Notre Dame Journal of Formal Logic Volume XVIII, Number 4, October 1977 NDJFAM

PATHOLOGIES IN THE ED-REGRESSIVE SETS OF ORDER 2

SETH CATLIN

1 Introduction Ed-regressive sets of order n were introduced in [1]. Concerning ed-regressive sets of order 2, it is natural to ask which properties they share with the infinite regressive sets. In this paper, six of the well-known properties of (infinite) regressive sets and (infinite) regressive isols are shown not to hold for the two-dimensional case. They are:

(1) Every (infinite) retraceable set is the range of exactly one retraceable function.

(2) Every (infinite) separable subset of a regressive set is regressive.

(3) If A is a (infinite) regressive isol, then so is A - 1.

(4) If α is retraceable and β is an infinite separable subset of α , then α and β are Turing equivalent.

(5) If α and β are infinite regressive sets, and $\alpha \subseteq \beta$, then $\alpha \leq_* \beta$.

(6) If T is a (infinite) regressive isol, and a_n is a recursive function, then $\sum_{T} a_n$ is a regressive isol.

2 Preliminaries It is assumed that the reader is familiar with degrees of unsolvability and the main properties of regressive sets. The set of non-negative integers will be denoted by E. For $m \in E$, $\nu(m)$ will be $\{0, 1, \ldots, m-1\}$. For any function b from E^n into E, ρb will denote the range of b. For functions f and g, fg(x) will denote f(g(x)). Define j(x, y) = (x + y)(x + y + 1)/2 + x. It is well known that j is one-one, recursive, and maps $E \times E$ onto E. Therefore, the functions k(x) and l(x), defined by j(k(x), l(x)) = x are well-defined and recursive. If we let $j_2 = j$, then, for $n \ge 2$, define j_{n+1} by

$$j_{n+1}(x_1, x_2, \ldots, x_{n+1}) = j(j_n(x_1, x_2, \ldots, x_n), x_{n+1}).$$

Then each j_n is recursive, one-one, and maps E^n onto E. Define, for $n \ge 2$, the functions $k_{n,1}(x), \ldots, k_{n,n}(x)$ by

$$j_n(k_{n,1}(x), k_{n,2}(x), \ldots, k_{n,n}(x)) = n.$$

Req α will denote the recursive equivalence type of α . p^* is a function

Received June 19, 1975

defined by $p^*(x) = (\mu n)(p^{n+1}(x) = p^n(x))$. If p is partial recursive, so is p^* . If α and β are sets, then $\alpha \leq_T \beta$ means α is Turing reducible to β , $\alpha \equiv_T \beta$ means $\alpha \leq_T \beta$ and $\beta \leq_T \alpha$, and $\alpha <_T \beta$ means $\alpha \leq_T \beta$ but not $\alpha \equiv_T \beta$. And $\alpha \leq_* \beta$ means that there is a partial recursive function p(x) such that p is defined on α , $p(\alpha) = \beta$, and p is one-one on α .

A collection δ of ordered pairs is called an *initial set* if, given that $\langle x_1, y_1 \rangle \leq \langle x_2, y_2 \rangle$ and $\langle x_2, y_2 \rangle \epsilon \delta$, then $\langle x_1, y_1 \rangle \epsilon \delta$. A function a_{xy} is a regressive function of order 2 if a_{xy} is one-one, the domain of a_{xy} is an initial set, and there are partial recursive functions p(x) and q(x) such that $p(a_{xy}) = a_{x,z+1,y}$ and $q(a_{xy}) = a_{x,y+1}$ for all x and y for which a_{xy} is defined. Then the functions p(x) and q(x) are called regressing functions for a. A regressive set of order 2 is the range of a regressive function of order 2 and has domain $E \times E$. A set is an *ed-regressive set of order* 2 if it is the range of an ed-regressive function of order 2. We will use the following notations:

reg₂ = { α : α is a regressive set of order 2} Edreg₂ = { α : α is an ed-regressive function of order 2} Edregsi₂ = { α : $\alpha \in Edreg_2$ and α is strictly increasing} edreg₂ = { α : $\alpha = \rho \alpha$ for some $\alpha \in Edreg_2$ } edregsi₂ = { α : $\alpha = \rho \alpha$ for some $\alpha \in Edregsi_2$ }

3 The theorems In this section there will be six major theorems, each showing the failure of the two-dimensional analogue of the statement of the same number in the introduction.

Theorem 1 If $\beta \epsilon$ edregsi₂, then there are exactly \aleph_0 functions in Edregsi₂ which have range β .

Proof: Let $b \in \text{Edregsi}_2$ with $\rho b = \beta$. Define functions x_n and y_n by

(1)
$$b_{x_1,y_1} < b_{x_2,y_2} < \ldots$$

and $\beta = \{b_{x_1,y_1}, b_{x_2,y_2}, \ldots\}$. There is an infinite collection of pairs $\langle x_i, y_i \rangle$ such that neither $\langle x_i, y_i \rangle \leq \langle x_{i+1}, y_{i+1} \rangle$ nor $\langle x_{i+1}, y_{i+1} \rangle \leq \langle x_i, y_i \rangle$, since, otherwise, there would be a pair $\langle x_j, y_j \rangle$ with $x_j > 0$ and $\langle x_j, y_j \rangle \leq \langle x_{j+1}, y_{j+1} \rangle \leq \ldots$, which implies that the set $\{b_{0,n}: n \in E\}$ is finite, a contradiction. Say that these pairs are $\langle x_{i_1}, y_{i_1} \rangle$, $\langle x_{i_2}, y_{i_2} \rangle$, ... Now, for each $j \ge 1$, define

$$b_{x,y}^{(j)} = \begin{cases} b_{x_{i_j+1}, y_{i_j+1}} \text{ if } \langle x, y \rangle = \langle x_{i_j}, y_{i_j} \rangle \\ b_{x_{i_j}, y_{i_j}} \text{ if } \langle x, y \rangle = \langle x_{i_j+1}, y_{i_j+1} \rangle \\ b_{x,y} \text{ otherwise} \end{cases}$$

It is clear that $\rho b^{(j)} = \beta \ (j \ge 1)$. Moreover, since $m \ne n$ implies $\langle x_{i_m}, y_{i_m} \rangle \ne \langle x_{i_n}, y_{i_n} \rangle$, it is easily seen that the $b^{(j)}$ are distinct. Thus, if it can be shown that

(a) each $b^{(j)}$ is an increasing function,

and

(b) each $b^{(j)} \in Edreg_2$,

the proof that there are at least \aleph_0 such functions will be complete.

Re (a): Note that, by (1) and the definition of $b^{(j)}$,

(2)
$$b_{x_{1},y_{1}}^{(j)} < b_{x_{2},y_{2}}^{(j)} < \ldots < b_{x_{i_{j}-1},y_{i_{j}-1}}^{(j)} < b_{x_{i_{j}+1},y_{i_{j}+1}}^{(j)} < b_{x_{i_{j}+1},y_{i_{j}+1}}^{(j)} < \ldots$$

Let $\langle x_u, y_u \rangle \langle x_v, y_v \rangle$. By (1) and the fact that b_{xy} is an increasing function, $u \langle v$. By (2), $b_{x_u,y_u}^{(j)} \langle b_{x_v,y_v}^{(j)}$ unless $u = i_j$ and $v = i_j + 1$. But $\langle x_{i_j}, y_{i_j} \rangle \not \langle (x_{i_j+1}, y_{i_j+1})$, so either $u \neq i_j$ or $v \neq i_j + 1$.

Re (b): It is clear from the definition of $b^{(j)}$ that it is everywhere defined. Let p(x) and q(x) be regressing functions for b_{xy} . Since b_{xy} and $b_{xy}^{(j)}$ are identical, except for a finite number of differences, it is clear that a finite number of modifications of each of p(x) and q(x) can be made to produce regressing functions for $b^{(j)}$.

We will now see that there are at most \aleph_0 functions in Edregsi₂ which have range β . Let a_{xy} and b_{xy} be distinct members of Edregsi₂ such that $\rho a = \rho b = \beta$, and let $\langle p, q \rangle$ be an ordered pair of regressing functions for a_{xy} . Since $a_{xy} \neq b_{xy}$, there are distinct ordered pairs $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$ such that $a_{x_1,y_1} = b_{x_2,y_2}$. If $\langle p, q \rangle$ is also a pair of regressing functions for b_{xy} , then

$$x_1 = p^*(a_{x_1,y_1}) = p^*(b_{x_2,y_2}) = x_2$$

and

$$y_1 = q^*(a_{x_1,y_1}) = q^*(b_{x_2,y_2}) = y_2,$$

a contradiction. Hence, distinct members of Edregsi₂, each with range β , have distinct ordered pairs of regressing functions. Since there are \aleph_0 ordered pairs of partial recursive functions, it follows that there can be at most \aleph_0 members of Edregsi₂ which have range β . Q.E.D.

In the above proof, if one deletes (a) and its proof, and replaces each occurrence of "Edregsi₂" with "Edreg₂", the proof becomes a proof of

If $\beta \in \text{edreg}_2$, then there are exactly \aleph_0 functions in Edreg_2 which have range β ,

a fact that is also true of infinite regressive sets.

Lemma 1 Let $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ be any n functions, and let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be any m infinite sets. Then there exist elements x_1, \ldots, x_m in $\alpha_1, \ldots, \alpha_m$, respectively, such that, for $1 \le i \le m$, we have

(3)
$$x_i \notin \{f_i(x_k): 1 \leq j \leq n, 1 \leq k \leq m, i \neq k, f_i(x_k) \text{ defined}\}.$$

Proof: (by induction on m) If m = 1, then, for $1 \le i \le m$, the set on the right in (3) is empty, and any member x_1 of α_1 satisfies (3). Let m = k + 1 and assume that, given any k infinite sets β_1, \ldots, β_k , there are elements x_1, \ldots, x_k in β_1, \ldots, β_k , respectively, such that, for $1 \le i \le k$,

(4)
$$x_i \notin \{f_i(x_l): 1 \le j \le n, 1 \le l \le k, i \ne l, f_i(x_l) \text{ defined}\}$$
.

We will show next that there is an infinite sequence of mutually disjoint k-tuples, each satisfying (4). This will be done inductively as follows:

By the inductive hypothesis, there is a k-tuple $\langle x_1^1, \ldots, x_k^1 \rangle$ satisfying (4). Now suppose that $\langle x_1^1, \ldots, x_k^1 \rangle, \ldots, \langle x_1^j, \ldots, x_k^j \rangle$ is a collection of mutually disjoint k-tuples, each of which satisfies (4). Define the sets $\gamma_1, \ldots, \gamma_k$ by

$$\gamma_i = \alpha_i - \{x_s^t \colon 1 \le s \le k, \ 1 \le t \le j\},\$$

for $1 \le i \le k$. Then $\gamma_1, \ldots, \gamma_k$ are all infinite, so by the inductive hypothesis, there is another k-tuple

$$(x_1^{j+1}, \ldots, x_k^{j+1}),$$

disjoint from the others, which satisfies (4) and where $x_i^{j+1} \in \gamma_i \subseteq \alpha_i$ $(1 \le i \le k)$. Thus, we have an infinite sequence $\langle x_1^1, \ldots, x_k^1 \rangle, \langle x_1^2, \ldots, x_k^2 \rangle, \ldots$, of *k*-tuples which are mutually disjoint, where each satisfies (4), and where $x_i^j \in \alpha_i$ $(1 \le i \le k, j \ge 1)$.

Now consider the first n + 1 of these k-tuples, namely $\langle x_1^1, \ldots, x_k^1 \rangle, \ldots, \langle x_1^{n+1}, \ldots, x_k^{n+1} \rangle$. Select x_{k+1} from α_{k+1} so that x_{k+1} is not a member of the set

$$\{f_j(x_i^i): 1 \le j \le n, \ 1 \le t \le k, \ 1 \le i \le n+1, \ f_j(x_i^j) \text{ defined}\}.$$

This is possible since α_{k+1} is infinite. The set δ , defined by $\delta = \{f_1(x_{k+1}), \ldots, f_n(x_{k+1})\}$ has at most *n* (defined) members, so at least one of the n + 1 mutually disjoint *k*-tuples, $\langle x_1^1, \ldots, x_k^1 \rangle, \ldots, \langle x_1^{n+1}, \ldots, x_k^{n+1} \rangle$, will have no components in δ . Let $\langle x_1^q, \ldots, x_k^q \rangle$ be such a *k*-tuple. Then we have the following facts, for $1 \le i \le k$:

(a)
$$x_i^q \notin \{ f_l(x_s^q) : 1 \le l \le n, 1 \le s \le k, i \ne s, f_l(x_s^q) \text{ defined} \},$$

since the k-tuple $\langle x_1^q, \ldots, x_k^q \rangle$ satisfies (4).

(b)
$$x_{k+1} \notin \{ f_l(x_i^q) : 1 \le l \le n \},$$

since x_{k+1} was selected to have this property.

(c)
$$x_i^q \notin \{f_l(x_{k+1}): 1 \le l \le n\},\$$

because of the manner in which q was selected.

Hence, if we let $x_1 = x_1^q, \ldots, x_k = x_k^q$, we have, combining (a), (b), and (c), that the numbers $x_1, x_2, \ldots, x_{k+1}$ satisfy (3), and this completes the proof. Q.E.D.

Definition: If $p_1(x)$, $p_2(x)$, ..., $p_n(x)$ are partial recursive functions, then the set $\{x_0, x_1, \ldots, x_m\}$ is said to be (p_1, p_2, \ldots, p_n) -unrelated for t generations $(t \ge 1)$, if, for $r, s \le m$, one has $f_1 f_2 \ldots f_j(x_r) = x_s$ only if r = s, where each $f_i \in \{p_1, p_2, \ldots, p_n\}$ and $1 \le j \le t$.

Lemma 2 Let a_{xy} be a regressive function of order 2 with regressing functions p(x) and q(x). If subset a of ρa is closed under the functions p(x) and q(x), and a has a subset β , consisting of n elements which are (p, q)-unrelated for $\binom{n+1}{2}$ generations, then a has at least $\binom{n+1}{2}$ elements.

Proof: Let $\beta = \{a_{x_1, y_1}, \ldots, a_{x_n, y_n}\}$. We consider two cases:

Case (i): $x_i \leq x_j$ and $y_i \leq y_j$, for some $i \neq j$. Then, if we apply the regressing functions p(x) and q(x) to a_{x_j,y_j} , as many times and in whatever manner as is necessary to arrive at a_{x_i,y_i} , it follows that we will obtain along the way $\binom{n+1}{2}$ distinct elements of α , since α is closed under p(x) and q(x), and the numbers a_{x_i,y_i} and a_{x_j,y_j} are (p, q)-unrelated for $\binom{n+1}{2}$ generations.

Case (ii): $i \neq j$ implies that either both $x_i < x_j$ and $y_i > y_j$ or both $x_i > x_j$ and $y_i < y_j$. Define the sets β_i ($1 \le i \le n$) by $\beta_i = \{a_{x_i, y_i}, a_{x_i, y_{i-1}}, \ldots, a_{x_i, 0}\}$. The sets β_i are pairwise disjoint non-empty subsets of α with cord $\beta_i = y_i + 1$, so cord $\alpha \ge \sum_{i=1}^n \text{ cord } \beta_i = \sum_{i=1}^n (y_i + 1) \ge \sum_{i=1}^n i = \binom{n+1}{2}$, the last inequality holding since the y_i 's are distinct. Q.E.D.

Theorem 2 There is a set in $edreg_2$ which has an infinite separable subset that is not in $edreg_2$.

Proof: Let $\{\langle p_1, q_1 \rangle, \langle p_2, q_2 \rangle, \ldots\}$ be an enumeration of all ordered pairs of distinct partial recursive functions. Define the function c_{xy} as follows:

(i) $c_{00} = j_5(0, 0, 0, 0, 0), c_{01} = j_5(0, 1, 0, 0, 0), c_{10} = j_5(1, 0, 0, 0, 0).$ (ii) Assume that, for $k \ge 1$, c_{xy} is defined for all x and y with $x + y \le k$. Define $c_{xy}(x + y = k + 1)$ by

$$c_{xy} = j_5(x, y, d_{xy}, e_{xy}, b_{xy}),$$

where

$$d_{xy} = \begin{cases} c_{x-1,y} \text{ if } x > 0\\ 0 & \text{ if } x = 0, \end{cases}$$
$$e_{xy} = \begin{cases} c_{x,y-1} \text{ if } y > 0\\ 0 & \text{ if } y = 0, \end{cases}$$

and where the numbers b_{xy} (for x + y = k + 1) are chosen so that

(a) each of the numbers c_{xy} (for x + y = k + 1) is larger than all of the numbers $p_r(c_{uv})$ and $q_r(c_{uv})$, where $u + v \le k$ and $r \le k$,

and

(b) the numbers c_{xy} (for x + y = k + 1) are (p_k, q_k) -unrelated for $\binom{k+2}{n}$ generations.

That the above selection of the b_{xy} (for x + y = k + 1) is possible can be seen by appealing to Lemma 1, where the functions f_1, \ldots, f_n are the functions $h_1 h_2 \ldots h_j$, such that $j \leq \binom{k+2}{2}$ and each h_i is either p_k or q_k , and the sets $\alpha_1, \ldots, \alpha_m$ are the sets ω_{xy} (for x + y = k + 1) defined by SETH CATLIN

$$\omega_{xy} = \{w: (\exists b) | w = j_5(x, y, d_{xy}, e_{xy}, b) \text{ and } \\ w > \max \{x: (x = p_r(c_{uv}) \text{ or } x = q_r(c_{uv})) \text{ and } \\ u + v \le k \text{ and } r \le k\} \} \}.$$

The function $c_{xy} \in Edreg_2$, since it is clearly everywhere defined, and the recursive functions p(x) and q(x), defined by

$$p(x) = \begin{cases} k_{5,3}(x) & \text{if } k_{5,1}(x) > 0 \\ x & \text{if } k_{5,1}(x) = 0, \end{cases}$$

and

$$q(x) = \begin{cases} k_{5,4}(x) \text{ if } k_{5,2}(x) > 0 \\ x \text{ if } k_{5,2}(x) = 0, \end{cases}$$

are readily seen to be regressing functions for c_{xy} .

Define $\alpha = \rho c - \{c_{00}\}$. Then α is clearly a separable subset of ρc . We will complete the proof by showing that $\alpha \notin \operatorname{edreg}_2$. Suppose that $\alpha \in \operatorname{edreg}_2$. Let $a_{xy} \in \operatorname{Edreg}_2$, such that $\alpha = \rho \alpha$. Let p_n and q_n be regressing functions for α . Let $\alpha_n = \{c_{xy}: 0 < x + y \leq n\}$. Since each c_{xy} with x + y > n is larger than any member of either $p_n(\alpha_n)$ or $q_n(\alpha_n)$, we see that the set α_n is closed under both p_n and q_n . Define $\alpha'_n = \{c_{xy}: x + y = n\}$. By the definition of c_{xy} , the n + 1 members of α'_n are (p_n, q_n) -unrelated for $\binom{n+2}{2}$ generations. By Lemma 2, α_n has at least $\binom{n+2}{2}$ elements. But card $\alpha_n = \operatorname{card} \{c_{10}, c_{01}\} + \operatorname{card} \{c_{20}, c_{11}, c_{02}\} + \operatorname{card} \alpha'_n = 2 + 3 + \ldots + (n+1) = \binom{n+2}{2} - 1$. This is a contradiction. Therefore, $\alpha \notin \operatorname{edreg}_2$.

It is easy to show that, if $\alpha \in edreg_2$ ($\alpha \in reg_2$) and $\alpha \simeq \beta$, then $\beta \in edreg_2$ ($\beta \in reg_2$). Thus, we can define A to be an *ed-regressive* (*regressive*) isol of order 2 if it is a recursive equivalence type which is composed of immune ed-regressive (regressive) sets of order 2.

Theorem 3 There is an ed-regressive isol C of order 2, such that C - 1 is not an ed-regressive isol of order 2.

Proof: Let $\{\gamma_1, \gamma_2, \ldots\}$ be an enumeration of the infinite r.e. sets. Then define c_{xy} as in the proof of Theorem 2, except that (a) is replaced by

(a') each of the numbers c_{xy} (for x + y = k + 1) is larger than all of the numbers t_k , $p_r(c_{uv})$, $q_r(c_{uv})$, where $u + v \le k$, $r \le k$, and t_k is some member of γ_k which is larger than all of the numbers c_{mn} with $m + n \le k$.

As is the proof of Theorem 2, $c_{xy} \in \text{Edreg}_2$. Moreover, since none of the sets γ_k is a subset of ρc , ρc is immune. Let $C = \text{Req } \rho c$. Then C is an ed-regressive isol of order 2, but $C - 1 = \text{Req } (\rho c - \{c_{00}\})$ is not. Q.E.D.

In the proof of Theorem 2, supposing that $\alpha \in \operatorname{edreg}_2$ led to a contradiction. But all that was used was that $\alpha \in \operatorname{reg}_2$, so we have also proved

Theorem 2A There is a set in reg_2 which has an infinite separable subset which is not in reg_2 .

Theorem 3A There is a regressive isol C of order 2, such that C - 1 is not a regressive isol of order 2.

Lemma 3 If $a_{xy} \in Edreg_2$, $\alpha = \rho a$, and β and γ are subsets of α such that

(i) β is a separable subset of α ,

(ii) given $a_{uv} \in \beta$, there is an $a_{rs} \in \gamma$ such that $u \leq r$ and $v \leq s$,

(iii) there is an effective way of finding, for any $x \in E$, two numbers u_x and v_x , such that $x \in \beta$ iff $x = a_{u_x, v_x}$,

then $\beta \leq_T \gamma$.

Proof: Let $x \in E$. Assume any question " $y \in \gamma$?" can be answered. Let u_x and v_x be the numbers such that $x \in \beta$ iff $x = a_{u_x,v_x}$. Let p and q be regressing functions for a. Start asking " $0 \in \gamma$?", " $1 \in \gamma$?", etc., until a number y has been found such that $y \in \gamma$, $p^*(y) \ge u_x$, and $q^*(y) \ge v_x$. Then it is clear that

$$x \in \beta$$
 iff $x \in \{p^m q^n(y) : m \leq p^*(y) \text{ and } n \leq q^*(y)\},$
Q.E.D.

so $\beta \leq_T \gamma$.

Theorem 4 There exists a set β in edregsi₂ which is the union of \aleph_0 pairwise disjoint, mutually separable subsets, each of which is in edresgi₂ but is of lower Turing degree than β .

Proof: Let $\alpha_0, \alpha_1, \ldots$ be a sequence of sets with the property that, for no $n \in E$ do we have $\alpha_{n+1} \leq_{\mathsf{T}} \bigcup_{i=0}^{n} \alpha_i$. This is possible because there are uncountably many degrees, and each degree has at most countably many predecessors. Assume without loss of generality that, for each $n \in E$, $0 \notin \alpha_n$ and $1 \in \alpha_n$. For each $n \in E$, define δ_n by

$$\delta_n = \{j(n, x): x \in \alpha_n - \{1\}\} \cup \{1\}.$$

Then it is clear that $\alpha_n \equiv_{\mathsf{T}} \delta_n$ for each $n \in E$, and the sets $\delta_0 - \{1\}, \delta_1 - \{1\}, \ldots$ are mutually separable. For $i \in E$, define the function $d_n^{(i)}$ to be the strictly increasing total function that ranges over δ_i . Now define, for $i \in E$, the function $b_n^{(i)}$ by $b_0^{(i)} = d_0^{(i)} = 1$ and $b_{n+1}^{(i)} = j(b_n^{(i)}, d_{n+1}^{(i)})$. Then the function f(x), defined by

$$f(x) = \begin{cases} k(x) & \text{if } x \neq 1 \\ x & \text{if } x = 1 \end{cases}$$

is a retracing function for each of the sets $\beta_n = \rho b^{(n)}$. As in [6], Theorem T2, $\delta_n \equiv_T \beta_n$ for each $n \in E$, so the sets β_0, β_1, \ldots have the property that

(5) for no $n \in E$ do we have $\beta_{n+1} \leq_T \bigcup_{i=0}^n \beta_i$.

Moreover, the sets $\beta_0 - \{1\}$, $\beta_1 - \{1\}$, ... are mutually separable. Define the function c_{mn} inductively as follows:

For
$$m = 0$$
: $c_{0,n} = j_5 (0, n, b_n^{(0)}, b_n^{(0)}, b_n^{(0)})$

For
$$m > 0$$
:
$$\begin{cases} c_{m,0} = j_5(m, 0, c_{m-1,0}, c_{m-1,0}, b_0^{(m)}) \\ c_{m,n+1} = j_5(m, n+1, c_{m-1,n+1}, c_{m,n}, b_{n+1}^{(m)}). \end{cases}$$

Note that c_{mn} is everywhere defined and strictly increasing. Define $\gamma = \rho c$ and, for each $r \in E$, $\gamma_r = \{c_{mn} : m \leq r\}$. We prove the following statements:

(a) $c \in Edregsi_2$ (and, thus, $\gamma \in edregsi_2$), (b) for $n \in E$, $\gamma_n \equiv_T \bigcup_{i=0}^n \beta_i$, (c) for $n \in E$, $\beta_n \leq_T \bigcup_{i=0}^n \beta_i$, (d) for $n \in E$, $\gamma_{n+1} \equiv_T \gamma_{n+1} - \gamma_n$, (e) for $n \in E$, $\gamma_n <_T \gamma_{n+1} - \gamma_n$, (f) $\gamma_0 <_T \gamma_1 - \gamma_0 \equiv_T \gamma_1 <_T \gamma_2 - \gamma_1 \equiv_T \gamma_2 <_T \dots$

Re (a): Define the functions p(x) and q(x) by

$$p(x) = \begin{cases} k_{5,3}(x) & \text{if } k_{5,1}(x) \neq 0 \\ x & \text{if } k_{5,1}(x) = 0, \end{cases}$$

and

$$q(x) = \begin{cases} j_5(0, k_{5,2}(x) - 1, fk_{5,3}(x), fk_{5,4}(x), fk_{5,5}(x)) & \text{if } k_{5,1}(x) = 0\\ k_{5,4}(x) & \text{if } k_{5,1}(x) \neq 0 \text{ and } k_{5,2}(x) \neq 0\\ x & \text{otherwise.} \end{cases}$$

Then p(x) and q(x) are partial recursive, and, as the reader can verify, are regressing functions for c_{mn} , so $c_{mn} \in Edregsi_2$.

Re (b): Let $x, n \in E$, and let $r = k_{5,1}(x)$ and $s = k_{5,2}(x)$. If r > n, then $x \notin \gamma_n$. If $r \leq n$, assume one can answer any question " $y \in \bigcup_{i=0}^{n} \beta_i$?" Now ask " $0 \in \bigcup_{i=0}^{n} \beta_i$?", " $1 \in \bigcup_{i=0}^{n} \beta_i$?", etc., until all of the elements $b_v^{(u)}$ have been found such that $u \leq r$ and $v \leq s$. This is possible since, for $z = b_v^{(u)}$, $f^*(z) = v$, and the sets $\beta_0 - \{1\}$, $\beta_1 - \{1\}$, ..., $\beta_n - \{1\}$ are mutually separable. Now use the definition of the function c to construct $c_{r,s}$. Then $x \in \gamma_n$ iff $x = c_{r,s}$. Thus, $\gamma_n \leq_T \bigcup_{i=0}^{n} \beta_i$. Now let $x, n \in E$, and assume we can answer any question " $y \in \gamma_n$?" If $f^{f^*(x)}(x) \neq 1$, then $x \notin \bigcup_{i=0}^{n} \beta_i$. If x = 1, then $x \in \bigcup_{i=0}^{n} \beta_i$. Otherwise, let $v = f^*(x)$. Let u = kl(x). Then $x \in \bigcup_{i=0}^{n} \beta_i$ iff

$$v \neq 0, u \leq n$$
, and $x = b_v^{(u)} = k_{5,5}(c_{uv})$.

Since we can effectively find c_{uv} by asking " $0 \in \gamma_n$?", " $1 \in \gamma_n$?", etc., and using the functions p, q, $k_{5,1}$, and $k_{5,2}$, we have an effective test for deciding whether x is in $\bigcup_{i=0}^{n} \beta_i$. Thus, $\bigcup_{i=0}^{n} \beta_i \leq_T \gamma_n$.

Re (c): This is immediate from

$$x \in \beta_n$$
 iff
 $x \in \bigcup_{i=0}^n \beta_i$ and either $x = 1$ or both $x \neq 1$ and $kl(x) = n$.

Re (d): This is an immediate consequence of Lemma 3.

Re (e): $\gamma_n \leq_T \gamma_{n+1} - \gamma_n$ is a consequence of Lemma 3. Suppose $\gamma_n \equiv_T \gamma_{n+1} - \gamma_n$. Then, by (b), (c), and (d),

$$\beta_{n+1} \leq_{\mathsf{T}} \bigcup_{i=0}^{n+1} \beta_i \leq_{\mathsf{T}} \gamma_{n+1} \leq_{\mathsf{T}} \gamma_{n+1} - \gamma_n \leq_{\mathsf{T}} \gamma_n \leq_{\mathsf{T}} \bigcup_{i=0}^n \beta_i,$$

which contradicts (5). Hence, $\gamma_n <_{T} \gamma_{n+1} - \gamma_n$ for each $n \in E$.

Re (f): This is immediate from (d) and (e).

The sets γ_0 , $\gamma_1 - \gamma_0$, $\gamma_2 - \gamma_1$, ... form a denumerable collection of pairwise disjoint, mutually separable subsets of γ , and their union is γ . Each is retraceable (retracing function for each is q(x)) and, therefore, is in edregsi₂ ([1], comment following Proposition 1). In view of (f) and the fact that each is separable in γ , they are all of lower degree than γ . Q.E.D.

Lemma 4 If α , $\beta \in \text{edregsi}_2$ and $\alpha \leq \beta$, then $\beta \leq \tau \alpha$.

Proof: Let p(x) be a partial recursive function whose domain includes α , such that p(x) is one-one on α . Assume we can answer any question " $y \in \alpha$?" Let $z \in E$. Since $\beta \in edregsi_2$, there is a function b_{xy} in $Edregsi_2$ such that $\beta = \rho b$. Define δ by

$$\delta = \{b_{xy}: x \leq z \text{ and } y \leq z\}.$$

Note that $z \in \beta$ iff $z \in \delta$. Answer the questions " $0 \in \alpha$?", " $1 \in \alpha$?", ... until a number k is found such that $k \in \alpha$ and $p(k) = b_{uv}$ where $u \ge z$ and $v \ge z$. Then apply the regressing functions for b to b_{uv} in order to generate δ . Q.E.D.

Theorem 5 There exist sets α , $\beta \in edreg_2$ such that α is an infinite separable subset of β , but $\alpha \not\subseteq_* \beta$.

Proof: Let $\alpha = \gamma_0$ and $\beta = \gamma$ in the proof of Theorem 3. If $\alpha \leq_* \beta$, then $\beta \leq_T \alpha$ by Lemma 4. Q.E.D.

If T is a regressive isol and t_n is a regressive function whose range is in T, then $\sum_{T} a_n$ is defined [2], for any total function a_n , to be $\operatorname{Req} \bigcup_{n=0}^{\infty} j(t_n, \nu(a_n))$. A natural way to extend this definition to the order 2 case is:

If T is an ed-regressive isol of order 2, $t_{xy} \in Edreg_2$, $\rho t \in T$, and a_{xy} is a total function of two variables, define

$$\sum_{\mathsf{T}} a_{mn} = \operatorname{Req} \bigcup_{m=0}^{\infty} \bigcup_{n=0}^{\infty} j(t_{mn}, \nu(a_{mn})).$$

This definition is easily seen to be independent of the choice of t_n .

Theorem 6 It is not the case that, if b_{mn} is a recursive function, and T is an ed-regressive isol of order 2, then $\sum_{T} a_{mn}$ is an ed-regressive isol of order 2.

Proof: Let t_{xy} be the function c_{xy} in the proof of Theorem 2. Let $T = \text{Req } \rho t$. Define b_{mn} by

$$b_{mn} = \begin{cases} 1 \text{ if } m + n \neq 0 \\ 0 \text{ if } m + n = 0. \end{cases}$$

Then b_{mn} is recursive, and $\alpha \in \sum_{T} b_{mn}$, where α is the set $\alpha = \{c_{xy}: x + y > 0\}$ in the proof of Theorem 2. Since $\alpha \notin edreg_2$, we have that T is an edregressive isol of order 2, but $\sum_{T} b_{mn}$ is not. Q.E.D.

REFERENCES

- Catlin, S., "Ed-regressive sets of order n," The Journal of Symbolic Logic, vol. 41 (1976), pp. 146-152.
- [2] Dekker, J. C. E., "Infinite series of isols," Proceedings of the Symposia of Pure Mathematics, vol. 5 (1962), pp. 77-96.
- [3] Dekker, J. C. E., "The minimum of two regressive isols," Mathematische Zeitschrift, vol. 83 (1964), pp. 345-366.
- [4] Dekker, J. C. E., "Closure properties of regressive functions," Proceedings of the London Mathematical Society (Third Series), vol. 15 (1965), pp. 226-238.
- [5] Dekker, J. C. E., "Regressive isols," in Sets, Models and Recursion Theory, North-Holland Co., Amsterdam (1967), pp. 272-296.
- [6] Dekker, J. C. E., and J. Myhill, "Retraceable sets," Canadian Journal of Mathematics, vol. 10 (1958), pp. 357-373.
- [7] Dekker, J. C. E., "Recursive equivalence types," University of California Publications in Mathematics (New Series), vol. 3 (1960), pp. 67-214.
- [8] Richter, W. H., "Regressive sets of order n," Mathematische Zeitschrift, vol. 86 (1965), pp. 372-374.
- [9] Sacks, G. E., Degrees of Unsolvability, Annals of Mathematical Studies, No. 55, Princeton University, New Jersey (1966).

Eastern Oregon State College LaGrande, Oregon

544