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RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS. II

VLADETA VUCKOVIC

CHAPTER IV—MORPHISMS, TYPES AND TYPE-DEGREES

The most unpleasant feature of the Theory of REM’s is that composi-
tions of recursive maps are not necessarily recursive. I shall remedy this
situation by considering some more restricted recursive maps, movphisms.
Obviously, morphisms will reduce to classical recursive maps in case we
consider enumerated sets only. My aim in this chapter* is to start a
classification of REM’s using maps, more exactly: morphisms, between
pairs of REM’s. Here, I have no analogy with the classical enumeration
theory to follow: the content of Chapter III is sufficient for classification of
enumerated sets; however, it is useless for comparison of atlases on
disjoint sets, and for classification of REM’s.

By (A, A), (B, W), (C,E6), 1 denote REM’s, with usual notation for
atlases: AU = {a,/pe P}, B = {B,1qe Q}, € = {y,[7eR}, .. .. Also I write
A, By, Cy, . . ., for respective ranges of @y, B;, v,, . . .. Sometimes I shall
use the REM (M, ), with M = {y,|te T} and M, = range of y,. To shorten
these notations, I shall write a, b, ¢, ..., m for REM’s (4, "), (B, B),
(C, B), ..., (M, M) respectively.

Definition 4.1 (i) A map f: A — B is compact iff, for every qe , f~'(B,)
can be covered by finite many A,’s.

(ii) (A-B-)recursive and compact maps are called morphisms; and in-
movrphisms, surmorphisms, and bimorphisms in case they are injective,
surjective, and bijective respectively.

(iii) A morphism f: A — B, such that each f, , in (1.6) is injective, is called
a unimovphism.

Lemma 4.1 Composition of movphisms is a movphism.

*The first part of this paper appeared in Notve Dame Journal of Formal Logic, vol.
XVIII (1977), pp. 265-291.
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Proof: Let f: A — B and g: B — C be morphisms, and let 2 = g°f: A — C.
We have to prove: for every pair (p, ) e P xR there is a p.r. functionf,,,
with domain D,,, = a;'( f ~'(C,)) and such that

(4.1) h(ay@) = v.(fy,r (1) for all neD,,.
(The fact that »™'(C,) can be covered by finite many A,’s is trivial.)
Suppose that {B, , . . ., B,,} covers g '(C,), and let f,,.,i=1,...,m,be

partial recursive with
@ (f (B, N g7H(CY))
as domain, and such that
flay(n)) = Bg;(fp,q;(w) for neDy, .

Also, let fg., i=1,...,m, be partial recursive, with B (g71(Cy)) as
domain, and such that

g(qu(n)) = Yr(fqi" (m)) for me D/qi" ’

Since (see Figure 4.1)

Figure 4.1
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h(ayn)) = g(f (@) = g(Bg,(fy.q,(n) for neD; .,
i.e.,
W) = % (fp.q;Fq;, W) for neDy,

we can define a p.r. function fj, such that f,.(n) takes one of possible
values fp,q;(fg;.r(n) (for ¢ = 1, ..., m); then, (4.1) will hold, and the domain
of f,r will be just as required.

I shall use morphisms for comparison of REM’s. From the definition
of a recursively enumerable manifold it should be obvious that the cardinal
of its carrier plays a definitive role in its behavior. I shall now make this
role manifest.

Definition 4.2 (i) a is weaker (1-weaker) than b, in symbol a sb (a WS, < b) iff
there is a morphism (unimorphism) f: A — B.

(ii) aﬁb(a = b) iff a< b/\b a(a ws_lb/\b WS a).

One could call equlvalence classes under b (respectively wE.l) degrees;
I prefer the name fypes (respectively 1-types). By [aly (aly-) I shall
denote the type (the 1-type) containing a.

Theorem 4.1 (i) The IRM n = (N, {IP, wheve | is the identity on N, has the
smallest type among all REM’s,

(i) A genuine REM a = (A, ) is in the type [n], iff Wis finite.

(iii) The IRM a'= (N, "), wherve W' ={allie N}, al(n) = 0*(i, n), has the
smallest type among all genuine REM’s with at least denumerable atlases.

Proof: (i) If a = (A, U) is any REM, fix pe P and set f= a,: N— A. Then f
is a morphism of n into a, i.e., n < a.

(ii) Suppose now that a s nand let f: A — Nbe a morphism. Then 4 = f W)
can be covered by finite many A,’s, i.e., % must be finite.

(iii) If b = (B, W), where B = {3;|ie N}, is genuine then, for each i€ N, there

is at least one b; € B such that b;€ B; - u B;. (B; = range of B;.) Define

ft N— B by f(a/(n)) = b; for all neN. f is, trivially, recursive. Also,
FUB;(=f'({b;}) = A]; thus, f is a morphism. Similarly for larger
cardinalities of B.

Theorem 4.2 Let 8, < A< B. Then we can construct REM’s (even IRM’s)
a = (A,A) and b = (B, V) such that [a], < [b],.

Proof: We may suppose A C B, Let B, # A be any denumerable subset of A
and let B, be an indexing of B,. Let P= B - B,. To every pe P correspond
the indexing Bp: N— B, U{p} defined by B,(n) = p for n=0, and B,(n)=
Bo(n - 1) for n=1. (See Example 1.1.) Let P,= A - B,. Set a=(4,%) and
b = (B, %), where % = {8,|pe P,} and® = {B,|p e P}. Then I4, the identity on
A, is a morphism of A into B. However, there can be no morphism
f: B— A. To see this, remark that in case f is a morphism, f~'(4,) can be
covered by finite many B,’s. (A, = range of 8, for pe Py.) Then, B = f “14)
would be of the same cardinality as A.
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If we look for some ways to classify REM’s, Theorems 4.1 and 4.2
suggest to start with REM’s of the same cardinality. For genuine REM’s,
this implies (except in the most trivial case of finite atlases) that the
atlases have to be of the same cardinality too; thus, we may assume that
the enumerations in all atlases we consider are indexed by the same set of
indices. Therefore, from now on, I suppose that a, b, c, . . ., are such that
u={a,lpe P}, B ={B,lpe P}, 6 = {y,lpe P}, . . ..

Definition 4.3 a is veducible (1-reducible) to b, in symbol a <b (a <, b), iff
there is a morphism (a unimorphims) f: A — B such that, for each pe P,
F7U(By) = A,.

Defining a=b <> a<bab < a (respectively, a=, b <> a <, bab <, a),
we call the equivalence classes under = (respectively =,) type-degrees
(respectively type-one-degrees), in short TD’s (respectively TOD’s). [a]
will denote the TD containing a, and [a], will denote the TOD containing a.

Since a<b (a<,b) implies f(4y) CBy, and f is A-W-recursive, to
every pe P corresponds a recursive (and injective) function fp: N— N, such
that

(4.2) flap(n) = By(fy(n)), for all ne N.
Thus, if A = f(A), @ = foa, and A = {a,|p e P}, we have:

Lemma 4.2 a <b implies that (a) = (A, ) is an REM, which is effectively a
submanifold of b. Thus, the atlas W is strongly reducible to the atlas B.

Proof: ay(n) = By(fp(n)). Suppose that B, N By, # @ and let &p,p, be partial
recursive and such that
Bo(n) = By,(8y,p (m)) for all ne 8;'(By,).

Then

ap(”) = .Bpl(gp,pl(fp(n))) for all ne (ap)—l(Bpl);
which shows that (a) is an REM. The remaining part of the proof is the
matter of definitions (see remarks after Lemma 2.1, and the Definition 3.3).
Lemma 4.3 Duplication of an REM does not change its TD.
Proof: fand f~' from Theorem 2.1 are morphisms, satisfying f'l(B,,) =4,
and (f7')"'(4,) = By.
Theorem 4.3 The class [U] of all TD’s (of one fixed type) is an upper

semi-lattice.

Proof: Consider two REM’s a and b of two TD’s [a] and [b]. We may
suppose that AN B = (Lemma 4.3). Define: C =AU B, y,(2n) = ap(n) and
yp(2n + 1) = By(n); set € = {y,|pe P} and C = (C, ). Now, f: A — C, defined
by f(x) = x, satisfies f(ay(n)) = y,(2n) and f~(Cy) = A), and g: B — C, defined
by g(x) = x, satisfies g(B,(n)) = v5(2n + 1) and g ~'(Cy) = By. Therefore, both
are morphisms, and we obtain a<c and b<c. Suppose d=(D,D),
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®={6,|pe P}, satisfies a<d and b<d. If 2;: A— D is a morphism, such
that h[l(Dp) = Ap, and if %,: B — D is another morphism, such that h;l(Dp) =
By, let h: C — D be defined by

_ [ hy(x) for x€ A,
h(x) = ho(x) for x € B.

h is a morphism, as is easily checked. Since h'l(Dp) = Cp, we obtainc <d,
i.e., [¢] is the least upper bound of [a] and [b].

Remark: [c]from the foregoing proof will be denoted by [a]v[b].

To the REM a = (A,A) we correspond its cylindrification a., =
(A, Cyly), where Cylg is the cylindrification of U (see Definition 3.4). In
order to avoid confusion with notations for duplication of REM’s, we shall
use the following notation for cylindrification:

Cyly = = {@,lp € P}, where Gy(o*(n, m)) = a,(m).
Consider the identity 14 on A as a map of a., into a. Since
14(@(1) = 14(ay(05(n)) = a,(05(n))

4 is a morphism of a.,; onto a, i.e., a., < a. From the other side, as a
map of a into a.,, l4 is a unimorphism, since

la(a () = a(c™(0, n)).
Thus a <, a.,.

Lemma 4.4 (i) a <, a., and a., < a;
(ii) b < a implies b <; a ;3
(iii) b < a <> b, <1 a..

Proof: (i) was proved above. (ii) If f: B— A is a morphism satisfying
f'l(Ap) = By, let each f, be recursive and such that f(8,(n)) = a,(f,(n)). Then,
F(By(n)) = @(0®(n, f,(n))), which proves that f a unimorphism of b into a, such
that f~'(4,) = By. (iii) is now obvious (see the proof of Lemma 3.1).

Theorem 4.4 Every TD contains a maximal TOD.

Proof: Lemma 4.4 and a reasoning similar to the one of the proof of
Theorem 3.6.

Example 4.1 Let us consider TD’s of all genuine denumerable REM’s, with
denumerable atlases. We set P = N, and by A; we denote the range of a;.

o]

Let a' be as in Theorem 4.1 (iii). Ifa<a'and 1 A — A' = UA;(: N)

=0
is a morphism, such that f~'(4!) = A; (A! = range of a/), then we must have
i+j— A;NA; =@. (Otherwise, if x€A; NA; and x = a;(n) and x = a;(m),
f will have to send x into two disjoint sets A} and A;). Suppose now that a
satisfies 7 #j — A; NA; = . Define f: A'— A by f(a/(n)) = a;(n). This
gives a' <, a, i.e., we have
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(i) TD [a'] consists exactly of all a such that i + j — A; N Aj + D.
To measure the complexity of other REM’s in our family, to every
a=(A,A), A= (a;|ie N) correspond its measure of complexity Fa: A — 2N by
F,(x) = {ie Nlxe A;} for x¢ A.

For example, if ac[a'] then Fu(x) = {i} for xe A;. We have
(ii) If f: A— B is a morphism satisfying f~(B;) = A; for every i€ N, then
F, = Fyof.
To prove (ii) remark that f™'(B;) = A; implies
Fa(x) ={fieN|xeA;} = {i e NIf(x) e B;} = Fyo f(x),
and that F, = Fyof implies, for every x € A,

fieNlxeA;}=feNlf(x)eB;}.
The same reasoning gives at once

(iii) For a genuine a = (A, W), U = {a;|ie N}, be[a] implies that there ave
movphisms f: B— A and g: A — B satisfying Fp= Fy°f and F, = F°g.

Since there can be only at most denumerable many morphisms
f: A — B, satisfying f (B;) = 4;, i.e., fa;(n)) = B;(f;(n)) where f; is recur-
sive, and since there is a continuum of possible F,’s, we obtain

(iv) Theve is a continuum of TD’s of genuine denumerable REM’s with
denumevrable atlases; each such TD contains at most denumevable many
members.

One can relativize the foregoing notion of reducibility to submanifolds
of a fixed REM, and obtain another analogy with the notion of reducibility
for subsets of N. I shall discuss this relativization very briefly, in order
to show an important difference with the classic theory.

Suppose we have fixed the REM m = (M, M); we consider its effective
submanifolds a, b, ¢, . . ., which are such that A = {a,|pe P}, 8 = {8, pe P},

6 ={y,lpe P}, .. .. Then we may say that a is M-veducible (respectively
M-1-reducidble) to b, in symbol a ﬁb (respectively a s, b) iff there is an

M-M-recursive (and injective) morphism f: M — M, such that, for every
pePandxeA

x €Ay <> f(x) € By.
One would expect for this reducibility the validity of Myhill’s theorem:

if a = b and b s, @ then theve is an M-M-recursive permutation
T: M — M of M onto M, such that 1(A,) = B, for all pe P.

The following example shows that such theorem is not true even in
very elementary REM’s.
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Example 4.2 Let M, be an infinite recursive subset of N, and let H be an
infinite immune subset of N, disjoint from M,; let uo: N — M, be recursive
and increasing, with M, as range. Let 2: N — H be increasing, with H as
range. Define u,;: N — Mo UH by u,(2n) = po() and p,(2n + 1) = h(n). Let
M,=M,UH be the range of u,. Set M =M, and M = {yo, y;}. Since
MoNM; =M, and ug'(M,) =N and ui'(M,) ={2n/ne N}, we can conclude
easily that (M, M) is an IRM.

Now let ap = yo and fori =1

h@ - 1) forn =0,
ol - 1) for n = 1.

a;n) = {

o0
Let A; = range of a;, A =il;Jo A; (= M) and % = {a;|ie N}. Then (A, A) is an

IRM, which is effectively a submanifold of (M, M). Let B;, i = 0, be defined
by Bo(n) = no(2n) and, for ¢ > 1,

1o(27 = 1) for n= 0,

Biln) = {Bo(n - 1) for n>1.

Set B; = range of B;, B= ,l_JO B; (= M,) and ® = {B8;/ie N}. Then (B,®) is an

IRM which is effectively a submanifold of (M, M). Define f: M — M by
Fluo) = uo(2n), f(u1(2n) = po(20) and f(u,(27 + 1)) = po(27 + 1); it is injec-
tive, recursive and, trivially, a morphism. Moreover,

xeA; <> f(x) e B;.
Similarly, g: M — M defined by

g(uo(2n) = uo(m), g(uo(2r + 1)) = uy(22 + 1), g(u,(4n) = wi(2n),
gp(4n + 2)) = p(2n + 1), g(u,(4n + 1)) = p(4n + 1),

and g(u,(4n + 3)) = p,(4n + 3), is recursive, injective (and, trivially, a
morphism) such that

x€ B; «>g(x) e A,

i}

Now suppose: there is a bijective, recursive 7: M — M, such that 7(4;)
B; (and 77 Y(B;) = A;). Since A =M, we obtain 7(4) =A # B. Thus, such a
permutation cannot exist.

CHAPTER V—SOME GENERAL POST-LIKE CONSIDERATIONS
AND SOME SPECIAL MANIFOLDS

In this chapter I shall consider possibilities to extend notions' of
immunity, creativity and similar concepts from the classical recursive
theory to subsets of a given REM. As it will become manifest, the most
general case may be extremely empty: one can take as example an REM
for which every local neighborhood consists of one point only. Thus, in
order to be able to quote meaningful examples, I shall introduce first two
special REM’s which have pleasant additional structures. Notations will be
the same as at the beginning of Chapter 4.
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Definition 5.1 An REM a = (4,NU) is finitary iff, for every p,€ P, the set
Py ={pe P|A,N A, # P} is finite.
Theorem 5.1 (Enumevation Theovem fov Finitary REM’s) If a is injective

and finitary then a set X C A is U-r.e. iff theve is ¢: P— N such that
X = wg, wheve

(5.1) Wy = Haai’(wq’(?))'

Proof: If X is U-r.e. then X = wy, for some ¢: P— N, defining We(p) =
a,"'(X). Conversely, for any poe P let Py ={p,, .. ., b5}, where P, is as in
Definition 5.1. Then:

s
%ewq) = U a5t oa (o),
and each member of this union is r.e. Thus, a;;(wcp) is r.e. for every
bo€ P, i.e., wyis U-r.e.
Similar is the situation with %-r.e. subsets of A”. If
o ={n, o ) eNTIYV TGy o, 9}

(l is the well-known primitive recursive predicate in the Kleene enumera-
tion theorem), and

(5.2) Wil = Loy, (), . .y 2 () [y . ) €™
then, in a finitary REM a = (4, A), a set X C A" is U-r.e. iff there is
¢@: P” — N such that X = (J)((Z)"), where

(m) U sy @y
5.3 w = w )
(5.3) ® (Bryeees bm)eP™ @P1yeesy )’

and a is injective.

It is obvious that, in case a is a finitary REM, both (B, 8) from
Theorem 2.1 and the graph of a (in case a is positive, respectively solvable)
are finitary REM’s. Similarly, direct products and direct sums of finitary
REM’s are finitary. At last, submanifolds of finitary REM’s are finitary.

Another well-behaved kind of REM’s are amalgams, i.e., REM’s a such
that for all pairs (p, p,) € P? for which A, N A, # © we have ay(n) = ap (n) for
all nea;'(4,) = @5, (4,). (In case of IREM’s, this reduces to: a;'ca, are
identities on their domains.) I have already given an illustration for lifting
of addition and multiplication into amalgams. Let me now prove the general
theorem about such lifting.

Theorem 5.2 (Lifting of Functions in Injective Amalgams) Let the
REM a = (4, ) be an injective amalgam and ¢: N”"— N a vecursive func-
tion. For each pe P define a partial map ¢p: (A,)" — A, by

(5.4) eplap(n), . . ., %(nn) = p(@(ny, . . ., #y)).

Then, each @y is an W-U-partial vecursive wmap, and in case in which
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X1y ooy Xy €(4p)" N (Apl)”’ and (%1, . . ., Xm) € ApN Ay o7 Vp (%1, . L., Xp)E
A, N A, we have @p(xy, . . ., Xp) = cp,,l(xl, C ey Xm).

Proof: T have to prove only the final part of the theorem. Let (x;, . . ., x,,)
and ¢, satisfy (xy, ..., xm)€ (A,,)'" N (Apl)"' and @p(xy, . .., Xn) €A, N Ay .

Then x; € AyN Ay, for i =1, ..., m, and if x; = ay(n;) then x; = @, (n;). Thus,
taking any such »;’s, we have

(pp(xl, e ey xm) = @P(ap(ap(nl), ..y ap(nm)) = ap((p(nl, o oey nm)),
and, since a,(@(n;, ..., 1)) € Ay N 4, it equals @, (¢(n, . . ., nm)); this gives
(pp(xla L ] xm) = apl(nl, LIS ] nm))
= @p(ap(m), . . ., ap(na)) = @p (21, . . ., %m).

Thus, amalgams are REM’s suitable for computational purposes. This
is not all. Let me call injective amalgams |-amalgams. Then we have

Theorem 5.3 (Lifting of Sets in |-Amalgams) Let a=(A,A) be an
|-amalgam. If EC N is an ¢“, .. .,’-subset of N, then E,= U ay(E) is an
“9-. ... -subset of A. peP

Proof: Let pye P. Then:
-1 -1
o, (Eq) = pchP A, (ap(E))
P,

Since, for 7€ apy(2p(E)), aypy(n) = ap(n), we have ayy(ap(E)) C E, i.e., ao(E4) =
E for all p, € P.

As I have already said, finitary REM’s and amalgams are well-suited
for construction of examples in some analogies with Post’s recursive
theory. I shall illustrate this through several samples.

Definition 5.2 Let a = (4, A) be any REM, and X C A. We say that X is
“-, . .” iff for every pe P, the set a,’,l(X) is an ‘. . .”’ subset of N.

As the first instance of Definition 5.2 let me consider the notion of
finitude. X C A is U-finite (U-infinite) iff every a;l(X) is finite (infinite).
This leaves aside a large family of subsets of A which are neither U-finite
nor A-infinite. I shall call such sets A-indefinite.

Theorem 5.4 Let a = (A, W) be a finitary \RM. Then every U-infinite A-r.e.
set contains an W-infinite W-recursive subset.

Proof: Let X C A be A-infinite and A-r.e. set. Then each a,'(X) is an
infinite r.e. set; thus, it contains an infinite recursive set, R, say. Let

R= ,,lsz a,(R,).
Let poe P and let P, = {p,, . . ., p,} be as in Definition 5.1. Then
S
-1 _ -1
a5y (B) = Rpy U atoay, (8y).

We have to prove only that each set E; = a,;oloapi(Rpi) is recursive. Let
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D; = a;ol(Api) and S; = a,',l.l(Apo). Then both D; and S; are recursive sets, and
both @/ cay: D; — S; and @, oap;: Si — Di are bijective p.r. functions.
Remark that E; C D,. Let yeN-S;. (If N-S;=9 we have to prove
nothing.) Define f;: N — S; U {y} by

s = |

a;i‘oapo(n) for ne D;,
Y for ne N - D;.

fi is recursive, and E; = fi"(R,,l.), as the inverse image of a recursive set
under a recursive function, is recursive.

Some U-notions have curious relation to classical notions. To give an
example, X C A is W-productive iff every a,'(X) is productive, say under
the recursive function fp. (Thus, w; C a;"'(X) — f,(i) € a;'(X) - w;.) Suppose
there exists an A-productive set X. Let E be any r.e. subset of A, say
E=wy= pUP o (we(p)), Where wo(p) = a;l(E), and suppose we © X. This implies

€

we(p) € @,'(X) and so f,(¢(p)) € @3 (X) - wq(p. Lifting into A, we obtain
{ap(Fp(@(p)) [pe PY < X - we.

We must say that X C A is "-creative iff every a,'(X) is creative.
This implies that every @,'(X) is r.e. with productive complement, i.e.,
X C A is U-creative iff it is U-r.e. and CX = A - X is U-productive. In

case a is an l-amalgam, the set K4 = U ay(K), where K is any creative
peP

subset of N, is U-creative (Theorem 5.3). Already in a finitary REM,
K, is not necessarily U-creative.

By Definition 5.2 X C A is U-immune (U-simple) iff every agl(X) is
immune (simple). Here, I can prove

Theorem 5.5 Let a = (A, A) be any REM. Then an U-infinite set X C A is
AU-immune iff it does not contain any W-indefinite ov any W-infinite U-r.e.
subset of A.

Proof: Let X C A be W-immune; then, each a;'(X) is immune. If E C X is
an A-infinite A-r.e. subset of X then each agl(E) is an infinite r.e. subset of
the immune set @,'(X). If E is %-indefinite then at least one a,'(E) is an
infinite r.e. subset of the immune set a;,"(X).

Conversely, suppose that X is YU-infinite and does not contain any
A-infinite or A-indefinite W-r.e. subset of A. Then, no a;I(X) can contain
an infinite r.e. set; moreover, each agl(X) is infinite, thus each one is
immune, i.e., X is Y-immune.

If a is an |-amalgam, then S, = q)ap(s), where S C N is simple, is an
pe

A-simple subset of A. (Then CS, is the example of an A-immune set.)
A-simple sets behave in many ways like simple subsets of N.

Theorem 5.6 In any REM a, an A-r.e. set X C A is U-simple iff, for every
A-infinite U-r.e. set, X N E is an U-infinite set, and, for every W-indefinite
A-r.e. set E, X N E is U-indefinite.
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Proof: First, if X C A is A-simple it is U-r.e. and CX is U-immune; by
previous theorem, CX does not contain any A-infinite or U-indefinite A-r.e.
subset of A.

Let E be an A-infinite U-r.e. subset of A; then X N E is not empty.
Moreover, every,a, (X NE) = a;'(X) Na;'(E) is the intersection of a
simple set @;'(X) and of an infinite r.e. set a,'(E); thus, it is infinite, i.e.,
XN E is U-infinite.

Let now E be an U-indefinite U-r.e. subset of A; then X N E is not
empty, and at least for one po€ P, a5y (X NE) = apy(X) Nayy(E) is the
intersection of a simple set a5, (X) and an infinite r.e. set a5, (E), i.e., it is
infinite. Therefore, X N E is A-indefinite (since at least one a;‘(E) is
either empty or finite).

Conversely, let X be U-r.e. and such that X N E is U-infinite for every
A-infinite A-r.e. set E, and A-indefinite for every U-indefinite U-r.e. set
E. Then, CX cannot contain either one of those two kinds of sets, i.e., it is
A-immune, by Theorem 5.5.

Corollary 5.6.1 (i) The intersection of two W-simple sets is an -simple
set.

(ii) The union of two -simple sets is either U-simple ov has a complement
which is not W-infinite.

Proof: (i) Let X and Y be A-simple subsets of A. Then C(X NY)=CXUCY
is obviously §u-infinite (both CX and CY are A-infinite). Let now E be any
A-infinite U-r.e. set. Then, by previous theorem, E N X is U-infinite; it is,
trivially, M-r.e. Then, anew by Theorem 5.6, (ENX) N Y is A-infinite.
Thus, (X N Y) N E is -infinite for every W-infinite U-r.e. set E. Let now
E be U-r.e. and A-indefinite. Then, by previous theorem, ENX is
A-indefinite and A-r.e.; therefore, (ENX)NY is anew U-indefinite. By
Theorem 5.6, X N Y is U-simple (since it is, trivially, U-r.e.).

(ii) If X and Y are A-simple then C(X U Y) is either A-infinite or it is not
A-infinite. Suppose it is W-infinite. Then, since C(X UY)=CX NCY, it
cannot contain any U-r.e. set E which is either Y-infinite or A-indefinite;
thus, by Theorem 5.5, it is W-immune.

Consider now notions of cohesiveness and maximality: X C A is
A-cohesive (U-maximal) iff each a;'(X) is cohesive (maximal).

Theorem 5.7 Let a be any REM and X C A, Then:

(i) If X is W-cohesive then it is W-infinite and, for every AU-r.e. set E,
either X N E or X N CE is not U-infinite.

(ii) If X is U-infinite, and for every U-r.e. set E either X N E o X N CE is
W-finite, then X is W-cohesive.

(iii) ¥ C A is W-maximal iff it is W-r.e. and CY is -cohesive.

Proof: (i) If X is A-cohesive then each a;l(X) is cohesive and so infinite.
Thus, X is W-infinite. Further, if there is an A-r.e. set E, such that both
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X NE and X N CE are A-infinite, then both a;'(X) N a;'(E) and o3'(X) N
Ca;'(E) would be infinite, for every p € P; contradiction, since every a;'(X)
is cohesive.

(ii) If X satisfies the given conditions then, for every p € P, either a;'(X) N
a;'(E) or a;'(X) N Cap'(E) is finite for every r.e. set a;'(E), i.e., @;'(X) is
cohesive (being already infinite).

(iii) Let Y be ¥-maximal. Then, each a;'(Y) is maximal and each a,"(CY)
is cohesive. Thus, CY is W-cohesive. Converse similar.

I believe to have exhibited enough samples for the local variant of
Post’s recursive theory. However, one can consider a variant which is
global, i.e., independent of projections.

Definition 5.3 Let a = (4,A) be any | REM, and X CA. We _say that X is
globaly infinite (globaly finite) iff X = A (X < A). (Obviously, X and A denote
the cardinals of X and A respectively.)

I do not know yet how to define global productivity. However, I can
handle such a variant of immunity.

Definition 5.4 Let a be an REM and X C A. Then:

(i) X is globaly immune iff it is globaly infinite and does not contain any
globaly infinite 2A-r.e. set.
(i) X is globaly simple iff it is -r.e. and CX is globaly immune.

Theorem 5.8 Suppose the REM a = (A, U) has the property that A= ?,
whevre_& is the family of all globaly infinite A-r.e. subsets of A. Then theve
arve 24 sets X C A such that both X and CX are globally immune.

Proof: (G will denote the cardinal of the ordinal o. ) _Let o be the smallest
ordinal such that o = 4. (Thus, for every n < o, < A4.) Well-order ¢ into
an ordinal sequence (wg)-,. To each & < ¢ correspond the ordered pair
{ag, be) of elements of A so that

(i) ag# be, agewe, by € we
and
(ii) both a; and b; are not in U {ay, by}. Let X consist of exactly one

member of each pair {(ag, b:). Then X-= CX A and neither X nor CX
contains any wg. This choice may be done in 2A d1fferent ways.

Relative to the existence of globaly simple sets I can prove

Theorem 5.9 Let a = (A, ) be an |-amalgam, such that, for every family

{E,,l p € P} of non-empty sets E,C A, Up Ey = A iff at least one E, is infinite.
pe
Then there is a globaly simple subset of A (which is also W-simple).
Proof: Let SC N be any simple set. Set S, = UPaP(S). (By Theorem 5.3,
pe

Sa is U-simple.) Now, S, is globaly infinite, since each a,(S) is infinite.
Since a,,"ol(SA) = S for every py€ P, S4 is U-r.e. Now
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csa=U {Ap - )(9)}
peP

is globaly infinite, since each A, - @,(S) is infinite. If CS4 contains a
globaly infinite U-r.e. set E, then there is at least one p,€ P such that
E N Ay, is infinite. Then a;ol(E) will be an infinite subset of the immune set
C a,,(S).

If a' = (N, A", A' = {a!|i e N} where a!(n) = 0°(i, n), is the IRM from the
Theorem 4.1, then a’ does notoosatisfy the condition of Theorem 5.9. Let me

show that in this case S4 = U0 a!(S) is not globaly infinite. Its complement
i=

O

CSy = U0 (A} - a;(S)) is also globaly infinite (i.e., denumerable). However,
P

by taking just one member x; € A! - @;(S), we obtain the set X = {xilieN}
which is a globaly infinite %-r.e. subset of CSy4.

It is plausible that a slight change in the definition of global infinity in
the case of the manifold a' = (N, A’) (say, adding: at least one X N A} must
be infinite) could give a more workable notion for the global immunity in a’.
The generality of the notion of an REM suggests to consider global notions
with respect to the cardinality of particular REM’s in question. I will
restrain here from such relativization.

CHAPTER VI—-THE CATEGORY OF REM’s

In [5] Ershov applied the vocabulary of the Category Theory to the
category of the enumerated sets. This application made possible a very
general conception of precomplete and complete enumerations in terms of
effective embeddings (or ‘‘e-partial objects’’ in terms of [5]).

In this chapter I engage into a similar venture with the category of
REM’s; as a natural consequence of the notion of effective embedding I
obtain an effective notion of finitely reducibility. Also, I consider a very
strict generalization of precompleteness in order to illustrate a new
notion—the ordinalization of an REM. I restrain myself from any detailed
rendition of the content of [5], and I pursue only the directions which are
really new in comparison with [5]. However, I like to point out the influence
of Ershev’s considerations upon the content of this chapter. I introduce
very few categorical notions; thus, I give the corresponding definitions, in
order to spare the students time and nerves. (For REM’s I use notations at
the beginning of Chapter 4.)

A category 8 is a class of objects a, b, c, ..., such that to each pair
(a, b) corresponds a class [a, b], of movphisms f (‘‘of a into b’’), for which
there is a partial operation ° (of “‘composition’’), with following properties:

(K.1) If hog and gof are defined then (kog)of = ho(gof);
(K.2) To each object a corresponds an identical morphism l,¢[a, aly, for
which l,of = f and g° I, = g, whenever the left sides are defined.
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It is obvious that the class of all REM’s a, b, ¢, . . ., as objects, with
the families of all morphisms f: a— b, .. ., (i.e., f: A— B), with composi-
tion of morphisms, is a category. I shall denote this category by &.

In the Category Theory, a morphism f: a — b is called an isomovphism
iff there is a morphism g:b — a such that g°f =1, and f°g = I,. Since
g°f =1, and fog = |, imply easily g= g, g above is uniquely determined
by f.

In the category € of all REM’s, the demand that gof = |, (i.e., g(f(x)) =
x for all xe A) and fog = I, (i.e., f(g(y)) =y for all ye B) imply first that
both f and g are bijective and, then, that g = f~'. This gives

Theorem 6.1 In the category &, a movphism f: a — b is an isomovphism iff
it is bijective and f~': b — a is a morphism.

A category 8, is a subcategory of the category R iff ¥, C R in obvious
sense (for objects, morphisms, and composition); it is called a full
subcategory of X iff, moreover, for every a, beR,, [a, bly = [a, bly.

It should be obvious that the category &£, of all injective REM’s, is a
full subcategory of &. Also, the category &£°, of all RM’s, is a full
subcategory of €. The category &7 of all IRM’s is a full subcategory both
of &, and of &;. At last, if &' denotes the class of all REM’s with
inmorphisms (as morphisms), then £' is a subcategory of £ which is not a
full subcategory of €£.

In the Category Theory, a morphism f:a— b is a monomovphism
(respectively an epimorphism) iff for any morphisms go, £ €[¢c, a]y (re-
spectively € [b, cly), fogo = f°g, (respectively g,°f = g,°f) implies g, = g.
(See Figure 6.1.)

/fogo \ /go of
c 7 a — > a———>h _ g_">1 c
Kfogl glof/

Figure 6.1

Theorem 6.2 In the category & a movphism f: a — b is a monomovphism iff
it is injective.

Proof: Let f be a monomorphism. If it is not injective let x; # x, be such
that f(x;) = f(xo). Let C = {xo, x,}; define y: N — C by y(2n) = %, y(2n + 1) =
%, and set ¢ = (C, {y}). Define g,: ¢ — a and g,: ¢ — a by go(x) = %o, Zo(%1) =
x1, g1(%0) = x, and g1(x,) = x,. Then g, and g, are morphisms and f°g, = f° g,
but g, # £,. Thus, f must be injective. Converse obvious.
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Let me remark that, in the category £, every surjective morphism
f:a— b is an epimorphism. However, I am unable to prove the converse of
this proposition except in case a has a finite atlas.

In the Category Theory, the notion of embedding is usually given
relative to functors. Ershov ([5]) introduces the notion ‘‘partial object of
m’’ as a pair (a, f), where a and m are enumerated sets and f an injective
{a}-{u}-recursive map of A into M (a = (4, {a}), m = (M, {u})); such a pair
represents obviously an embedding of a into m. This should explain my
first definition.

Definition 6.1 (i) In the category €, a pair (a, f) is called an embedding of
a into m, iff f is a monomorphism of ainto m, such that each f(A[,) can be
covered by finite many M,’s.

(ii) Let (a,f) and (b, g) be embeddings into m. We say that (a,f) and (b, g)
are equivalent in m iff there is a bijective morphism %: a — b, such that #™}
is also a morphism and f = g°#k (i.e., such that the diagram in Figure 6.2
commutes).

a —>b

m
Figure 6.2

The lemma which follows will be needed later; however, I bring it now
in order to illustrate the nature of embeddings, at least in a special case.

Lemma 6.1 Let{a, f) be an embedding into the positive REM m. Then, to
every paiv (p, f) e P x T corvesponds a p.r. avithmetic function g, , with the
set u;'(f(Ap) as domain, such that, for every ke u;'(f(4,), u (k)=

flay( gy, (R))).
Proof: Since f: A— M is Uu-M-recursive, to every pair (P, He P xT
corresponds a p.r. function f,, with domainD,, = a,"(f"'(M,)), such that
(6'1) f(ap(n)) = Mg (fp_t(n)) for all ne D’)_[.
Let E,, = p; '(f(4,). Since
ke Ep,t <> !lt(k) ff(Ap)

<>V (k) = flay(w))

<_>¥ (k) = i, (fp,e(u) e Dy,:,
and since M is a positive atlas, the set E,; is r.e. for all p and ¢. Define
now gp,; as follows: its domain is E,; and for ke E,;

(k) = any ne D, ; such that either & = f,;(n), or such that there is
St k, in the range of fy,,, such that y,(k) = u,(k,) and &, = £, ,(n).
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&p,1(k) is obviously defined for all k€ E,,; since M is positive gy, is a
partial recursive function. Now we have:

ay(&p,1 (k) = @, (of some 7€ D, , such that p, (k) = f(ay(n)))
i.e.,
Flay(gp,i(R)) = p,(R) for all ke u; '(f(4p)).

In general case, let (a, f) be an embedding into the REM m. Then f is
an injective morphlsm such that each f(Ap) can be covered by finite many
M,’s, say by M UM,S . Since f is U-M-recursive, there are p.r.
functions ¥, W1th domam Dip = a,'(f "(M,p )), such that

flaym) = p,, (WP ) for all neD,,,
and 0 <7<
Define A’ = {o}lpe P} by a} = foa,, and let A} be the range of a}. Then
to every pe P corresponds a finite set {f,, . .., 4} C 7, such that :9; My,

covers A}, and there are p.r. functions ¥;, with domain D}, = (a})”"(M,;)
such that

ap(n) = py; (Wi(n)) for all ne D] s

and 0 <i<s. This shows that A’'< M and that, moreover, each (a)”'(M,;)
involved above is a r.e. set. (This was not demanded for finitely re-
ducibility.) Therefore, in order to obtain an adequate characterization of
embeddings and their equivalence, I shall introduce a slightly more
restrictive definition of finitely reducibility.

Definition 6.2 Let % and B be atlases on a fixed set A. We say that % is
effectwely finitely reducible to B, in symbol ‘2! % iff A < ;58 and all sets
a, (B ) in Definition 3.4 are recursively enumerable

In an obvious way we define
A=V <> ‘21 %A 88 ‘2!

and we call the resulting atlas-degrees EFAD s (effectively finitely atlas-
degrees); in a similar way we can introduce Sy effectively finitely one-
reducibility, and its degrees EFAOD’s. Obviously, EFAD’s form a
subdivision of FAD’s. One should remark that % & B implies that A and BV
are compatible, i.e., that % U® is an atlas on the set A in consideration. It
is clear how one can extend SF to include subsets; thus, W EsF M expresses
the result of the discussion preceding Definition 6.2, and we have

Lemma 6.2 Letf (a, f) be an embedding into m, let
=foay, W' ={aj|pe P}and A’ = f(A).

Then a' = f(a) = (A", A" is an REM, which is effectively a quasi-submanifold
of m = (M, M), such that W' s o
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Following theorem establishes an important property of equivalence of
embeddings.

Theorem 6.3 Two embeddings (a, f) and (b, g into m are equivalent in m
iff f(A) = f(B) and W' = B', wheve W' = {foa,|pe P} and B' = {gB4lqe Q}.

Proof: Suppose first that (a, f) and (b, g) are equivalent in m, and let % be
as in Definition 6.1 (ii). Since %Z(A) = B and f = g°k, we obtain f(A) = g(B).
For given pe P let {B;{,’)IO <i<s} cover h(4y) = (h7")7'(4,), and let goﬁ”) be
p.r., with domain DEP) = a,'(h™'(B,;)), satisfying
(6.2) (@, (n)) = qu(gofp)(n)), ne Df”), 0<i<s.
Define: aj= f°ay, B} = g°Bs, W' = {a)lpe P} and B' = {B}/g€ Q}. Then, (6.2)
and f = gok imply
(6.3) a)n) = 8. (¢ () for ne DY,
and for all¢=0, ..., s. Now,

DY = & (h7 (By,)) = 5 (F "N (&(B,))

= OlZI(f_l(B‘}i)) = (Ol,i)-l(B‘},.),

and (6.3) becomes
(6.4) a)(n) = B:},-(<pr)(”)) for ne (a5) " (B},),

where each (@))7'(B)) is a r.e. set. This gives A’ S ®'. Symetric
reasoning, with %" instead of &, gives @’ S u'ie, U =V
Conversely, suppose that f(A) = g(B) and that (6.4) holds, with (a;)’l(Bt}i)
r.e. Since f and g are injective, we can define 2 = g”'of and obtain, from
(6.4),

~T

hay(n)) = qu((pfp)(n)) for nea, ' (h™'(By;)),

which implies that % is a bijective isomorphism. Then, by a similar
reasoning, one proves that %' is a morphism too. (Remark: % =g 'of
implies % '(B,) = f '(g(B,)).) Since g(B;) can be covered by finite many
M,’s, and since each f™'(M,) can be covered by finite many A,’s it follows
that h’l(Bq) can be covered by finite many Ap’s.

Theorem 6.3 induces a one-sided correspondence between embeddings
into m and effectively quasi-submanifolds of m, whose atlases are
effectively finitely reducible to M. To explain this correspondence better,
let us remark that, for an embedding (a, f) into m, the REM a'=f(a) =
(A", u", where A’ = f(A), ' ={a}|pe P}, a} = f°a,, satisfies not only the
condition %' S WM, but also the supplementary

Condition F: For every te T, the set A' N M, can be covered by finite many
local neighborhoods Aj.

To see this, remark that (since f is a morphism) f ~'(M,) =f “'(A’ N M,)
can be covered by finite many A,’s, say, by A,,O U...UA,. Then the
S

relation f 7Y (A' N M,) C UO Ay, implies
P
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arnm cU r@,)=U .
1=0 1=0

Definition 6.3 The REM a’' = (A', u") will be called m-effective iff:
(i) a'is an effectively quasi-submanifold of m;
(i) u' < m,

and
(iii) A’ satisfies condition F above.

Corollary 6.3.1 There is a bijective corvrvespondence between embeddings
into m and m-effective quasi-submanifolds of m, undev which two em-
beddings {(a, f) and (b, g) ave equivalent iff ' = f(N) and B' = g(B) ave in the
same EFAD.

Proof: One part of this corollary is an immediate consequence of
Theorem 6.3. To prove the converse part, we have only to correspond to
each m-effective REM a’' = (A', A" a corresponding embedding (a, f), in
such a way that a’ = f(a). First, define f: a’ — m to be just the identity on
A'. Since %' < M, then to every p e P (I suppose A’ = {o}|p € P} correspond

finite many #’s, say fo, ¢, . . ., {5, such that M, UM, U. ..UM, covers
A}, where A} is the range of aj, and there are p.r. functions fo, f1, . . ., fs
such that

@) = ,,(f;(0)) for ne (o)™ (M,,),
0 <i<s, where each (a))"'(M,;) is a r.e. set. Thus,
Sflaym) = py; (gi(n) for neD,;,

where D,,; = domain of g; = J‘il(a;)'l(M,i). This proves that f is A'-M-
recursive. It is also a morphism, since f~'(M,) = A’ N M, can be covered
by finite many A}’s. Thus, (@', f) is the embedding in question.

Following lemma introduces cylindrification into the study of EFAD’s
and EFAOAD’s.

Lemma 6.3 Let a be effectively a quasi-submanifold of m, such that
A<M (respectively let a be m-effective). Denote by acy = (A, Cyly) the
cylindrification of a. Then, ac, is effectively a quasi-submanifold of m,
such that Cylgyy £ M (respectively then a., is m-effective).

Proof: If a,'(M,) is r.e. then
(a_p)-l(Mi) = {0'2(”; k)|ke a[-;l(Mt)}
is also r.e.

Theorem 6.4 Let W and B be atlases on A and B vespectively, where
ACBCM, Then:
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(1) ¥ s, Cylyand Cyly <
(ii) B LU A implies B s, C)’lgu,
(iii) B S A <> Cyl‘s < Cy|~u

Moveover, if R S| and B = ‘m then Cyl.u M and Cylg ‘.m
Proof: Previous lemma and the proof of Lemma 3.1.

Corollary 6.4.1 (i) Every EFAD contains a maximal EFAOD.
(ii) The EFAD’s on a fixed set form an upper semi-lattice.

Let me point out that Example 3.1 demonstrates that on N there is no
difference between FAD’s and EFAD’s. (See later Theorem 6.6 for a more
general statement.)

The nature of embeddings will be illustrated in large measure by
considerations of principal atlases.

Definition 6.4 (i) Let U be an atlas on A C M. We say that U is effectively
principal (1n m) iff A s M and, for every other atlas B on A, ‘5
implies B < A.

(ii) An embedding (a, f) into m is effectively principal (in m) iff A’ = F(A) is
an effectively principal atlas (in m).

Theorem 6.5 If m = (M, M) is positive and A C M an M-r.e. set, then there
is at least one atlas W on A which is effectively principal.

Proof: See the proof of Theorem 3.7.

Theorem 6.6 Every embedding (a, f) into a positive REM m is effectively
principal (in m).

Proof: Let a} =f°a, A} =f(A,) = range of a,ﬁ and A’ = {o}[p € P}. Suppose B

is an atlas on A' = U A, which satisfies 58 *.m Then, for given g€ @, B,
peP

can be covered by finite many M,’s say by U M(q), and there are p.r.
functions £'? such that

Byn) = u,—.(fgq)(n)) for all me B;'(M,,),
0 <7 <s, where each Bq (Mt )is ar.e. set. Sincef: A — M 1s a morphism,

each f'l(M, ) can be covered by finite many A s, say by U Ap” Then

U Ay, . covers A'N M, ; thus, the finite family {AP'i,;‘ [0<i<s,0<j<s;}

covers B;. Moreover,
S

B, (M) = }Jo 874, ),

where each set B, 1(A', .) is r.e. To verify this last statement remark that

ne BEI(AI'J,',;') <> ) ef(APz ) 0 My,
<>, (f; q(n))ef(A ) N M, ane Bq Y(My,)
>y by, (FO) = f<ap, (u) nn € B (My;).



402 VLADETA VUCKOVIC

Since f is A-M-recursive, there are p.r. functions h;; , with domain
D;; = a,,”(f'l(M, )), such that

f(aPi,j (u)) = H:,-(hi,i () for all ueD; ;.
Thus

nep;' (A}, ) <> V(eDi; Au,,(f,"’(n))
= puy; (i (W) Ame B3 (M,,)).

Since m is positive and 8;'(M,,) r.e. it follows that 87'(4}, ;) is r.e. Now, if
&pt ’s are as in Lemma 6.1, we obtain that, for all ne ﬁq l(Ap ),

Byn) = (f,(”)(n)) g<a,,<gp,, (f0n))

= aiz(gpz,j
since each B;'(4), ; ) is r.e. and the family of all Ay, ; covers By, we obtain
B < A
EF

Thus, embeddings into a positive REM m correspond to effectively
principal atlases on fixed subsets of M, which, moreover, satisfy condition
F (preceding Definition 6.3).

Definition 6.5 An embedding (a, f) into m is effective iff it is effectively
principal (in m) and A' = f(A) is an M-r.e. subset of M.

Theorem 6.7 Let (a, f) be an embedding into m for which A'=f(A) is
M-r.e. Then, {a,f) is effective iff for every te T, for which A' "M, + D,
the set A' N\ M, can be covered by finite many neighborhoods A} = f(A,), say
by Aj, U .. .UA;, and there are p.r. functions g, , with domain p,'l(A;i),
such that for every ke u; {(A}),

by (k) = f(“m(gm,; (=),
O<sis<s.

Proof: Suppose first that (a,f) is effective. Let A'=f(A), A}=fl4,),
aj=foay, W ={a}|pe Pl. Then ' is effectively principal on the set A’
(in m). Let T, C T be defined by

te Ty <> pu; (A" #D.

For every te T, let m; be recursive with range u;'(A')—which is a r.e. set
(since A' is M-r.e.). Set B;(n) = y,(m;(n)) for all ne N and all te Ty let
B ={8;te To}. ThenB S M. Since B is an atlas on A' and A’ is effectively
principal there, we conclude EB ‘Il' This reiatlon implies that each B;

can be covered by finite many sets Aj, say by _l_JoA'i, that each B,“(A,’,i) is

r.e. and that there are p.r. functions f;, with domain D,; =B,"(A,’,i),
satisfying

Bi(n) = af (fi(n) for neD,;,
0<i<s. Since B,=A'NM, and D,; = B,’I(A;,i) = m; (u; I(AI, )), we obtain
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m,(,B:’(A;i)) ur '(A4,) nm(N) = u;'(4},) N Range of m,

w4 Nt AN = p AR,

which proves that every set ,u,"(A},i) is r.e. Remark now the following: for
ke u,“(A;i) there is at least one ue€D;; such that %k = m,(u). Therefore,
the function #, defined for all k¢ u,"(A[',i) by u(k) = some y €D, ; such that
k = m,(y), is partial recursive, and

Biu(®)) = py(m, (k) = (k)
ap (fiu(R)) = foa,, (f;u(k) for ke u (A},).

This, with g, , = f; ou, completes the proof of the necessity of the condition
of the theorem.

Suppose now that the condition of the theorem holds, and let® be an
atlas on A’ such that % im Thus, for every q € @ there are fy, . . ., L€ T,

0l

such that U M, covers Bq, and there are p.r. functions %;, with domain
BEI(M,i), satisfying
(6.5) By(m) = p,, (hi(n)) for all ne B;'(M,;), and alli =0, . . ., s.

€

Suppose that U Al"i,‘ covers A'NM,; since B; C A’, it follows that

S
U U Al ; covers By. By (6.5), neB;'(M,;) implies %;(n)e u,'l,l(Bq), i.e.,

i= 0 j=0

h;(n) € u, ( U Ap > thus, (6.5) and the condition of the theorem imply

(6.6) By(n) = @y, (g, ..1; (Ri(n))) for all ne By (4}, Ik

and 0 <i<s,0<j <e;. This implies B S A'. It remains to prove that each
B;I(A' ) is a r.e. set. I shall prove: for every pair (q, p)e @ x P, (3, (A')
isar. e set By Definition 6.1 (i), A} can be covered by finite many M,’s,
say by M, 1o Y .UM, . Thus,

s'4p = sragnom,).
Now, using (6.5)
ne By (A) <> Bq(n) €A}

<—>V pe; (i) € Ay ane B (M)
e—>\=/0 hi(n) € (A Ame B7A(M,).

By condition of the theorem, every set u;, 1(A') is r.e., and by our supposi-
tion, every set Bql(M,) is also r.e. Thus, Bql(Ap) is r.e., and we obtain
B <AL

F

Let me interpret Theorem 6.7 in case of enumerated sets. I shall
suppose m = (M, {u}) and a = (4, {a}). Then (a, f) is an embedding into m
iff f A— M is an injective {a}-{u}-recursive map. Let A’=f(4) and
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a' = fea. Then {a'} is effectively principal iff u~*(A') is a r.e. set and for
every enumeration g of A', for which 8= y°b, where b is recursive, we
have also B = @ob,, where b, is recursive. Thus, here, already the fact that
{a'} is effectively principal implies that (a, f) is effective. In this way, we
obtain:

Corollary 6.7.1 Let m = (M, {u}) and a = (A, {o}) be enumerated sets and
let f: A — M be an injective {a}-{u}-recursive map of A into M. Let A'=
flA) and a' = foa. If A' is a {u}-r.e. set, then {a'} is principal on A' iff
there is a p.r. function g, with domain 1~ "(A'), such that, for all ke " *(A"),
u(k) = fla(g(k))).

Remark: In [5] (section 4, Lemma 3) Ershov gives a proposition which
differs from Corollary 6.7.1 in demanding that the domain of g contains
p '(A"). Since p~'(A") is already a r.e. set, this demand reduces trivially
to the demand of our Corollary 6.7.1.

Another interesting feature in the category & are retracts.

Definition 6.6 An embedding (a, f) into m is a retract of m iff there is a
morphism %: m — a such that kof = I, (I, = identity on a).

Remark that, for a retract (a, f) of m, xe A’, where A' = f{4), implies
f(r(x)) = x. Namely, if x = f(a), ae A, then h(x) = k(f(a)) = a and so f(h(x)) =
fla) = x.

Theorem 6.8 Let (a, f) be a vetract of m. Then, to every paiv (p, {)ye PxT

corresponds a p.r. function g,,:, whose domain contains the set y;'(f (4,)),
such that

k() = fley(8,: (1)) for all me i (F(Ap)).
Proof: Let h: m — a be as in Definition 6.6, let g, , be p.r. with domain
D, = p; '(k7(4,)), and such that
' W, (@) = ap(gp,,(n)) for all ne D, ;.
By the remark following Definition 6.6
Sy, (m) = p,(n), i.e., Aay( gy, (M) = p,(n)
for all p,(n) ef(A4y), i.e., for all ne u;'(f(4,)). Now, remark that
Dy, = by (B7HAp) = (W (£ (A))) 2w (f(4y).

There are some difficulties in the adaptation of the notion of ‘“‘pre-
complete’” to REM’s. For enumerated sets such difficulties do not exist,
since the enumerated set n = (N, {I}), where | is the identity on N, is a
universal reference-manifold for enumerated sets: every such set can be
considered as embedded into n. Such a universal manifold does not exist
for REM’s. However, for REM’s of a fixed cardinality, I can define a
half-substitute for this reference-manifold.

To every REMb = (B, %), 8 = {8,/q¢ Q}, I shall correspond its ordi-
nalization ob) = (Q,, H,), where {Q,, H,) is as in Example 1.3, with
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ag(n) = £ +n, as follows: o is the smallest ordinal whose cardinal is 5 In
the same time I shall well-order @ in the order type of o, and I shall set
Q ={q.lt < o}. o(b) will serve as an etalon for b and for all REM’s with
atlases of the same cardinality as @, the index-set for the atlas B. (This
is almost equivalent with: ‘‘with the same cardinality as B’’.) In B
considering morphisms %: g(b) — b, I shall say that such a morphism is
rigid iff (see Example 1.3 for notations) A(Ug) C Bg,. With all this, o(b) is
not subtle enough to characterize precompleteness without fault.

Definition 6.7 The REM b is precomplete iff for every effective embedding
(a, f) into o(b) and every morhpism g: a — b there is a rigid morphism
h: o(b) — b such that g = of (see Figure 6.3).

a —>a(b)

b
Figure 6.3

I can give only a necessary condition for precompleteness.

Theorem 6.9 If b is precomplete, then fov every family {¢qlqe @} of
avithmetical p.r. functions theve is a family {f,lqe Q} of recursive func-
tions, such that, for every qe€ Q.

(6.7) By@q(n)) = B fa(n)) for all neDy,
where Dy is the domain of ¢q.

The proof of Theorem 6.9 is straightforward. It should be obvious that
either a change in condition on g and f in Definition 6.7, or on %, there could
make possible a full characterization of precompleteness. I will not enter
into the discussion of those changes at this place. I introduced Definition
6.7 only in order to outline the possibilities and needs for future construc-
tions.
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