type of $\alpha . p^{*}$ is a function
defined by $p^{*}(x)=(\mu n)\left(p^{n+1}(x)=p^{n}(x)\right)$. If p is partial recursive, so is p^{*}. If α and β are sets, then $\alpha \leqslant_{T} \beta$ means α is Turing reducible to $\beta, \alpha \equiv_{\mathrm{T}} \beta$ means $\alpha \leqslant_{\mathrm{T}} \beta$ and $\beta \leqslant_{\mathrm{T}} \alpha$, and $\alpha<_{\mathrm{T}} \beta$ means $\alpha \leqslant_{\mathrm{T}} \beta$ but not $\alpha \equiv_{\mathrm{T}} \beta$. And $\alpha \leqslant_{*} \beta$ means that there is a partial recursive function $p(x)$ such that p is defined on $\alpha, p(\alpha)=\beta$, and p is one-one on α.

A collection δ of ordered pairs is called an initial set if, given that $\left\langle x_{1}, y_{1}\right\rangle \leqslant\left\langle x_{2}, y_{2}\right\rangle$ and $\left\langle x_{2}, y_{2}\right\rangle \in \delta$, then $\left\langle x_{1}, y_{1}\right\rangle \in \delta$. A function $a_{x y}$ is a regressive function of order 2 if $a_{x y}$ is one-one, the domain of $a_{x y}$ is an initial set, and there are partial recursive functions $p(x)$ and $q(x)$ such that $p\left(a_{x y}\right)=$ $a_{x=1, y}$ and $q\left(a_{x y}\right)=a_{x, y=1}$ for all x and y for which $a_{x y}$ is defined. Then the functions $p(x)$ and $q(x)$ are called regressing functions for a. A regressive set of order 2 is the range of a regressive function of order 2. A function is an ed-regressive function of order 2 if it is regressive of order 2 and has domain $E \times E$. A set is an ed-regressive set of order 2 if it is the range of an ed-regressive function of order 2 . We will use the following notations:

```
    reg}\mp@subsup{g}{2}{}={\alpha:\alpha\mathrm{ is a regressive set of order 2}
    Edreg}2={a:a\mathrm{ is an ed-regressive function of order 2}
Edregsi }={a:a\in\mp@subsup{\textrm{Edreg}}{2}{}\mathrm{ and }a\mathrm{ is strictly increasing}
    edreg}2={\alpha:\alpha=\rhoa\mathrm{ for some }a\in\mp@subsup{\mathrm{ Edreg}}{2}{2}
edregsi}\mp@subsup{2}{2}{={\alpha:\alpha=\rhoa}\mathrm{ for some }a\in\mp@subsup{\mathrm{ Edregsi}}{2}{}
```

3 The theorems In this section there will be six major theorems, each showing the failure of the two-dimensional analogue of the statement of the same number in the introduction.

Theorem 1 If $\beta \epsilon$ edregsi ${ }_{2}$, then there are exactly \aleph_{0} functions in Edregsi $_{2}$ which have range β.
Proof: Let $b \in$ Edregsi $_{2}$ with $\rho b=\beta$. Define functions x_{n} and y_{n} by
(1) $b_{x_{1}, y_{1}}<b_{x_{2}, y_{2}}<\ldots$
and $\beta=\left\{b_{x_{1}, y_{1}}, b_{x_{2}, y_{2}}, \ldots\right\}$. There is an infinite collection of pairs $\left\langle x_{i}, y_{i}\right\rangle$ such that neither $\left\langle x_{i}, y_{i}\right\rangle \leqslant\left\langle x_{i+1}, y_{i+1}\right\rangle$ nor $\left\langle x_{i+1}, y_{i+1}\right\rangle \leqslant\left\langle x_{i}, y_{i}\right\rangle$, since, otherwise, there would be a pair $\left\langle x_{j}, y_{j}\right\rangle$ with $x_{j}>0$ and $\left\langle x_{j}, y_{j}\right\rangle \leqslant\left\langle x_{j+1}, y_{j+1}\right\rangle \leqslant$. . ., which implies that the set $\left\{b_{0, n}: n \in E\right\}$ is finite, a contradiction. Say that these pairs are $\left\langle x_{i_{1}}, y_{i_{1}}\right\rangle,\left\langle x_{i_{2}}, y_{i_{2}}\right\rangle, \ldots$ Now, for each $j \geqslant 1$, define

$$
b_{x, y}^{(j)}= \begin{cases}b_{x_{i_{j}+1^{\prime}}} y_{i_{j+1}} & \text { if }\langle x, y\rangle=\left\langle x_{i_{j}}, y_{i_{j}}\right\rangle \\ b_{x_{i_{j}}, y_{i_{j}}} & \text { if }\langle x, y\rangle=\left\langle x_{i_{j}+1}, y_{i_{j}+1}\right\rangle \\ b_{x, y} & \text { otherwise }\end{cases}
$$

It is clear that $\rho b^{(j)}=\beta(j \geqslant 1)$. Moreover, since $m \neq n$ implies $\left\langle x_{i_{m}}, y_{i_{m}}\right\rangle \neq$ $\left\langle x_{i_{n}}, y_{i_{n}}\right\rangle$, it is easily seen that the $b^{(j)}$ are distinct. Thus, if it can be shown that
(a) each $b^{(j)}$ is an increasing function,
and
(b) each $b^{(j)} \epsilon$ Edreg $_{2}$,
the proof that there are at least \aleph_{0} such functions will be complete.
$\operatorname{Re}(\mathrm{a}):$ Note that, by (1) and the definition of $b^{(j)}$,
(2)

$$
b_{x_{1}, y_{1}}^{(j)}<b_{x_{2}, y_{2}}^{(j)}<\ldots<b_{x_{i_{j}-1}, y_{i_{j}-1}}^{(j)}<b_{x_{i_{j}+1}, y_{i_{j}+1}}^{(j)}
$$

$$
<b_{x_{i_{j}}, y_{i j}}^{(j)}<b_{x_{i_{j}+2}, y_{i_{j}+2}}^{(j)}<\ldots
$$

Let $\left\langle x_{u}, y_{u}\right\rangle<\left\langle x_{v}, y_{v}\right\rangle$. By (1) and the fact that $b_{x y}$ is an increasing function, $u<v$. By (2), $b_{x_{u}, y_{u}}^{(j)}<b_{x_{v}, y_{v}}^{(j)}$ unless $u=i_{j}$ and $v=i_{j}+1$. But $\left\langle x_{i_{j}}, y_{i_{j}}\right\rangle \nless$ $\left(x_{i_{j}+1}, y_{i_{j}+1}\right)$, so either $u \neq i_{j}$ or $v \neq i_{j}+1$.
$\operatorname{Re}(\mathrm{b})$: It is clear from the definition of $b^{(j)}$ that it is everywhere defined. Let $p(x)$ and $q(x)$ be regressing functions for $b_{x y}$. Since $b_{x y}$ and $b_{x y}^{(j)}$ are identical, except for a finite number of differences, it is clear that a finite number of modifications of each of $p(x)$ and $q(x)$ can be made to produce regressing functions for $b^{(j)}$.

We will now see that there are at most \aleph_{0} functions in Edregsi ${ }_{2}$ which have range β. Let $a_{x y}$ and $b_{x y}$ be distinct members of Edregsi ${ }_{2}$ such that $\rho a=\rho b=\beta$, and let $\langle p, q\rangle$ be an ordered pair of regressing functions for $a_{x y}$. Since $a_{x y} \neq b_{x y}$, there are distinct ordered pairs $\left\langle x_{1}, y_{1}\right\rangle$ and $\left\langle x_{2}, y_{2}\right\rangle$ such that $a_{x_{1}, y_{1}}=b_{x_{2}, y_{2}}$. If $\langle p, q\rangle$ is also a pair of regressing functions for $b_{x y}$, then

$$
x_{1}=p^{*}\left(a_{x_{1}, y_{1}}\right)=p^{*}\left(b_{x_{2}}, y_{2}\right)=x_{2}
$$

and

$$
y_{1}=q^{*}\left(a_{x_{1}, y_{1}}\right)=q^{*}\left(b_{x_{2}}, y_{2}\right)=y_{2},
$$

a contradiction. Hence, distinct members of Edregsi ${ }_{2}$, each with range β, have distinct ordered pairs of regressing functions. Since there are \aleph_{0} ordered pairs of partial recursive functions, it follows that there can be at most \aleph_{0} members of Edregsi ${ }_{2}$ which have range β.
Q.E.D.

In the above proof, if one deletes (a) and its proof, and replaces each occurrence of "Edregsi2" with "Edreg ${ }_{2}$ ", the proof becomes a proof of

If $\beta \in$ edreg $_{2}$, then there are exactly \aleph_{0} functions in Edreg_{2} which have range β, a fact that is also true of infinite regressive sets.

Lemma 1 Let $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ be any n functions, and let $\alpha_{1}, \alpha_{2}, \ldots$, α_{m} be any m infinite sets. Then there exist elements x_{1}, \ldots, x_{m} in α_{1}, \ldots, α_{m}, respectively, such that, for $1 \leqslant i \leqslant m$, we have
(3) $x_{i} \notin\left\{f_{j}\left(x_{k}\right): 1 \leqslant j \leqslant n, 1 \leqslant k \leqslant m, i \neq k, f_{j}\left(x_{k}\right)\right.$ defined $\}$.

Proof: (by induction on m) If $m=1$, then, for $1 \leqslant i \leqslant m$, the set on the right in (3) is empty, and any member x_{1} of α_{1} satisfies (3). Let $m=k+1$ and assume that, given any k infinite sets $\beta_{1}, \ldots, \beta_{k}$, there are elements x_{1}, \ldots, x_{k} in $\beta_{1}, \ldots, \beta_{k}$, respectively, such that, for $1 \leqslant i \leqslant k$,
(4) $x_{i} \notin\left\{f_{j}\left(x_{l}\right): 1 \leqslant j \leqslant n, 1 \leqslant l \leqslant k, i \neq l, f_{j}\left(x_{l}\right)\right.$ defined $\}$.

We will show next that there is an infinite sequence of mutually disjoint k-tuples, each satisfying (4). This will be done inductively as follows:

By the inductive hypothesis, there is a k-tuple $\left\langle x_{1}^{1}, \ldots, x_{k}^{1}\right\rangle$ satisfying (4). Now suppose that $\left\langle x_{1}^{1}, \ldots, x_{k}^{1}\right\rangle, \ldots,\left\langle x_{1}^{j}, \ldots, x_{k}^{j}\right\rangle$ is a collection of mutually disjoint k-tuples, each of which satisfies (4). Define the sets $\gamma_{1}, \ldots, \gamma_{k}$ by

$$
\gamma_{i}=\alpha_{i}-\left\{x_{s}^{t}: 1 \leqslant s \leqslant k, 1 \leqslant t \leqslant j\right\},
$$

for $1 \leqslant i \leqslant k$. Then $\gamma_{1}, \ldots, \gamma_{k}$ are all infinite, so by the inductive hypothesis, there is another k-tuple

$$
\left(x_{1}^{j+1}, \ldots, x_{k}^{j+1}\right)
$$

disjoint from the others, which satisfies (4) and where $x_{i}^{j+1} \in \gamma_{i} \subseteq \alpha_{i}(1 \leqslant$ $i \leqslant k$). Thus, we have an infinite sequence $\left\langle x_{1}^{1}, \ldots, x_{k}^{1}\right\rangle,\left\langle x_{1}^{2}, \ldots, x_{k}^{2}\right\rangle, \ldots$, of k-tuples which are mutually disjoint, where each satisfies (4), and where $x_{i}^{j} \in \alpha_{i}(1 \leqslant i \leqslant k, j \geqslant 1)$.

Now consider the first $n+1$ of these k-tuples, namely $\left\langle x_{1}^{1}, \ldots, x_{k}^{1}\right\rangle, \ldots$, $\left\langle x_{1}^{n+1}, \ldots, x_{k}^{n+1}\right\rangle$. Select x_{k+1} from α_{k+1} so that x_{k+1} is not a member of the set

$$
\left\{f_{j}\left(x_{t}^{i}\right): 1 \leqslant j \leqslant n, 1 \leqslant t \leqslant k, 1 \leqslant i \leqslant n+1, f_{j}\left(x_{t}^{i}\right) \text { defined }\right\} .
$$

This is possible since α_{k+1} is infinite. The set δ, defined by $\delta=$ $\left\{f_{1}\left(x_{k+1}\right), \ldots, f_{n}\left(x_{k+1}\right)\right\}$ has at most n (defined) members, so at least one of the $n+1$ mutually disjoint k-tuples, $\left\langle x_{1}^{1}, \ldots, x_{k}^{1}\right\rangle, \ldots,\left\langle x_{1}^{n+1}, \ldots, x_{k}^{n+1}\right\rangle$, will have no components in δ. Let $\left\langle x_{1}^{q}, \ldots, x_{k}^{q}\right\rangle$ be such a k-tuple. Then we have the following facts, for $1 \leqslant i \leqslant k$:
(a) $x_{i}^{q} \notin\left\{f_{l}\left(x_{s}^{q}\right): 1 \leqslant l \leqslant n, 1 \leqslant s \leqslant k, i \neq s, f_{l}\left(x_{s}^{q}\right)\right.$ defined $\}$,
since the k-tuple $\left\langle x_{1}^{q}, \ldots, x_{k}^{q}\right\rangle$ satisfies (4).
(b) $x_{k+1} \notin\left\{f_{l}\left(x_{i}^{q}\right): 1 \leqslant l \leqslant n\right\}$,
since x_{k+1} was selected to have this property.
(c) $x_{i}^{q} \notin\left\{f_{l}\left(x_{k+1}\right): 1 \leqslant l \leqslant n\right\}$,
because of the manner in which q was selected.
Hence, if we let $x_{1}=x_{1}^{q}, \ldots, x_{k}=x_{k}^{q}$, we have, combining (a), (b), and (c), that the numbers $x_{1}, x_{2}, \ldots, x_{k+1}$ satisfy (3), and this completes the proof.
Q.E.D.

Definition: If $p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ are partial recursive functions, then the set $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ is said to be $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$-unrelated for t generations $(t \geqslant 1)$, if, for $r, s \leqslant m$, one has $f_{1} f_{2} \ldots f_{j}\left(x_{r}\right)=x_{s}$ only if $r=s$, where each $f_{i} \in\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $1 \leqslant j \leqslant t$.
Lemma 2 Let $a_{x y}$ be a regressive function of order 2 with regressing functions $p(x)$ and $q(x)$. If subset α of ρa is closed under the functions $p(x)$ and $q(x)$, and α has a subset β, consisting of n elements which are (p, q) unrelated for $\binom{n+1}{2}$ generations, then α has at least $\binom{n+1}{2}$ elements.

Proof: Let $\beta=\left\{a_{x_{1}, y_{1}}, \ldots, a_{x_{n}, y_{n}}\right\}$. We consider two cases:

Case (i): $x_{i} \leqslant x_{j}$ and $y_{i} \leqslant y_{j}$, for some $i \neq j$. Then, if we apply the regressing functions $p(x)$ and $q(x)$ to $a_{x_{j}, y_{j}}$, as many times and in whatever manner as is necessary to arrive at $a_{x_{i}, y_{i}}$, it follows that we will obtain along the way $\binom{n+1}{2}$ distinct elements of α, since α is closed under $p(x)$ and $q(x)$, and the numbers $a_{x_{i}, y_{i}}$ and $a_{x_{j}, y_{j}}$ are (p, q)-unrelated for $\binom{n+1}{2}$ generations.

Case (ii): $i \neq j$ implies that either both $x_{i}<x_{j}$ and $y_{i}>y_{j}$ or both $x_{i}>x_{j}$ and $y_{i}<y_{j}$. Define the sets $\beta_{i}(1 \leqslant i \leqslant n)$ by $\beta_{i}=\left\{a_{x_{i}, y_{i}}, a_{x_{i}, y_{i-1}}, \ldots, a_{x_{i}, 0}\right\}$. The sets β_{i} are pairwise disjoint non-empty subsets of α with card $\beta_{i}=$ $y_{i}+1$, so card $\alpha \geqslant \sum_{i=1}^{n} \operatorname{cord} \beta_{i}=\sum_{i=1}^{n}\left(y_{i}+1\right) \geqslant \sum_{i=1}^{n} i=\binom{n+1}{2}$, the last inequality holding since the y_{i} 's are distinct.
Q.E.D.

Theorem 2 There is a set in edreg $_{2}$ which has an infinite separable subset that is not in edreg.

Proof: Let $\left\{\left\langle p_{1}, q_{1}\right\rangle,\left\langle p_{2}, q_{2}\right\rangle, \ldots\right\}$ be an enumeration of all ordered pairs of distinct partial recursive functions. Define the function $c_{x y}$ as follows:
(i) $c_{00}=j_{5}(0,0,0,0,0), c_{01}=j_{5}(0,1,0,0,0), c_{10}=j_{5}(1,0,0,0,0)$.
(ii) Assume that, for $k \geqslant 1, c_{x y}$ is defined for all x and y with $x+y \leqslant k$. Define $c_{x y}(x+y=k+1)$ by

$$
c_{x y}=j_{5}\left(x, y, d_{x y}, e_{x y}, b_{x y}\right),
$$

where

$$
\begin{aligned}
& d_{x y}= \begin{cases}c_{x-1, y} & \text { if } x>0 \\
0 & \text { if } x=0,\end{cases} \\
& e_{x y}= \begin{cases}c_{x, y-1} & \text { if } y>0 \\
0 & \text { if } y=0,\end{cases}
\end{aligned}
$$

and where the numbers $b_{x y}$ (for $x+y=k+1$) are chosen so that
(a) each of the numbers $c_{x y}$ (for $x+y=k+1$) is larger than all of the numbers $p_{r}\left(c_{u v}\right)$ and $q_{r}\left(c_{u v}\right)$, where $u+v \leqslant k$ and $r \leqslant k$,
and
(b) the numbers $c_{x y}$ (for $x+y=k+1$) are $\left(p_{k}, q_{k}\right)$-unrelated for $\binom{k+2}{n}$ generations.

That the above selection of the $b_{x y}$ (for $x+y=k+1$) is possible can be seen by appealing to Lemma 1 , where the functions f_{1}, \ldots, f_{n} are the functions $h_{1} h_{2} \ldots h_{j}$, such that $j \leqslant\binom{ k+2}{2}$ and each h_{i} is either p_{k} or q_{k}, and the sets $\alpha_{1}, \ldots, \alpha_{m}$ are the sets $\omega_{x y}($ for $x+y=k+1)$ defined by

$$
\begin{aligned}
\omega_{x y}=\{ & \left\{w:(\exists b)\left[w=j_{5}\left(x, y, d_{x y}, e_{x y}, b\right)\right. \text { and }\right. \\
& w>\max \left\{x:\left(x=p_{r}\left(c_{u v}\right) \text { or } x=q_{r}\left(c_{u v}\right)\right)\right. \text { and } \\
& u+v \leqslant k \text { and } r \leqslant k\}]\} .
\end{aligned}
$$

The function $c_{x y} \in$ Edreg $_{2}$, since it is clearly everywhere defined, and the recursive functions $p(x)$ and $q(x)$, defined by

$$
p(x)= \begin{cases}k_{5,3}(x) & \text { if } k_{5,1}(x)>0 \\ x & \text { if } k_{5,1}(x)=0,\end{cases}
$$

and

$$
q(x)= \begin{cases}k_{5,4}(x) & \text { if } k_{5,2}(x)>0 \\ x & \text { if } k_{5,2}(x)=0,\end{cases}
$$

are readily seen to be regressing functions for $c_{x y}$.
Define $\alpha=\rho c-\left\{c_{00}\right\}$. Then α is clearly a separable subset of ρc. We will complete the proof by showing that $\alpha \notin$ edreg $_{2}$. Suppose that $\alpha \in$ edreg $_{2}$. Let $a_{x y} \in$ Edreg $_{2}$, such that $\alpha=\rho a$. Let p_{n} and q_{n} be regressing functions for a. Let $\alpha_{n}=\left\{c_{x y}: 0<x+y \leqslant n\right\}$. Since each $c_{x y}$ with $x+y>n$ is larger than any member of either $p_{n}\left(\alpha_{n}\right)$ or $q_{n}\left(\alpha_{n}\right)$, we see that the set α_{n} is closed under both p_{n} and q_{n}. Define $\alpha_{n}^{\prime}=\left\{c_{x y}: x+y=n\right\}$. By the definition of $c_{x y}$, the $n+1$ members of α_{n}^{\prime} are $\left(p_{n}, q_{n}\right)$-unrelated for $\binom{n+2}{2}$ generations. By Lemma 2, α_{n} has at least $\binom{n+2}{2}$ elements. But card $\alpha_{n}=\operatorname{card}\left\{c_{10}, c_{01}\right\}+\operatorname{card}\left\{c_{20}, c_{11}\right.$, $\left.c_{02}\right\}+\operatorname{cord} \alpha_{n}^{\prime}=2+3+\ldots+(n+1)=\binom{n+2}{2}-1$. This is a contradiction. Therefore, $\alpha \notin$ edreg $_{2}$.
Q.E.D.

It is easy to show that, if $\alpha \in$ edreg $_{2}\left(\alpha \epsilon\right.$ reg $\left._{2}\right)$ and $\alpha \simeq \beta$, then $\beta \epsilon$ edreg $_{2}(\beta \epsilon$ reg_{2}). Thus, we can define A to be an ed-regressive (regressive) isol of order 2 if it is a recursive equivalence type which is composed of immune ed-regressive (regressive) sets of order 2.
Theorem 3 There is an ed-regressive isol C of order 2, such that C-1 is not an ed-regressive isol of order 2.

Proof: Let $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ be an enumeration of the infinite r.e. sets. Then define $c_{x y}$ as in the proof of Theorem 2, except that (a) is replaced by
(a^{\prime}) each of the numbers $c_{x y}$ (for $x+y=k+1$) is larger than all of the numbers $t_{k}, p_{r}\left(c_{u v}\right), q_{r}\left(c_{u v}\right)$, where $u+v \leqslant k, r \leqslant k$, and t_{k} is some member of γ_{k} which is larger than all of the numbers $c_{m n}$ with $m+n \leqslant k$.

As is the proof of Theorem 2, $c_{x y} \in$ Edreg $_{2}$. Moreover, since none of the sets γ_{k} is a subset of $\rho c, \rho c$ is immune. Let $C=\operatorname{Req} \rho c$. Then C is an ed-regressive isol of order 2 , but $C-1=\operatorname{Req}\left(\rho c-\left\{c_{00}\right\}\right)$ is not. Q.E.D.

In the proof of Theorem 2, supposing that $\alpha \epsilon$ edreg $_{2}$ led to a contradiction. But all that was used was that $\alpha \epsilon$ reg $_{2}$, so we have also proved

Theorem 2A There is a set in reg $_{2}$ which has an infinite separable subset which is not in reg_{2}.

Theorem 3A There is a regressive isol C of order 2, such that C-1 is not a regressive isol of order 2.

Lemma 3 If $a_{x y} \in \mathrm{Edreg}_{2}, \alpha=\rho a$, and β and γ are subsets of α such that
(i) β is a separable subset of α,
(ii) given $a_{u v} \in \beta$, there is an $a_{r s} \in \gamma$ such that $u \leqslant \gamma$ and $v \leqslant s$,
(iii) there is an effective way of finding, for any $x \in E$, two numbers u_{x} and v_{x}, such that $x \in \beta$ iff $x=a_{u_{x}, v_{x}}$,
then $\beta \leqslant \tau \gamma$.
Proof: Let $x \in E$. Assume any question " $y \in \gamma$?" can be answered. Let u_{x} and v_{x} be the numbers such that $x \in \beta$ iff $x=a_{u_{x}, v_{x}}$. Let p and q be regressing functions for a. Start asking " $0 \in \gamma$?", " $1 \in \gamma$?", etc., until a number y has been found such that $y \in \gamma, p^{*}(y) \geqslant u_{x}$, and $q^{*}(y) \geqslant v_{x}$. Then it is clear that

$$
x \in \beta \text { iff } x \in\left\{p^{m} q^{n}(y): m \leqslant p^{*}(y) \text { and } n \leqslant q^{*}(y)\right\}
$$

so $\beta \leqslant \tau \gamma$.
Q.E.D.

Theorem 4 There exists a set β in edregsi ${ }_{2}$ which is the union of \aleph_{0} pairwise disjoint, mutually separable subsets, each of which is in edresgi ${ }_{2}$ but is of lower Turing degree than β.

Proof: Let $\alpha_{0}, \alpha_{1}, \ldots$ be a sequence of sets with the property that, for no $n \in E$ do we have $\alpha_{n+1} \leqslant \tau \bigcup_{i=0}^{n} \alpha_{i}$. This is possible because there are uncountably many degrees, and each degree has at most countably many predecessors. Assume without loss of generality that, for each $n \in E, 0 \notin \alpha_{n}$ and $1 \in \alpha_{n}$. For each $n \in E$, define δ_{n} by

$$
\delta_{n}=\left\{j(n, x): x \in \alpha_{n}-\{1\}\right\} \cup\{1\} .
$$

Then it is clear that $\alpha_{n} \equiv_{T} \delta_{n}$ for each $n \in E$, and the sets $\delta_{0}-\{1\}, \delta_{1}-\{1\}, \ldots$ are mutually separable. For $i \in E$, define the function $d_{n}^{(i)}$ to be the strictly increasing total function that ranges over δ_{i}. Now define, for $i \in E$, the function $b_{n}^{(i)}$ by $b_{0}^{(i)}=d_{0}^{(i)}=1$ and $b_{n+1}^{(i)}=j\left(b_{n}^{(i)}, d_{n+1}^{(i)}\right)$. Then the function $f(x)$, defined by

$$
f(x)= \begin{cases}k(x) & \text { if } x \neq 1 \\ x & \text { if } x=1\end{cases}
$$

is a retracing function for each of the sets $\beta_{n}=\rho b^{(n)}$.
As in [6], Theorem T2, $\delta_{n} \equiv_{\mathrm{T}} \beta_{n}$ for each $n \in E$, so the sets $\beta_{0}, \beta_{1}, \ldots$ have the property that
(5) for no $n \in E$ do we have $\beta_{n+1} \leqslant \bigcup_{i=0}^{n} \beta_{i}$.

Moreover, the sets $\beta_{0}-\{1\}, \beta_{1}-\{1\}, \ldots$ are mutually separable. Define the function $c_{m n}$ inductively as follows:

$$
\text { For } m=0: \quad c_{0, n}=j_{5}\left(0, n, b_{n}^{(0)}, b_{n}^{(0)}, b_{n}^{(0)}\right)
$$

$$
\text { For } m>0:\left\{\begin{array}{l}
c_{m, 0}=j_{5}\left(m, 0, c_{m-1,0}, c_{m-1,0}, b_{0}^{(m)}\right) \\
c_{m, n+1}=j_{5}\left(m, n+1, c_{m-1, n+1}, c_{m, n}, b_{n+1}^{(m)}\right)
\end{array}\right.
$$

Note that $c_{m n}$ is everywhere defined and strictly increasing. Define $\gamma=\rho c$ and, for each $r \in E, \gamma_{r}=\left\{c_{m n}: m \leqslant r\right\}$. We prove the following statements:
(a) $c \in$ Edregsi $_{2}$ (and, thus, $\gamma \in$ edregsi ${ }_{2}$),
(b) for $n \in E, \gamma_{n} \equiv_{\mathrm{T}} \bigcup_{i=0}^{n} \beta_{i}$,
(c) for $n \in E, \beta_{n} \leqslant \frac{\bigcup_{i=0}^{n}}{n} \beta_{i}$,
(d) for $n \in E, \gamma_{n+1} \equiv_{\top} \gamma_{n+1}-\gamma_{n}$,
(e) for $n \in E, \gamma_{n}<_{T} \gamma_{n+1}-\gamma_{n}$,
(f) $\gamma_{0}<_{T} \gamma_{1}-\gamma_{0} \equiv_{T} \gamma_{1}<_{T} \gamma_{2}-\gamma_{1} \equiv_{T} \gamma_{2}<_{T} \ldots .$.
$\operatorname{Re}(\mathrm{a})$: Define the functions $p(x)$ and $q(x)$ by

$$
p(x)= \begin{cases}k_{5,3}(x) & \text { if } k_{5,1}(x) \neq 0 \\ x & \text { if } k_{5,1}(x)=0,\end{cases}
$$

and

$$
q(x)=\left\{\begin{array}{l}
j_{5}\left(0, k_{5,2}(x)=1, f k_{5,3}(x), f k_{5,4}(x), f k_{5,5}(x)\right) \text { if } k_{5,1}(x)=0 \\
k_{5,4}(x) \text { if } k_{5,1}(x) \neq 0 \text { and } k_{5,2}(x) \neq 0 \\
x \text { otherwise. }
\end{array}\right.
$$

Then $p(x)$ and $q(x)$ are partial recursive, and, as the reader can verify, are regressing functions for $c_{m n}$, so $c_{m n} \in$ Edregsi ${ }_{2}$.
Re (b): Let $x, n \in E$, and let $r=k_{5,1}(x)$ and $s=k_{5,2}(x)$. If $r>n$, then $x \notin \gamma_{n}$. If $r \leqslant n$, assume one can answer any question " $y \in \bigcup_{i=0}^{n} \beta_{i}$?" Now ask " $0 \in \bigcup_{i=0}^{n} \beta_{i} ?$ ", " $1 \epsilon \bigcup_{i=0}^{n} \beta_{i}$?", etc., until all of the elements $b_{v}^{(u)}$ have been found such that $u \leqslant r$ and $v \leqslant s$. This is possible since, for $z=b_{v}^{(u)}$, $f^{*}(z)=v$, and the sets $\beta_{0}-\{1\}, \beta_{1}-\{1\}, \ldots, \beta_{n}-\{1\}$ are mutually separable. Now use the definition of the function c to construct $c_{r, s}$. Then $x \in \gamma_{n}$ iff $x=c_{r, s}$. Thus, $\gamma_{n} \leqslant_{T} \bigcup_{i=0}^{n} \beta_{i}$. Now let $x, n \in E$, and assume we can answer any question " $y \in \gamma_{n}$?" If $f^{f^{*}(x)}(x) \neq 1$, then $x \notin \bigcup_{i=0}^{n} \beta_{i}$. If $x=1$, then $x \in \bigcup_{i=0}^{n} \beta_{i}$. Otherwise, let $v=f^{*}(x)$. Let $u=k l(x)$. Then $x \in \bigcup_{i=0}^{n} \beta_{i}$ iff

$$
v \neq 0, u \leqslant n, \text { and } x=b_{v}^{(u)}=k_{5,5}\left(c_{u v}\right) .
$$

Since we can effectively find $c_{u v}$ by asking " $0 \in \gamma_{n}$?", " $1 \epsilon \gamma_{n}$?", etc., and using the functions $p, q, k_{5,1}$, and $k_{5,2}$, we have an effective test for deciding whether x is in $\bigcup_{i=0}^{n} \beta_{i}$. Thus, $\bigcup_{i=0}^{n} \beta_{i} \leqslant \mathrm{~T} \gamma_{n}$.

Re (c): This is immediate from

$$
\begin{aligned}
& x \in \beta_{n} \text { iff } \\
& x \in \bigcup_{i=0}^{n} \beta_{i} \text { and either } x=1 \text { or both } x \neq 1 \text { and } k l(x)=n .
\end{aligned}
$$

$\operatorname{Re}(\mathrm{d}):$ This is an immediate consequence of Lemma 3.
$\operatorname{Re}(\mathrm{e}): \gamma_{n} \leqslant \mathrm{~T} \gamma_{n+1}-\gamma_{n}$ is a consequence of Lemma 3. Suppose $\gamma_{n} \equiv_{\mathrm{T}} \gamma_{n+1}-\gamma_{n}$. Then, by (b), (c), and (d),

$$
\beta_{n+1} \leqslant \mathrm{~T} \bigcup_{i=0}^{n+1} \beta_{i} \leqslant \mathrm{~T} \gamma_{n+1} \leqslant \mathrm{~T} \gamma_{n+1}-\gamma_{n} \leqslant \mathrm{~T} \gamma_{n} \leqslant \mathrm{~T} \bigcup_{i=0}^{n} \beta_{i},
$$

which contradicts (5). Hence, $\gamma_{n}<_{T} \gamma_{n+1}-\gamma_{n}$ for each $n \in E$.
$\operatorname{Re}(f)$: This is immediate from (d) and (e).
The sets $\gamma_{0}, \gamma_{1}-\gamma_{0}, \gamma_{2}-\gamma_{1}, \ldots$ form a denumerable collection of pairwise disjoint, mutually separable subsets of γ, and their union is γ. Each is retraceable (retracing function for each is $q(x)$) and, therefore, is in edregsi ${ }_{2}([1]$, comment following Proposition 1). In view of (f) and the fact that each is separable in γ, they are all of lower degree than γ. Q.E.D.

Lemma 4 If $\alpha, \beta \in$ edregsi ${ }_{2}$ and $\alpha \leqslant_{*} \beta$, then $\beta \leqslant_{T} \alpha$.
Proof: Let $p(x)$ be a partial recursive function whose domain includes α, such that $p(x)$ is one-one on α. Assume we can answer any question " $y \in \alpha$?" Let $z \in E$. Since $\beta \in$ edregsi $_{2}$, there is a function $b_{x y}$ in Edregsi ${ }_{2}$ such that $\beta=\rho b$. Define δ by

$$
\delta=\left\{b_{x y}: x \leqslant z \text { and } y \leqslant z\right\} .
$$

Note that $z \in \beta$ iff $z \in \delta$. Answer the questions " $0 \in \alpha$?", " $1 \in \alpha$?", . . . until a number k is found such that $k \in \alpha$ and $p(k)=b_{u v}$ where $u \geqslant z$ and $v \geqslant z$. Then apply the regressing functions for b to $b_{u v}$ in order to generate δ.
Q.E.D.

Theorem 5 There exist sets $\alpha, \beta \in$ edreg $_{2}$ such that α is an infinite separable subset of β, but $\alpha \not \mathbb{E}_{*} \beta$.
Proof: Let $\alpha=\gamma_{0}$ and $\beta=\gamma$ in the proof of Theorem 3. If $\alpha \leqslant_{*} \beta$, then $\beta \leqslant_{\top} \alpha$ by Lemma 4.
Q.E.D.

If T is a regressive isol and t_{n} is a regressive function whose range is in T , then $\sum_{\mathrm{T}} a_{n}$ is defined [2], for any total function a_{n}, to be $\operatorname{Req} \bigcup_{n=0}^{\infty} j\left(t_{n}\right.$, $\left.\nu\left(a_{n}\right)\right)$. A natural way to extend this definition to the order 2 case is:

If T is an ed-regressive isol of order $2, t_{x y} \in \mathrm{Edreg}_{2}, \rho t \in \mathrm{~T}$, and $a_{x y}$ is a total function of two variables, define

$$
\sum_{\mathrm{T}} a_{m n}=\operatorname{Req} \bigcup_{m=0}^{\infty} \bigcup_{n=0}^{\infty} j\left(t_{m n}, \nu\left(a_{m n}\right)\right) .
$$

This definition is easily seen to be independent of the choice of t_{n}.

Theorem 6 It is not the case that, if $b_{m n}$ is a recursive function, and T is an ed-regressive isol of order 2, then $\Sigma_{\mathrm{T}} a_{m n}$ is an ed-regressive isol of order 2.

Proof: Let $t_{x y}$ be the function $c_{x y}$ in the proof of Theorem 2. Let $\mathrm{T}=\operatorname{Req} \rho t$. Define $b_{m n}$ by

$$
b_{m n}=\left\{\begin{array}{l}
1 \text { if } m+n \neq 0 \\
0 \text { if } m+n=0 .
\end{array}\right.
$$

Then $b_{m n}$ is recursive, and $\alpha \in \sum_{\mathrm{T}} b_{m n}$, where α is the set $\alpha=\left\{c_{x y}\right.$: $\left.x+y>0\right\}$ in the proof of Theorem 2. Since $\alpha \notin$ edreg $_{2}$, we have that T is an edregressive isol of order 2 , but $\sum_{\mathrm{T}} b_{m n}$ is not.

REFERENCES

[1] Catlin, S., "Ed-regressive sets of order n," The-Journal of Symbolic Logic, vol. 41 (1976), pp. 146-152.
[2] Dekker, J. C. E., 'Infinite series of isols," Proceedings of the Symposia of Pure Mathematics, vol. 5 (1962), pp. 77-96.
[3] Dekker, J. C. E., ''The minimum of two regressive isols," Mathematische Zeitschrift, vol. 83 (1964), pp. 345-366.
[4] Dekker, J. C. E., 'Closure properties of regressive functions,'" Proceedings of the London Mathematical Society (Third Series), vol. 15 (1965), pp. 226-238.
[5] Dekker, J. C. E., 'Regressive isols,'’ in Sets, Models and Recursion Theory, North-Holland Co., Amsterdam (1967), pp. 272-296.
[6] Dekker, J. C. E., and J. Myhill, "Retraceable sets," Canadian Journal of Mathematics, vol. 10 (1958), pp. 357-373.
[7] Dekker, J. C. E., '‘Recursive equivalence types,' University of California Publications in Mathematics (New Series), vol. 3 (1960), pp. 67-214.
[8] Richter, W. H., "Regressive sets of order n," Mathematische Zeitschrift, vol. 86 (1965), pp. 372-374.
[9] Sacks, G. E., Degrees of Unsolvability, Annals of Mathematical Studies, No. 55, Princeton University, New Jersey (1966).

Eastern Oregon State College
LaGrande, Oregon

