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THE LOGIC OF CLOSED CATEGORIES

MANFRED E. SZABO

0 Introduction In this paper,* we continue our study, initiated in [4, 5, 10]
and reformulated in [11], of the connection between syntactic and semantic
criteria for the "equivalence" and "normality" of formal proofs in
intuitionist Gentzen systems. As in [11], we interpret proofs as morphisms
in free closed categories. But by no longer requiring that these categories
are "cartesian", we obtain a coarser equivalence relation than that in [11],
still admitting a "reducibility relation" with the Church-Rosser property.
As a by-product of this analysis, we are able to obtain necessary and
sufficient conditions for the commutativity of diagrams in free closed
categories.

1 Closed categories The theory of "closed categories" serves as a
generalization for categories such as sets, R-modules over a commutative
ring R, compactly generated Hausdorff spaces, small categories, etc., in
which any two objects have a "tensor product" and in which the "hom-
sets" themselves are again sets, ^-modules, compactly generated Haus-
dorff spaces, small categories, etc. Formally, a closed category is a list
(Sϊ, Λ, D, I, a, λ, σ, Ω> consisting of the following data:

(i) a category $1;
(ii) a bifunctor Λ: £ x *?-* £ (called "tensor product");
(Hi) a bifunctor z>: ®opx £ — £ (called "internal horn");
(iv) a distinguished object I (called the "unit" of the tensor product);
(v) coherent natural isomorphisms α, λ, and σ with components

a(A, B, C): AΛ(BΛC) -» (AΛB)ΛC,

λ(A): IΛA-*A,

and
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σ(A, B): AAB-> BΛA

in ^ for all objects A, B, C of ®;

(vi) a natural transformation Ω, with bisections

Ω(A, B, C): Homft(iΛjB, C) -* Hom$(B, A^ C)

as components for all objects A, B, C of ^ .
The transformations α, λ, σ, and Ω are understood to be natural in each

argument, and the "coherence" of a, λ, and σ means that any isomorphism
μ in St, constructed from them by tensoring and composition, is unique,
provided that no component of a, λ, and σ used in the construction of μ
contains a repeated argument.

The following conditions, as given by Mac Lane [6] and simplified by
Kelly [2], are necessary and sufficient for the coherence of α, λ, and σ:

(i) a(A, B, C) Λ 1(D) o a(A, BΆ C, D) o 1(A) A a(β, C, D)
= <X(AΛ B, C, D) Oa(A, B, CΛD);

(ii) σ(B, A) o σ(A, B) = 1(AΛB);

(iii) σ(A, C) Λ \(B) o a(A, C, B) o 1(A) A σ(B, C)
= a{C,A, B)oσ(AΛB, C)oa(A, B, C);

(iv) λ(A) Λ 1(C) o α(l, A, C) = λ(A Λ C),

for all objects A, B, C of St. Here " o " denotes composition in ^, and, for
any object A of ®, 1(A) stands for the identity on A. All undefined notions
coincide with those in [7].

A closed category SI is free on a category 51 if any functor JP from 51 to
the "underlying" category U(^') of a closed category ft' extends uniquely
to a functor Fr: SI —» Sίf which preserves the closed structure exactly, i.e.,
F'(AΛ-B) = Fr(A) ΛF'(B), etc. The existence of free closed categories
follows from Freyd's Adjoint Functor Theorem [l].

2 The language £ of F(l) In this paper, we shall work exclusively with the
free closed category F(l) on " the" discrete one-object category 1. The
object of 1 will be denoted by 0.

AlphU), the alphabet of -C, is the set {0, I, Λ, 3, (, )}.

Term (-C), the set of terms of J£, is the smallest set of finite strings of
symbols of Alph(^) such that

(i) OeTermU);
(ii) Ie TermU);
(iii) if A, Be Term (X), then (A A B) and (A z> B) e Term U).

If sx . . . sne Term («£) by virtue of (ii) and (iii), then sλ . . . sn is called
a "constant" term, and any term which enters into the construction of a
term T at some stage is called a "subterm" of T. When writing down
terms, we shall usually omit their outermost brackets.

Form («£), the set of formulas of «̂ , is the set of finite sequences (Al9 . . . An)
(n^l), where A{ e Term (£).
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Following Gentzen, we shall usually write Al9 . . . A*-i -* An for

(Al9 . . ., An.u An). "Au . . .,Ai-i" is called the "antecedent" and "A*"

the "succedent" of Aί9 . . ., An-1 —> An. The formula (A), in particular, will

be written as "—> A". As in [12], capital Greek letters will often be used to

abbreviate all or parts of a given antecedent.

The language -C of F(l) is the list (AlphU), TermU), Form^)).

3 The Gentzen system G The deductive system G whose proofs are

interpretable as morphisms of F(l) is the list (Ax(G), Rules(G), Proofs(G))

consisting of the following data:

(I) The set of formulas Ax(G) = {(0, 0), (I)}, whose members are called the

"axioms" of G;

(II) The set of relations Rules(G) = {(C), (W), (H), (R), (P), (K)} on Form U)

whose members are called the "rules of inference" of G, and are specified

as follows:

(a) < Γ - A;A->B; Γ, Δ - AΛB) e (C);

(b) <Γ, A, B, Δ -> C; Γ, AΛB, Δ -> C)e(W);

(c) (Γ - A; Δ, B, Λ - C; Δ, Γ, A D B, A - C) e (H);

(d) (Γ,A,A-ΰ;Γ,A-A^)e (R);

(e) (Γ —> A; Γf —> A) e (P), where Γf results from Γ by any non-trivial

permutation of the terms of Γ;

(f) (Γ -> A; Γ, I -> A) e (K), for all finite sequences Γ and Δ of terms of -C

and all terms A, B, C.

The reader will appreciate the use of the semicolon for ordered pairs and

triples. As in [11], we shall write

Γ->A Δ-+B Γ ? A ? ^ , Δ ^ C

Γ , Δ - A Λ £ V W Γ , A Λ £ , Δ - > C V }

etc., to indicate membership in (C), (W), etc.

Any member of a rule of inference will be called an instance or

application of that rule of inference. The terms A and B in the above

instances of (C), (W), (H), and (R), and the term I in the instance of (K) are

called active, and all others passive occurrences of terms.

In order to define the proofs of G, we require the notion of a " t r e e " .

A tree will essentially be a finite inverted dyadic tree in the sense of

Smullyan [9]. More precisely, we define a tree to be a list (N, r, s, w)

consisting of the following data:

(i) a finite set N whose elements are called "nodes";

(ii) a distinguished node reN called the " r o o t " of the tree;

(iii) a function s; N - {r}-* N called the "successor function";

(iv) a function w: {x\s~1(x) has two elements} —» N x N called the "well-

ordering function".

These data satisfy the following axioms:
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Tl For all xe N, s"1^) contains at most two elements.
T2 For all xeN, there exists an ne{09 1, 2, . . .} such that sn(x) = r.
T3 For all xeN, sn(x) =xiffn = 0.
T4 // w(x) = (y, z), then {y, z} = s'^x).

A node is called an "origin" if s~ι(x) is empty, a "simple point" if
s"1^) is a singleton, and a "junction point" otherwise. The elements of
s'1(x) are called the "predecessors" of x. If w(x) = (y, z), then y is called
the "left predecessor" and z the "right predecessor" of x.

We define a subtree of (N, r, s, w) to be any tree obtained by re-
stricting (N, r, s, w) to a suitable subset of N.

A path in a tree T is a sequence S = (x, s(x)9 s2(x), . . ., sn(x)) of nodes
in which x is an origin of T. The number of terms of S will be called the
length of S. A maximal path in T is a path in which the last term is r. The
maximum of the lengths of the maximal paths of T will be called the height
of T.

(ΠI) We now define the set Proofs(G) of proofs of G as follows: A proof is a
pair (P, T), where T is a tree, JV is the set of nodes of T, and P: N->
Form (-C) is a function satisfying the following conditions:

(a) if x is an origin of T, then P(x) e Ax(G);
(b) if # is a simple point of T, and y = s(#), then <P(#), P(y)> is an instance
of one of the rules (W), (R), (P), (K);
(c) if x is a junction point of T, and w(x) = (y, z), then (P(y), P(z), P(x)) is
an instance of either (C) or (H).

A subproof of (P, T) is a proof obtained by restricting P to a suitable
subtree of T. An instance of a rule of inference (Ri) in a proof P is passive
with respect to an instance of a rule (Rj) if the active terms of (Ri) are
passive with respect to (Rj) and conversely.

4 Normal proofs In this section, we interpret the proofs of G as mor-
phisms of F(l), and define the "normal" proofs of G as certain "irreduc-
ible" proofs relative to the reducibility relation " ^ " still to be introduced.
For this purpose, we find it convenient to make use of the following special
notation: "P: Γ — A" or " Γ -^ A " stands for " P is a proof of Γ — A", and
"Obj(F(l))" and "Morph(F(l))" denote the classes of objects and morphisms
of F(l), respectively. The interpretation of a proof (P, T) is defined by
induction on the height of T. For this purpose it is clear from [4, 5] that
we may assume that Term^) = Obj(F(l)).

The Interpretation For the sake of simplicity, we shall think of Γ, Δ,. . .
below as representing individual objects A, B, . . . of F(l). In order to
achieve a compatible bracketing of tensor products the interpretations of
individual steps of a proof may therefore require compositions with
isomorphisms not explicitly mentioned. By virtue of the coherence of a
these isomorphisms are unique. A similar remark applies to the inter-
pretation of the "cut" in Section 6.
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(i) (0,0) = 1(0): 0 - 0 ;

(ii) <]> = 1(1): I - I ;

(iii) ~ y = 1(1): I->I;

(iv) if A^ A = 1(A): A -*A,B ^B = 1(B): B -> B, and C £ C = 1(C):

C -^ C, then

(a) A-^A ff-^ff (b) A^A B^B

Ay B -> AAB A, A^ B -> B

AAB-^AAB A ^ B -* A^> B

= 1(AAB): AAB -> AAB; = 1(A D B): A D £ -> A 3 5;

(c) A^i £^£ (d) A-* A

A ^ - ^ J A ^ C^C A, 1->A

A, B, C — (A A B) A C I,A->A

A, BAC -^ (AAB)AC IAA-*A

AA(BAC)-> (AAB)AC = X(A):IAA-^A;

= a{A, B, C): AA(BAC) (similarly for λ"x(A));

-* (AAB)AC

(similarly for oΓι(A, B, C));

(e) B^B A^A (f) A^A B^ B

B, A -> B A A A, B -> AAB

A,B~* BAA B->A^(AAB)'

AAB -> BAA =η(A, B): B — A^> (AAB),

= σ(A, B): AAB -> BAA; where "ry(A, B)" stands for

Ω(A, B,AAB)(1(AAB));

(g) i ^ i i9^ B

fj^Λ^=εiAfB):A <A*B)-B,

where "ε(A, B)» stands for Ω"X(A, 5, A D 5)(1(A D 5));

(v) if Γ A Λ =/: C — A, and Δ ^ 5 = #: D — JB,

Γ-^Λ Δ - ^ 5
then Γ Δ ^ A Λ ^ — = / A ^ : CAD-^AAB;

(vi) (a) if Γ, A, B, Δ - ^ C =/: ((DAA) AB) AE — C,

then ^ 1 ' ^ t ^ ^ =/oq(D> Λ ϋ) Λ1(E): (2?A(AA2?))AE-> C;

(b) if Γ, A, B, Δ £> C = ̂  : D A ( A Λ ( 5 Λ£)) - C,

then ^ ? ^ ? ^ A~* C

n=gol(D)AθΓ\Ay B, E): D A ((A AB) AE) - C;

(c) if Γ , i , £ , Λ i c = ίi: ( B Λ ( A Λ B ) ) Λ £ - . C ,

then T ' A ' B ' \ L * C =h: (DA (A *B))AE-^ C;

(d) if Γ, A, B, Δ -£» C = fe: D Λ ( U Λ B ) Λ £ ) — C,

then '̂̂ ' ^ ^ ^ f e JA^A^AE) - C;
1 , ^4. Λ -D, Δ —> Ls
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(vii) (a) if Γ-^ A = f: D-> A, and Δ, B, A ^ C = g: EA(BAH) -> C,

thenΔ,Γ,ADβ,Λ-^C =

goε(A, B) Λl(H)oa(A, A D B, H)of A\{{A D £ ) Λ # ) :

£ Λ ( D Λ ( U ^> B)ΛH)) -> C;

(b) if Γ^> A =/: £>-> A, and Δ, B9 A ^ C = &:(£Λ£)Λ#-+ C,

n Γ&Λ Δ , ^ , Λ ^ C
t h e n Δ , Γ , A D 5 , Λ - C =

ho(l(E)AcU, B)O/A1(A ^ B))Λ1(H)OOI~1(E, DA(A^ B),H)\

EA(DA((A^> BAH))-> C;

P '

(viii) (a) if Γ, A, Δ £* B =/: C Λ (A *D) -» B, then p ' f ' _ f ^ f g =

(1(A) D/oα'^C, A, D)oσ(A, C)Λl(D)oα(A, C, D))oηU, CΛD):
CΛD-^A^B;

(b) if Γ,ΛL, Δ£»B=#: (CAA)AD - B, then ^ ' A > Δ f ^ n =
Γ, Δ —> A 3-D

(1U) ^>/oσ(A, C) Λ1(D)O<X(A, C, Z)))ory(Λ, C Λ D ) : C AD -> A 3 5;

(ix) if Γ-^A =/: B-* A, then ^ Γ = / o κ : C~*^>

where K: C —* B is the unique isomorphism made up of components of a, 1,
and σ which permutes the "factors" of B. The existence of K is clear, and
its uniqueness follows by coherence;

Γ £* A
(x) if Γ -^ A = f: B — A, then — j =/ o λ(£) o σ(B, I): B A I — A;

(xi) finally, the interpretation of any proof A19 . . ., An -^ B is the same as
that of the proof Q obtained from P by appending n - 1 applications of (W)
and introducing the symbols Λ from left to right; for example, the
interpretation of Al9 A2, A3 ^ B is the same as that of the proof
Al9 A29 A3£* B
A1ΛA2, A3-+ B

(AIAA2)AA3 -> B.

The reader will appreciate the meaning of " = " in the above definition.

As a consequence of the coherence of a, λ, and σ, conditions (i)-(xi)
clearly define a many-one mapping φ: Proofs(G) —» Morph(F(l)). Let E be the
"equivalence kernel" of φ9 i.e., PΈQ iff φ(P) = φ(Q). We shall show that E
admits a reducibility relation ^ (in the sense of [0]) with the Church-Rosser
property, and define Pe Proofs (G) to be normal if P^ Q implies that P= Q.

Since it is clear from the coherence theorem in [3] that for any two
constant objects K and L, there exists precisely one morphism K: K —> L in
F(l), we first require the following facts in order to be able to define
normal proofs involving constants:
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Lemma For any constant term K, the formula —> K is provable without the
use of rule (P), and the formula T,K—* A is derivable from the formula
Γ —> A, also without the use of rule (P).

Proof: We carry out an induction on the number of occurrences of the
symbols Λ and >̂ in K.

(i) (a) - I is an axiom, (b) ̂ _ ^ A (K);

(ii) (a) - I - * I (b) Γ^A ,

- I A I
 ( C ) ' Γ, I - » A { K ] K )

Γ,IΛ1^A(W)>

(iii) (a) - I , _ (b) Γ->A

flΓF(κ) - i r T ^ 7 { '

(iv) the induction step is similar.

We now define " ^ " to be the smallest binary relation on Proofs(G) such
that

(i) P^P for all P;
(ii) if P > Q and Q s* Λ, then P ̂  Λ;
(iii) if P ̂  Q and 5 is a proof which results from A by the replacement of a
subproof P of A by Q, then A > B;
(iv) P^ Q, where Q is a proof in which the mutually passive instances of
the rules of inference obey the following order of priorities:

(a) (C) precedes (R), (H), (P), (K), (W);
(b) (R) precedes (H), (P), (K), (W);
(c) (H) precedes (P), (K), (W);
(d) (P) precedes (K), (W);
(e) (K) precedes (W).

For example,

T^A Δ,^ ,Λ ^ C A,B,A^C Φ^D
Δ,Γ,A^B,A -> C Φ^D^Γ ^A A, B, Λ, Φ -* C ΛD
Δ, Γ, A D B, Λ, Φ-> C ΛD A, Γ,A^ B, Λ, Φ-> CΛD;

T,A, Δ, B, Λ, C,D, Φ ̂ E Γ, A, Δ, ^ , A,C, D, φ£+ E
T,A, A,B, A,CΛD, Φ-> E^Γ, B, A, A, A, C, D, Φ -» E

Γ, B, A,A, A, C ΛD, Φ -* E Γ, B, A,A, A, C ΛD, Φ -» E , etc.

(v) P^Q, where Q is a proof which does not contain two consecutive
applications of (P), nor does it contain a (P) interchanging identical
constant terms;

(vi) P^Q, where Q is a proof in which the orders of priority of (iv) are
observed between (P) and (R), (H), (W), respectively, even if (P) is not
passive relative to these rules;
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(vii) P ^ Q, where Q is a proof in which antecedent D'S are introduced
"from left to right' \

For example,

*£>E Γ,A,A,B,A^C Φ^D Γ , A , A,B,A^C

Φ^D Γ,Λ, A, * , £Dff,Λ-* C >*£>E Γ, Φ, Z) P A, A, £, Λ-> C

r,Φ,D^A,Δ,*,E^>B,A-*C Γ , Φ , D 3 A , Δ , Φ , E 3 5 , Λ - C ;

(viii) P ^ Q, where Q is a proof in which antecedent Λ's are introduced
"from left to right".

For example,

Γ,A, B, Δ,C, D, A->E Γ,A, B, A, C, D, A -» E
Γ, A, B, A, C Λ D , Λ -> E ^ Γ, A Λ £ , Δ , C, D, Λ ->E

Γ , A Λ £ , Δ , C Λ D , Λ - > £ Γ, A A £ , A, CAZ), Λ - > £ ;

(ix) if P: Γ —* A does not contain the axiom (0, 0), then P ^Q, where Q is

the unique proof of Γ —> A with the following properties:

(a) Q contains no instance of rule (P);

(b) the antecedents of the left premisses of any instances of rule (H) are

empty;

(c) Q satisfies conditions (iv) and (vi)-(vii) above.

For example, if Γ —> A is

( I A ( ( I 3 I) D I ) ) A ( I Λ I ) - (ID I) D ( I A ( Ϊ D I)),

then Q is the following tree:

-> I

!-> I

-> I - > P I

— I Λ (I D I)

-> I I -> I Λ (I D I)

PI^IΛ(PI)

->!• -* (I D I) D (I A (I D I))

1-^ I I -> (I P I) P (I Λ (I P I))

— I P I I, I -» (I P I) P (I A (I P I))

I, ( I P I) P I - > ( I P I) P ( I A ( I P I ) )

I, (I P I ) P I , 1-^(1 P I ) D (I A (I P I ) )

I, ( I P I) D I, I, I -> (I D I) P (I A (I D I))

I A ((I D I) D I), I, I -» (I D I) P (I A (I D I))

I A ( ( I P I ) D I), I A I - > ( I P I) P (I A (I P I ) )

(I A ( ( I D I) D I ) ) Λ ( I A D - ( I P D D ( I A ( I P I ) )

(x) finally, let P: Γ—»A be any proof satisfying conditions (iv) and (vi);
let P': Γf -+ A result from P by the deletion of all instances of (W) at the
end of P, and let Aiv . . .,Aim be the constant terms of Γ f, listed in their
occurrence from left to right in Γ f. Then it follows from the fact that (C),
(R), (H), and (P) precede (K), that P' contains a subproof P": Γ" ->A,
where Γff results from Γ' by the deletion of A^, . . .9Ajm.
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By condition (ix) and the lemma on constants, there exists a unique proof

Qr: Γ", Aiv . . ., Aim —> A in which the A{. are introduced in the manner

described in (ix). P^ Q, where Q results from Qf by a single application of

rule (P), if required, possibly followed by applications of (W), and has the

further property that any of its subproofs whose last step is an application

of rules (R) with an active constant term satisfy condition (ix). This

completes the description of the reducibility relation ^.

5 The Church-Rosser property In this section, we examine the connection

between the relations ^ and = on Proofs (G).

Theorem If P^Q, then P = Q.

We omit the lengthy calculations required to establish this theorem.

They are reasonably straightforward consequences of the axioms of a

closed category. The following example illustrates the general method. By

condition (iv) of ^ rule (C) precedes rule (H), hence

Γ £ A A, B, A^> C A, B, A £ C Φ £> D

Δ,Γ,AOB,A—C Φ £> D ^ T -£> A A , B , A , Φ - > C Λ D %

A, Γ, AO B, Λ, Φ-* C ΛD A, Γ, A 3 5, Λ, Φ-> C Λ D '

We must show that φ(L.H.S.) = φ(R.H.S.). Suppose that

c^(Γ-^A) = tfi* A;

φ(Δ, B, A 2* C) = (G ΛB) ΛH ^ C;
φ(Φ^ D) = K-^ D.

Then

φ(L.H.S.) = teo(l(G)ΛtU,B)ofΛl(A:DB))Λl(H)oa~1(G,EΛ(A^B),H)Λk

and

φiR.H.S.)

= £-A/ZO(1(G)A8(A, J3)O/Λ1(A => 5)) Λ lCfiΓ)o oΓι(G9 EΛ(A 3 5), H))ΛI(K),

and therefore φ{L.H.S.) = φ{R.H.S.) by the functoriality of Λ. The other

cases are proved similarly.

We now come to the main theorem of this section:

Church-Rosser Theorem If φ(P) = φ(Q) and P and Q prove the same

formula, then there exists a unique normal proof R such that P ^R and

Q>R.

Proof: Since all rules of inference of G are cumulative, the theorem holds

trivially for the proofs 0 -> 0 and —> I. Let us therefore assume that P and

Q contain an application of a rule of inference. Then P and Q must in fact

contain the same number of applications of rules (C), (R), (H), (K), and (W).

In order to convince ourselves of this fact, we exhibit an algorithm for

determining the rule by which a Λ, ̂ , or I was introduced into the formula

Γ ~> A proved by P and Q. For this purpose, we label the Λ'S and D'S as

" Λ " , " A " , "=>", or "=)» in the following way:
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(i) If Γ-> A is Δ, BΛC, A -> A, we write Δ, BΛC, A -+ A;
(ii) If Γ -^ A is Γ -» 5 Λ C, we write Γ - ^ 5 Λ C ;

(iii) If Γ-> A is Δ, £ 3 C, Λ — A, we write Δ, £ 3 C, Λ -+A;
(iv) If Γ — A is Γ — B z> C, we write Γ — 5 p C;
(v) If Γ -> A is Δ, I — A, we write Γ, I — A.

k

The following table, which is easily established by an induction on the
heights of P and Q9 provides the required algorithm for the labelling of all
Λ'S and ^>'s, and all Γs introduced by rule (K):

(i) If BΛ(CΛD), then C Λ D ; (if) K 5 A ( C A D ) , then CΛZ);

(ii) If (BΛC)ΛD, t h e n ^ Λ C ; (iif) If (BΛC)ΛD, then^ΛC;

(iii) If £ A (C => z)), then C => Z); (iii f) If 5 A (C D Z>), then C p D;
(iv) If CBW=> C) => 2), then 5 => C; (ivf) If (5°D C) A Z>, then 5 ^ C ;
(v) I f ( β Λ C ) ^ Z ) , then 5 A C; (vr) If ( £ Λ C) p Z), then B ΛC;
(vi) I f ^ ^ ( C A D ) , thenCΛZ); (vif) If 5 => ( C Λ D ) , then C AD;
(vii) If (B^ C) D Z), then JB^ C; (vϋ f) If (5 3 C) => D, then °̂=> C;
(viii) K B D ( C D D ) , then C =) Z); (viiif) If J5 p (C D Z>), then C p Z>;
(ix) If .A A I, then £ (ixf) If I Λ A, then j[;
(x) If AWD I, then I; (xf) If 1 ^ A, then I;

h k k

(xi) If I occurs as an antecedent term, then I, and if I is not I, then it
stems from an instance of axiom (I).

Since P and Q prove the same formula, they must thus also contain the
same number of instances of axioms (0, 0) and (I), and can therefore differ
at most in the following respects:

(i) the order of the axioms as they occur in these proofs from left to right;
(ii) the order of the application of rules (C), (R), (H), (K), and (W);
(iii) the numbrer and order of applications of rule (P).

In order to prove the theorem, we must therefore show that there exist
two finite sequences of proofs (Pi , . . ,,Pn) (n ^ 1) and (Ql9 . . ., Qm) (m ^ 1)
with the following properties: (i) Px = P and Qλ = Q; (ii) P{ > Pi+1 (1 < i <
n - 1) and Q7 ^ Q; + 1 (1 ^j < m - 1); (iii) Pn and Qm are normal; (iv) Pn = Qm.
Since the number of applications of rules (C), (R), (H), (K), and (W) in all P ,
and Qj is identical, and since the number of reduction pairs listed in
conditions (iv)-(x) of ^ is finite and ^ is antisymmetric, the existence of the
sequences (Pl9. . ,9Pn) and (Qίf. . .,Qm) follows easily by an induction on
the number of possible "contractions" of P and Q, where a contraction of a
proof R to a proof R* is defined to be the replacement according to
condition (iii) of ^ of a subproof S of R by a proof T with the following
properties: (i) S Φ T; (ii) S > T; (iii) T is "permutation-reduced", i.e., T
does not contain two consecutive applications of rule (P) and contains no (P)
interchanging identical constant terms. Thus the sequences (Pl9 . . ., Pn)
and (Ql9. . .9Qm) are obtained by replacing the proofs Pi and Qj succes-
sively by two proofs Pi+ι and Q, +i which are permutation-reduced and
which admit fewer contractions than P, and Q ; . This process terminates
after finitely many steps since there are only finitely many possible
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permutations of the applications of rules (C), (R), (H), (K), and (W). The
following example serves as an illustration:

Suppose P, Q: 0 , 0 ^ 1 , 0, I — > 0 Λ I and are given by trees (a) and (b)
respectively:

(a) -> I (b) 0 - > 0 0-> I
0-* 0 I-* I 0-> O Λ I

0, I-+ O Λ I 0-> 0 0, I-* O Λ I

0, I, I-» O Λ I 0, 0, 0 3 I-* O Λ I

0 - * 0 I, 0, I - » 0 Λ I 0 , 0 , 0 ^ 1 , 1 ^ O Λ I

0, 0 3 I, 0, I — O Λ I 0, 0 => I, 0, I — O Λ I .

Then the sequences (Pu P 2 , P 3 , P 4 , P5) and (Ql9 Q2) establish the existence
of the normal proofs P 5 and Q2:

P 2 : 0-> 0 — I P 3 : 0-+ 0 -> I
0-* OΛI 0-* OΛI

0, I-+ OΛI 0, I-+ OΛI

0, I, I-> OΛI 0 - > 0 0,1, I — O Λ I

0 - * 0 I , 0 , I - » 0 Λ I Q , Q , Q 3 I , Π OΛI

0, 0 =>I, 0, I — O Λ I ; 0, 0 => I, 0, I - * O Λ I ;

P 4 = Qι'9 and P 5 = Q2, where Q2 is the normal proof obtained from <?i by
interchanging the applications of (K) and (P) at the end of the proof.

Hence it remains to prove that P and Q contract to the same normal
proof R. This will follow from the previous theorem and the fact that
distinct normal proofs of the same formula interpret as distinct morphisms
in F(l) under φ. For suppose that P and Q are two normal proofs of the
formula Γ—* A. By virtue of conditions (iv), (ix), and (x) of ^ we may
ignore those applications of (R) in P and Q whose active antecedent terms
are constant and may assume without loss of generality that Γ is empty or
consists entirely of non-constant terms A{ of the form 0 or Bi ^ C, . We
may also neglect the case where Γ is empty, since this forces A to be
constant if P (and hence also Q) contains no application of rule (R).
Otherwise it is clearly sufficient to compare the respective subproofs of P
and Q whose last lines are formulas with non-empty antecedents. Thus we
need compare only two normal proofs P and Q of a formula Al9 . . ., Ap —> A
such that

(i) all Ai are non-constant and of the form 0 or Bi ^ C, ;
(ii) the last application of a rule of inference is (C), (R), (H), or (P);
(iii) the active antecedent term of any application of (R) is non-constant;
(iv) the active terms of any application of (P) are non-constant.

We shall examine P and Q from three points of view:

(a) neither P nor Q ends with a (P);
(b) P ends with a (P), but Q does not;
(c) both P and Q end with a (P).
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Suppose (a) holds. Then it follows from (iv) of ̂  and our previous
remark that either both P and Q end with a (C), or both end with an (R), or
both end with an (H). Then the following three possibilities arise:

. Γ^> B Γ -^ B ^ . Γ -^ B T^ B
( 1 ) P l s Γ , Γ - * Λ S ' Q l s τ,τ->B,B ;

( l l ) P l S A ^ 3 C g l S A ^ 3 C

;

If the premisses in cases (i) and (iii) interpret as distinct morphisms in
F(l), it is clear from the interpretation of (C) given earlier that P and Q
interpret as distinct morphisms, hence P Φ Q. If the premisses in case (ii)
interpret as the same morphism and the active non-constant term B stands
in different places in Γ and Λ, then it follows from the interpretation of (R)
given earlier that the interpretations of P and Q contain different com-
ponents of σ and hence represent distinct morphisms, and therefore once
again P φ Q. If the premisses in case (ii) interpret as different morphisms,
then it is clear from (iv) of > and the fact that P and Q are "permutation-
reduced", that P and Q again represent distinct morphisms, hence Pφ Q.

Suppose (b) holds. Then the following possibilities arise:

,.* „ . Γ ̂  B Γ •£> B . . T ̂  B Γ ±> B
( l ) Plsr,r->B.B~>Qlsr,r->B.B ;

Γ, Γ — BΛB

(ii) Pisasin(i),Qis^~lS

 Q

Γ "* B

Λ - B D C K }

T,ByA^B Φ,B,*±B Φ,B,*±B Γ,B,A^B
V Φ, Γ, B, Δ,B ^>B, A -> B ' v Γ, Φ,B,Ψ,B O B, Δ-> B '

Γ, Φ, JB, Φ, 5 3 J5, A -> J5

The morphisms represented by P and Q in (i) are clearly distinct since in
their interpretation P involves the composition of the morphism repre-
sented by Q with a non-constant component of σ. Similarly the morphisms
represented by P and Q in (ii) are distinct since the component of σ
involved is non-constant and since in the category of sets, for example, the
values of the function represented by P are of the form /(-) x g(-) and those
of the function represented by Q are of the form g(-) xf(-). In case (iii), P
and Q represent different morphisms by the argument advanced in (a)(ii)
and the fact that the morphism represented by P involves a composition
with a non-constant component of σ. In case (iv), P and Q represent distinct
morphisms by an argument analogous to (a)(iii) and (b)(iii). Hence in all
cases Pφ Q.
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Suppose that (c) holds. Then the following possibilities arise:

M „ . T ^ B A ±*B „ . A ±> B Γ £> B
W p 1 S 7 Γ T £~~5 > Q 1 S

 T Λ _> p p 5

A-* BAB
 V ; A-> BΛB

 V '

( U ) P U > I ^ ^ C ( P ) ' Q I 8 I Ξ Σ Ξ C ( P )

;

Λ — B^ Cy } Λ-JB^C1 ;

( m ) ^ Γ , ^ M ^ ^ ^ ( Γ ;
Λ - B K }

Φ,B,*±B Γ,B,Δ±B

Λ -> 5 V }

The arguments which show that P and Q in (i)-(iii) represent distinct
morphisms if R and S interpret as different morphisms in F (1) are similar
to the previous ones. Otherwise we may assume that P and Q differ only by
ending with different instances of (P). Since all terms permuted by these
(P)'s are non-constant, the morphisms represented by P and Q therefore
involve compositions with different non-constant components of σ and
therefore also represent distinct morphisms. Hence P Φ Q. This concludes
the proof of the theorem.

6 The cut If we let Obj«S) = Term(^) and Morph«S) = {P\P: A -> B is a
normal proof of G for some A, Beθb\((&)}, then it is lengthy, but fairly
routine, to prove that the system <Obj(<$), Morph(<$)) is isomorphic to F(l),
provided that Morph(ίS) is "closed under composition", i.e., if P: A —* B,
Q:B -* CeMorphUS), and φ(P:A — B) = f: A -> B and φ(Q:B — C) = g: £-> C
in F(l), then there exists R: A -> C eMorph(<$) such that φ(R: A -> C) =
gof:A -> C in F(l).

For this purpose we introduce the " c u t " (S) as an additional rule of
inference on Formic). By (S) we mean the ternary relation on Formic)
consisting of all lists of the form

( Γ - * A; A, A, A — B; A, Γ, Λ -> B).

We append condition (c) in the definition of a "proof" relative to (S), and if
P: Γ -* A and Q: A, A, A —» B are two normal proofs of G, we interpret the
proof

A,Γ,Λ->B ( S )

in F(l) as follows:

(a) if Γ £ A = f: C — A and A, A, Λ -^ B = g: (D ΛC) Λ £ -» 5 , then
Γ ^ l r y ^ t ^ ^ = ^ ° ( ( l W Λ / ) Λ l ( ^ ) ) : ( i ) A C ) Λ E ^ j B ;

(b) if Γ •£• A = / : C — A and A, A, A &> B = h: DA (C A E) — B, then

Γ £ > Λ Γ V > A / B S * O ( 1 ( Z ) ) Λ ( / Λ 1 ( ^ ; DΛ {CAE) ~* B
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It is understood that if Λ = 0 and Δ Φ $8, Λ Φ φ and Δ = 0, or Λ = Δ = φ,
then the cut interprets as ^O(1(Z))A/) : D Λ C - » 5, ΛO(/Λ1(£)) : C*E->B,

and hof = gof: C -* B, respectively.
In order to have a collective name for these morphisms, we shall

loosely call go((l(D)*f) *1{E)), go(l(D)*f), and gof "composites" of g
and /. Similarly for h and /.

The following theorem then establishes the required closure under
composition of Morph(<£):

Cut Definability Theorem If P: Γ —> A and Q: Δ, A, A —> B are two normal
proofs of G, then there exists a normal proof R: Δ, Γ, Λ —* B such that R
interprets as the composite of the interpretations of P and Q.

Proof: We follow Gentzen [12] and carry out two inductions on the
"degrees" and "ranks" of the cuts involved. Suppose that S: Δ, Γ, Λ -» B
is the proof

Γ £ A A,A,A^B

Δ . Γ . Λ - B ( S )

The degree of S is the number of occurrences of the symbols Λ and ^ in the
term A eliminated by the cut. The rank of S is the sum of the "left and
right ranks" of S. The left rank of S is the number of "consecutive"
formulas in P whose succedent is A. The right rank of S is defined dually
to be the number of "consecutive" formulas of Q containing the term A
which is being eliminated by S, in the antecedent. Two formulas Φ —* C and
Ψ —> D are consecutive in a proof (R, T) if there exists a path (Rl9 . . ., Rn)
in T such that R(Ri) = Φ — C and R(Ri+ι) = Φ -> D for some 1 ̂  i ^ n - 1.

Suppose that at least one of P and Q quotes an axiom of G. Then we
must define four cases:

« ^ ^ = ° - ° ;

w°-;,.,V.:A/'-*.«•***
. . . ΛJ B

In all other cases we may assume that the last line of both P and Q is an
application of a rule of inference (other than (S)). Suppose that the last line
of P i s an application of (H), (P), (K), or (W). We shall illustrate the case
of (H). The remaining cases are similar.

Θ ^ C Φ, D, fr ̂  A Φ,D,Ψ^A Δ,A,A^>B
Φ , θ , C 3 D, * - > A A,A,A^>B Θ ^ C Δ, Φ, D, Ψ, Λ -> £

Δ, Φ , Θ , C 3 D , Φ, Λ — 5 " Δ, Φ , Θ , C 3 D , Φ, Λ -> £
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The cases in which the right rank of S > 1 are dealt with similarly.
For example,

A, C, Φ, A, Λ ^ D T^A Δ , C , Φ , A , Λ ^ D
T^A A, Φ,A, Λ-> C D D A, C, Φ, Γ, Λ-> D

Δ , Φ , Γ , Λ ^ C 3 D A, Φ, Γ, Λ-> C 3 D

If P ends with an application of (K) and Q ends with an application of
(P), an appropriate (P) may have to follow the simpler cut in order to
derive the same formula. Hence we may assume that the cut S has rank 2.
We must distinguish two cases:

(i)

φL> C Ψ ^ D A, C, D, A •& B Ψ ^ D A, C, D, A ^ B

Φ , Φ - ^ C Λ J Δ , C Λ Z > , Λ - * £ Φ ^ * C A, C, Ψ, A -> £

A, Φ, Ψ, Λ - > £ " A, Φ, Φ,A-+B

(ϋ)

Φ, C, fr-^i) Θ ^ C Σ,D,Q -^B
Φ, * - > C ^ Z > Σ , Θ , C : 3 £ > , Ω - > £

Σ , Θ , Φ, Φ, Ω — £

Φ ? C ? ^ - ^ D Σ,D,Ω^B
_ θ ^ C Σ, Φ? C, Φ, Ω - > £

Σ, Φ ? θ , ^ , Ω - > ^ ( ,
Σ , Θ , Φ, Φ, Ω V

This completes the inductive definition of the normal proof i? associated
with the cut S. It is understood that the various proofs designated by L, M,
and N above are normal. It is routine to verify by means of the interpreta-
tion of the rules of inference as operations in F(l) that in each case the
definiens and the definiendum represent the same morphism. The proof of
the theorem is therefore complete.

Corollary The following equations hold between proofs with cut, provided
L, M, N, P, Q, and R are normal:

(i)

A1(^A Γ,A,Δ^B ^
Γ,A,Δ-B -Γ,A,Δ-2?,

(ϋ)

T^A A * & A _ T Q ^

(in)

Φ ^ £ Γ , A , Δ , £ , Λ ^ > C ^ ^ A Γ, A, A, B, A ^ C
Ψ^ A Γ, A, Δ, Φ, Λ -* C Φ^> B Γ, Ψ, A, B, A — C

Γ, Φ, Δ , Φ , Λ - C ~ Γ, Φ, A, Φ, Λ - C
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(iv)

T^A A,A,A^B A,A,A^B Φ,B,Ψ^C
Δ, Γ, Λ-> B Φ, B, fr^> C _ T ±A Φ, Δ, A, Λ, fr-^ C

Φ, Δ, Γ, Λ, Ψ->C " Φ, Δ, Γ, Λ, * - * C

We omit the lengthy calculations required to establish this corollary.

Since the equations in the previous corollary are precisely the axioms
satisfied by the multimaps of a multicategory in the sense of [5] (cf also
[11]), we obtain the further

Corollary The normal proofs of G constitute a Lambek multicategory.

The results of this paper have an important application in the theory of
categories, since the isomorphism of the system (Ojb(β), Morph(ίS)) and F(l)
yields necessary and sufficient conditions for the equality of morphisms in
F(l):

Theorem Iff, g: A —> B are two morphisms of F(l), thenf = g ifff- ψ(P) =
g, for some Pe Morph(β).

The advantage of this criterion for equality of morphisms in F(l) lies
in the fact that the set of all normal proofs P: A —» B in G is finite and
computable. For any given objects A and B of F(l), we can therefore give a
complete explicit description of Horn ^D (A, B). The details of this algorithm
are dealt with in [14].
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