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ALGEBRAIC SEMANTICS FOR S2° AND
NECESSITATED EXTENSIONS

R. ROUTLEY and H. MONTGOMERY

Algebraic techniques are used to show that Feys' system S2°(c/. [1])
and certain necessitated extensions of S2°, such as Lewis' systems S2 and
S3, have the finite model property, and accordingly are decidable.
Representation theorems are then used to establish set-theoretical seman-
tics for the modal systems studied. Where the results obtained are not new
they improve on earlier results (such as those of Lemmon in [3]) in two
respects; first they provide direct algebraic treatments of the systems, and
second they furnish better semantical results (see the discussion of
theorem J for S2). The techniques used however follow those of McKinsey
(in [4]) and Lemmon (in [2] and [3]). Since it is now known that these
techniques do not work for all necessitated extensions of S2°, a somewhat
piecemeal approach is inevitable. Weak results are also obtained for Feys'
system Sl° and Lewis' system SI (for details of these systems see [1]).

The sentential systems studied are of interest not so much as systems
containing a viable necessity operator *Π', but as intensional logics which
axiomatise epistemic or other operators. For instance S2° can be
interpreted as an epistemic logic such that 'D' reads 'it is believed
reasonably that', and S2 as an epistemic logic where ζΠ' reads 'it is known
that'. The set-theoretical semantics established are however independent
of these epistemic interpretations.

The basic system examined, Feys' S2°, has as postulates:

Tl. A &B SA
T2. A &B β B &A
T3. (A &B) &C -3 .A & (B &C)
T4. A -3 A &A
T5. A-l B &B S C ^ .A -1 C
T6. O(A &B) βOA

Strict Detachment (SO): hA,\-A^B—*»hB
Adjunction (A): . H i , \-B —•hA & B
Substitutivity of Strict Equivalents (SSE): hA ttB, hC(A)-+t-C(B)
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The connectives '&', (~', and (O' are taken as primitive, and further
connectives V , «=>', <=', 'D' , ' H ', « W , <OW', and <DW' are defined as usual.
Also

VA =Df OΛ & O~A; ΔA =Df DAvD-A; T =Df p ^ p.

Numerals preceded by ζF' refer to items designated by the same numerals
in [ l ] . The postulates of Feys' system Sl° are obtained from those of S2°
by deleting T6. A necessitated extension of S2° (Sl°) is an extension of S2°
(Sl°) obtained by adding one or more axioms of the form DC.

Theorem 1 t^A iff t^ΠT -3 A, where L is any system obtained from S2° by

adding axioms of the form D C for some C.

Proof: Since p -3 p is a theorem of all these systems, by F31.l l , if \^p -8
p -3 A then \^A. The proof of the converse is by induction over the length
of the proof of A.

1. For every axiom A there is some B such that A b-$ ΏB. By F43.1,
*L ΏB -3. T -3 B. Hence since h^A, ^ T -3 B. Hence by Becker's rule
F46.1, * L D T -3 ΏB, and by substitutivity i^DT -3 A.
2. For the rule of Adjunction F42.21 applies. For Strict Detachment apply
F30.15 to ^ DT -3 A and ^ A -3 i? to give ^ D T -3 J5 whence ^ £ . Finally
if II B follows from ^ A by substitutivity of strict equivalents, the same
substitution (after a change of variables where necessary) yields ^ • T -3 B
from t DT -3 A.

A similar result holds for extensions of Sl°.

Theorem 2 \^ A iff ^ΏJ -^ A, where L zs any system obtained from Sl° δ y

adding axioms of the form D C for some C.

Proof differs from that of Theorem 1 only at the following points:

1. When A is an axiom since ^A, ^ T -3 B by F35.41. Also since ^ D T ,
t B -8 T by F35.41. Hence by SSE t D T S D ΰ .
2. For the rule of Adjunction T-theorem F35.22 can be applied.

Definitions (cf. [2], [3], and [4]):

Nx =Df - P -x CΛΓ =jy ?x Π P - ΛΓ

x ^ y =Df -χ v y x X y =Df x ^ y .n. y z) x
χ -ϊ y =Df - P ( * π -y); -̂  M ^ =D/

 x
 Ί y .n. y ^ x

lx =Df x u -x Ox =Df - lx

Since lx = ly for any x and y, the subscripts will as usual be omitted.

x - y =Df x π -j>
^ ^ ^ =zy x Π y Ξ

 ΛΓ; y ^ .v =D/ v ^ 3;

Strict identity, symbolised '=', should be distinguished from exten-
sional identity, symbolised '='. These identity relations are explained in
[6], [7], and [8]. The salient point here is that strict identities may be
intersubstituted in modal sentence contexts, but extensional identities may
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only be inter substituted in extensional sentence contexts and not in general
when they are within the scope of a modal operator such as *P\ The
distinction between strict and extensional identity will be exploited in a
subsequent paper, where semantics for systems obtained by adding merely
contingent axioms to S2° are discussed. For examples of such systems
see [5].

Definition: A structure Wl = (M, Π, U, -, P) is a mac algebra iff M is a set
of elements, closed under operations Π, U, -, P, such that

(i) (M, Π, u, -) is a non-degenerate Boolean algebra (with strong identity Ξ).
(ii) for all x, y eM, P(x U y) = Px U Py, i.e., P is additive over U.
(iii) ~ ( N 1 ^ PO).

Definition: A structure 9W = (M, Π, U, -, P) is a joined mac algebra iff it
satisfies conditions (i), (ii), and

(iii1) If Px = PO then x = 0, for x e M.

A mac algebra is a modal algebra with strong identity which satisfies
the requirement that Nl does not precede PO, in other words that PO is not
designated. A joined mac algebra is a modal algebra (in the sense of [2])
which satisfies McKinsey's requirement ([4], p. 120) that if -Px is
designated then x = 0. Since 1^0 is a non-degenerate Boolean algebra
(iii1) implies

(iii11) P 0 ^ PI

a condition which would suffice in place of (iii) or (iii1) in some of the main
theorems (Theorems A-E) which follow, (iii) is chosen because it provides
the weakest condition on Kripke models for S2°.

Theorem 3 In any modal algebra 3W = (M, Π, U, -, P)

(i) for x, ye M, N(x Π y) = Nx Π Ny.
(ii) for x, y e M, if x4^ y, then Nx ^ Ny and Px ^ Py.
(iii) for xeM,Nl =Nx iff N I ^ N Λ Γ .

(iv) for xeM, Px = PO iff Px^ PO.

Definitions: (i) A structure 3W = (M, D, Π, U, -, P) is a modal matrix iff M
is a set of elements closed under 2-place operations Π and u and 1-place
operations - and P and D is a non-null subset of M. The matrix is proper
iff DCM.
(ii) A function v^: A —> M, i.e., from wff of logic -C to elements of M,
provides a valuation (or assignment of values) under matrix 301 and pro-
vided these conditions are satisfied:

v(A & B) = v(A) Π v(B); v(~A) = -v(A); v{<>A) = Pv(A)

i.e., provided v is a homomorphism.
(iii) A matrix 3W satisfies wff A iff for every valuation under M, v{A) e D;
otherwise A is falsified by 9W. A matrix satisfies a modal system *£, is an
JQ-matrix, iff it satisfies every theorem of ^ and it is characteristic for a
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modal system £, is an <£-characteristic matrix, iff it satisfies all and only
the theorems of £.

Definition: A modal matrix 3W = (M, D, Π, U, -, P) is usual iff

(i) 9W is proper, i.e., D c M;
(ii) D is a filter of 9W, i.e., for #, yeD, xΠyeD and for ΛΓ eZ>, yeM,
x ΌyeD;
(iii) if x M 3? € D then * Ξ 3;.

Lemma 1 If M is a modal matrix satisfying requirements (ii) and (iii) o/
the previous definition and satisfying p -$ p, then:

(i) x=yiffxϊ-tyeD.
(ii) xty iff x -β yeD.

Proof: (i) Since £ -3 p is a theorem Λ; ̂  Λ ei). Since D is a filter of 3W,
Λ H i e ΰ . Thus, if x = y then x tty eD. The other half of (i) is immediate
from the definition above. v

(ii) x^y iff x Γ\y =x ifi x Γ\y ttxeD, by (i), iif x -% y eD, since

xΠyttx.=. xΠy -3 x .Π. x -3 Λ ΠJ;.
Ξ. -p((# ny) n -#) .n. -?(x n -(# ny)).
Ξ. -p(x ny n -x .D. x π-x .u. λ- n -3;).
Ξ. -P(ΛΓ n -3;) .=. x ^ 3;.

The finite model property is first established in detail for S2°, in
Theorems A-E (for S2°).

Theorem A 3W = <M, D, Π, U, -, P) is « 2<swα/ S2°-matrix iff <Λf, Π, U, -, P)
is α mac algebra (or a joined mac algebra) and D ={x: Nl ̂  λ"}.

Proo/; 1. Let 9W = <M, D, Π, u, -, P> be a usual S2°-matrix. Then

(i) (M, Π, U, -) is a Boolean algebra. This is proved as in McKinsey [4] and
Lemmon [2].
(ii) D = {x: N l ^ # } . If N I ^ Λ Γ , then by Lemma 1, Nl -3 xeD. Since
*s2o Ώ(p ̂ P), Nl eD. Thus since 9W is usual xeD. Conversely if xeD,
apply the derived rule: if J^oA then ^ o D T -3 Λ Thereby Nl -3 xeD, so
by Lemma 1, Nl % x.
(iii) P(Λ:U y) W PΛ U P yeD since feoOUvΰ) H θ Λ v θ 5 . Hence by the
identity requirement on usualness ?{x\j y) =. ?x\J ? y.
(iv) To show - ( N l ^ PO) suppose for a reduction, Nl ̂  PO. Then POeZλ
But -PO Ξ Nl e 2). Hence since D is a filter 0 = PO Π -PO e D. Thus for all
#e M, xeD, contradicting usualness of the S2°-matrix.
(iv;) If ?x = PO then N - x = Nl, so by (ii) N- xeD. Also, using F43.1,
N - x - 3 . 1 S -xeD. Since 9W is usual, 1 -β -xeD, and by Lemma 1,
1 ^ -#. Since too - ^ ^ 1, -x = 1, and thus x = 0. Hence too Pi ^ PO.

By (i)-(iv) it follows that (M, Π, U, -, P) is a mac algebra and that D =
{x: Nl ̂  x} and by (i)-(iv') that the quintuple is a joined mac algebra.



48 R. ROUTLEY and H. MONTGOMERY

2. Let (M, Π, U, -, P) be a mac algebra: to show that the postulates of S2°
are satisfied by 3W = <M, D, Π, U, -, P>, where Z) = [x: Nl ^ #], and that this
modal matrix is usual.

(i) Consider the Axioms T1-T4. These are necessitated versions of
postulates effectively guaranteed by the Boolean algebra (M, Π, U, -) .
Consider T l . Its valuation v(A & B -3 A) =. v(A) Π v(B) -β . v{A). Let ι̂ (Λ)
be x and v(B) = y. Now for any x, y e M, I =. x C\ y ^> x, so Nl =. N(x Π y ^

ΛΓ) Ξ. # n 3; -3 AT. Hence for all x, y e M, x Π y -3 xe D, i.e., Tl is satisfied.
Similarly for T2-T4.
(ii) By Boolean algebra x U y Π (-3; U z) ^ x u y\ hence N(ΛΓ U y) Π N(-y Γ) z) Ξ
N((# U y) Π (-3; U z)) ^ N(# U 3>). Thus:

1 Ξ N(-ΛΓ U 3>) Π N(-3> n ^) 3 N(-AΓ U 3;);

and

Nl = N(Λ: -5 y Π 3; -3 >ε 3 . # β 3?); so (x β 3;) Π (3; β ^) -3 . Λ: -3 * e D.

Thus any valuation of T5 belongs to D, hence T5 is satisfied,
(iii) Since x Πy^ x, ?(x Γ\ y) ^ ?x. Thus as P (x Π 3;) •% Pxe D, T6 is satis-
fied.
(iv) The tasks of showing that 9W is usual and that the rules of S2° preserve
satisfaction almost coincide. D = {x: Nl ^ x} is a filter of 3W. Since Nl e D,
D is not empty. If x, y e D then as Nl ^ x and Nl ^ 3?, Nl ^ x Π 3>, so Λ: Π 3; e
D. Therefore Adj is also vindicated. If xe D, y eMthen Nl € # € x u 3;, so
AT U 3> eZ). For strict detachment suppose xeD and # -3 3; e D. Then ΛΓ ^ y so
3; Ξ ΛΓ u y e D. For substitutivity, suppose x b->y e D. Thereby x ^ y e D and
y -§ ΛΓ e 2), so ΛΓ ̂  y and 3; ̂  Λ:, and x = y.
(v) D is proper since O/D. Suppose otherwise OeD. Then N l ^ O . As
0 ^ Nl in a Boolean algebra, 0 = Nl. Also since 0 ^ 1, NO ̂  Nl = 0. Hence
NO Ξ Nl Ξ 0 and P0 = PI s 1. Thus Nl ^ P0 contradicting - ( N l ^ P0). Since
Nl eD, D is not null.
(v') In case the algebra is joined NO/D. Suppose otherwise NO € D. Then
Nl ^ NO. Since 0 ^ 1 , NO t Nl; so NO = Nl. Therefore by (iiif) 0 = 1 con-
tradicting the non-degeneracy of the algebra.

Definitions: A wff A is S-satisfied (falsified) by a mac algebra ffll = (M, Π,
U, -, P) iff it is satisfied (falsified) by the corresponding S2°-matrix
<M,D,Π, U, -, P).

S =Df{x: N l ^ * } .

From these definitions S-satisfaction and S-falsification result.

Theorem E Let Wl = <M, Π, u, -, P) be a mac algebra (or a connected mac
algebra) and let au . . . , ar be a finite sequence of elements of M. Then
there is a finite mac algebra (joined mac algebra) <M1 = (Ml9 Γ\l9 U1? -l9 Px)
with at most 22 r + 2 ) elements such that:

(i) for 1 < i ^ r, ai e Mx\
(ii) for x, y eMu x Πi y =x Πy;
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(iii) for x, y e Mu x Ui y = x U y;
(iv) for x e Ml9 -1x = -x;
(v) for xeMι such that PxeMl9 ?xx = Px.

Proof: Let ^ be the Boolean subalgebra of 9W generated by al9 . . ., ar,
PO, PI. By Boolean algebra results, there are not more than 22(r+2)

elements in M\. Define r\, Ui, -i as the restrictions of Π, U, - to Λflβ For
xeMi, x is covered by 3; iff 3; € MΊ and P yeMi and x^y. That (i)-(v) are
satisfied and that requirements (i) and (ii) on a mac algebra are met is
proved as in Lemmon [2], p. 55 or McKinsey [4], pp. 124-125. Since 0 e Ml9

leMί9 P0eMl9 PleMl9 Pβ = PO. Also N xl = - ^ 0 = -PO = Nl. So, since
~(N1 ^ PO), ~(Nil ^ PiO). In case ffl is joined, it suffices to show, because
of Theorem 3 (iv), that if P ^ ^ PiO then x Ξ 0. But since PiO = PO and
Px^ Pγx, if P ^ ^ PiO then Px t PO. Hence x Ξ 0, when 3W is joined.

Theorem C S2°, and each of its consistent extensions, has a characteristic
usual modal matrix.

Proof as in McKinsey [4], p. 122-123.

Theorem D feoA iff A is ^-satisfied by all mac algebras (or by all joined
mac algebras).

Proof: If feoA, then A is satisfied by all S2° matrices, so it is satisfied by
all usual S2° matrices (M, {x: Nl ̂  x}9 Π, U, -, P). Thus A is S-satisfied by
all mac algebras. If ~ ̂ 2oA then there is a characteristic usual modal
matrix which falsifies A; to this a mac algebra corresponds. Therefore A
is not S-satisfied by all mac algebras.

Theorem E Let A be a wff with r subformulas. Then ^2QA iff A is S-
satisfied by all mac algebras (joined mac algebras) with not more than
22(r+2) elements.

Proof as in Lemmon [2], p. 56 (with ar φ 1 replaced by ~(N1 ̂  ar)).

Corollaries 1. S2° has the finite model property, and so is decidable.
2. 1-520̂  iff A is S-satisfied by all finite mac algebras.

Some of the development for S2° is easily parallelled for Sl°.

Definition: A structure 9W = (M, Π, u, -, P) is a torn algebra iff M is a set of
elements closed under operations Π, U, -, P such that

(i) (M, Π, u, -) is a non-degenerate Boolean algebra;
(ii) P(x Π z) ^ P(* r\y) u P(-y Πz);
(iii) ~ ( N 1 ^ PO).

Although the principle iϊ x ^ y then Px ̂  P y no longer holds generally, the
principle that if x = y then Px = Py and N# = Ny of course holds.

Theorem A (for Sl°) 9W = <M, D, Π, U, -, P) is a usual Sl°-matrix iff
(M, Π, u, -, P) is a torn algebra and D = S.

Proof is similar to that of Theorem A for S2°. Consider, e.g., 2 (v) of
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Theorem A (for S2°) Suppose OeD. Then 0 = Nl, so 1 = P0. Thus Nl ̂  P0
contradicting ~ ( N l ^ P0).

Theorem C (for Sl°) Sl° has a characteristic usual modal matrix.

Theorem D (for Sl°) igl0A iff A is ^-satisfied by all torn algebras.

Proofs are as for S2°.

Theorems A-E are now developed for S30. The theorems are simpli-
fied if the standard S30 postulate

T7. D(A 3 B) -3 . Ώ(ΏA 3 ΏB)

is replaced, first by its (S2°) deductive equivalent

T7f. DA β . D(D£3 ΏA)

(compare Lemmon [3], p. 195). The equivalence is proved thus:

f-,0 A S B β . ΠA 3 ΏB by F33.311

ι̂ 20 (DA 3 . A -3 B) -3 . ΏA =>. DA 3 ΏB by F42.12
tg20 (DA 3 . DA ̂  DJ5) -3 . DA 3 DJB by F34.1
tg20 DA -̂  . A -3 J5 S . DA -3 D ^ by F46.1

Since, given T7f, D(A 3 5) β . DA -8 D(A 3 B), T7 follows by F31.021.
Conversely, since

l£20 DA -3 . B -3 A

DA - 3 . D 5 - 3 DA, i.e., T7 f, follows applying T7. Secondly, T7 f is
(S2°) deductively equivalent to

T7". DA -3 . DT -3 DA.

T7" follows from T7 f by substitution. Conversely,

}s2o B -β T by F43.1
t s 2 0 G 5 -3 DT by F46.1
^ 2 0 T7'f -3 T7 by F45.30, F45.31

Lemma 2 £ 3 0 <>A H . O U v . OA & DT).

Proof: One half follows from /> -3 . pv q and F41.41; the other half follows
by contraposing T7" and using F42.12.

Definition: A mac algebra (joined mac algebra) is strictly directive when

(iv) P x = P (P x - P 0 .U. x) for x e M.

Theorem A (for S30) SW = <M, D, Π, u, -, P) is a usual S3°-matrix iff
(M, Π, U, -, P) is a strictly directive mac algebra {or connected mac
algebra) and D = {x: Nl ̂  x}.

Proof: This extends Theorem A for S2° in the relevant respects.

1. A usual S3°-matrix guarantees (iv) as a consequence of Lemma 2.
2. In any mac algebra, since 0 ̂  y, P0 ̂  ?y. Hence in turn, Px - ?y ^ Px -
P0, (PΛ: - Py) Ό x^ (Px - P0) U x. Thus, by (iv),
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(a) P[(?χ - Py) u φ P [ ( P # - PO) u φ Px.

Now:

(b) Nx => N(N;y => NAT) Ξ - N # U N(-Ny U NΛΓ)
Ξ P - Λ U - P ( - P - ^ Π P - Λ )

A l s o : 1 = P ( P - # n - P - y) U P - # u - P ( P - x Π - P - y)
= p [ ( p - # n - P - y) u -x] u - P (- P - y n p - x)
^ P - Λ U - P(- P - 3; Π P - #) by (a)
t Nx D N ( N ^ D NΛΓ) by (b)

Hence Nl ^NΛΓ -S N(Ny => NΛΓ); SO T7' is satisfied.

Theorem B (for S30) The enunciation of this theorem is exactly the same
as that of Theorem B for S2°, except that 'strictly directive mac algebra'
replaces 'mac algebra'.

Proof: It needs to be shown

PλX= P i t ί P i * - PiO) ΌX]

given Px = ?[(?x - PO) U x\. Since P0eMl9 PiO = PO. Let 3;^ y2 , . . . ,yn

cover x so that ?±x = Pyλ Π P ^ 2 , . . . ,?yn. Since x^yu Px^Pyi* Also
P i ^ ^ Py, . Hence Pγx - P i O ^ P ^ - PO; and so ( P ^ - P ^ ) U x^ ( P ^ - PO) U

x^ (Pyi " PO) u ^ i . But P[(Pyi - PO) U ^ ] = PyieMl9 so that ( P ^ - PiO) u x
is covered by ( P ^ - PO) u ^ , for each i. Suppose the r e m a i n d e r of the
cover of (P λx - P ^ ) U x i s given by zly.. . , zm. Then

P i [ ( P i * - P 0 ) U Λ : ] ^ P [ ( P y { - ? 0 ) \ j y i ] Γ ί . . . ? [ ( ? y n - P O ) U y n ] Π P z l 9 . . . , P z m

= P y x n . . . p y n n P Z U . . . , P z m = p ^ n P z l 9 . . . , P 2 m < P ^ .

C o n v e r s e l y , a s 0 t x, 0 t Pβ a n d (β) Pλx t p& u PiO. S i n c e PiO = PO, P O ^
Px, a n d PΛ; ̂  P ^ g e n e r a l l y , P ^ ^ P ^ . H e n c e P& - P i O ^ O ; P ( P ^ - PiO) ^
PO = P x 0 . So P i ί P i * - P i O j ^ P ί P ^ - P i O j ^ P x O . N o w , b y (β), P ^ ^ P ^ U
P i t P i X - P i O ) ^ P ! ( ( ? ! # - PiO) U i ) .

Theorems C-E (for S30) Enunciation and proofs are direct adaptations of
those for S2°.

Hence S30 has the finite model property and is decidable.
Analogous results hold for the weak modal system C30, the system

obtained from Lemmon's C2 by adding the postulate

A7'. Π(Λ D B) 3 Π(ΏA 3 ΠB).

A7' is deductively equivalent with respect to C2 to

A7. DA D. Ώ{ΏB D DA).

Lemma K, OA S O(A V. OA & DT).
C3 0

Definition: A modal algebra (as defined in Lemmon [2]) is directive when

Px = P(P# - PO .U. Λ:) for jveM.
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Theorem A (for C30) Wl = (M, D, Π, u, -, P> is a regular C30-matrix iff
(M, Π, U, -, P) is a directive modal algebra and D = [x: x = l].

Proof is similar to that for S30, replacing '=' by '=' and ζtf by '^'. Defini-
tions of 'regular' and <̂ ' are as in Lemmon [2].

Theorems B-E (for C30) Enunciations and proofs are adaptations of those
for S30.

The system D30 is obtained by adding to C30 the deontic postulate

A5. DA D ~Π~A.

Definition: A modal algebra is deontic when PI = 1.

Theorems A-E (for D30) Proofs combine those for C30 with Lemmon's
results for D2 in [2],

Systems S2sd and S3sd are obtained from systems S2° and S30 respec-
tively by adding the postulate,

DA5. ΏA -3 ~ D ~ A

Definition: A mac algebra is strictly deontic when Hx^ Px.

Theorems A-E (for S2sd and S3sd)

Proof: The relevant extras are these: Theorem A: 1. A usual S2sd(or S3sd)
matrix guarantees N# -3 Pxe D, and so Nx t Px, in virtue of DA5. 2. Since
NΛΓ^ P#, U - P Λ U PΛ ̂ -NΛΓU PX. Thus Nl ̂  Mx -3 Px; so DA5 is satis-
fied.

Theorem B: Given Nx^ Px, Ni#^ PIΛΓ follows, since Pxt pλx and Nλx =
-P1 - xtNx.

Definition: A mac algebra is strictly epistemic when

xt Px for xe M.

Strictly epistemic mac algebras correspond of course to S2-matrices, and
strictly epistemic strictly directive mac algebras to S3-matrices. In case
a strictly directive mac algebra is strictly epistemic the strictly directive
requirement can be replaced by a strict transitivity requirement Px =
P(PΛΓ - PO). Strictly epistemic mac algebras are strictly deontic.

Theorems A-E (for S2 and S3)

Proof: The relevant extras are these: Theorem A: 1. A usual S2 (or S3)
matrix guarantees x ^ Px in virtue of the S2 postulate A -3 OA (F36.0).
2. Since x ^ PΛΓ, 1 = -x U x ^ -x U Px, and Nl t x -3 Px, so A -3 OA is
satisfied.

Theorem B: Given x t Px, x t p ^ follows, since Px t Pλx quite generally.

A model structure (m.s.) is an ordered quadruple & = (G, K, N, R),
where K is a set of items, G eK, N c K, and R is a binary relation on K.
An m.s. is a Lewis model structure {l.m.s.) iff G eN.

Definition: Q =Df K - N.
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^ + , the algebra on m.s.K, is the ordered structure (M, Π, U, -, P)
where

(i) M = PK, i.e., the power set of K;
(ii) Π, U, - are the set-theoretic operations of meet, join, and complement
restricted to M;
(iii) PA = {H: (SH')(Hr e A & HRW) vHeQ], for A e M.

The set theory assumed is familiar extensional set theory with single
identity '=', single (improper) inclusion ' c ' , and non-ontologieal quantifiers
<cΛ' and ζS'.

Lemma N Φ Q.

Proof: G e N or G e Q but not both.

Lemma In any algebra on any m.s.

(i) PΛ = Q, where Λ is the null set.

(ii) - PΛ = N.
(iii) Q c PA, for any A e M.

Theorem F If & is a Lewis model structure then U+ is a mac algebra.

Proof: Conditions (i) and (ii) on a mac algebra are established as in
Lemmon [2], Theorem 15. (The terminology is of course adjusted.)
ad (iii) Since ^ is a Lewis m.s., GeNsmά so GjίQ. Therefore (£H)(HeN &
HΪQ). NOW if -PΛ c PΛ, then N c Q; whence ~(SH)(HeN & HέQ), and a
contradiction. So ~(-PΛ c PΛ).

Theorem G Any finite mac algebra is isomorphic to the algebra on some

finite Lewis m.s.

Proof: Let 3W = <M, Π, U, -, P) be a finite mac algebra. Then for some ^ ,
(M, Π, U, -) is isomorphic to the algebra of subsets of $, by Stone's
representation theorem, under isomorphism φ say. It suffices to add to
Lemmon's proof in [2] of Theorem 17, the following detail showing that
when M is a mac algebra, ^ is a Lewis m.s. Since in a mac algebra
~(- PO t: PO), by the isomorphism ~ ( φ - POcφPO), where c corresponds to
t. Thus, where P* is the possibility operation in $ + , ~(-P*0O c P*ψO),
i.e., ~(-P*ΛC P*Λ). Hence, by lemmata, -(iVcQ). Thus (SH)(HeN).
Call such an H, G, i.e., G = eH: HeN. Since G eN, ̂  is a Lewis m.s.

Theorem H fg20A iff

(i) A is S-satisfied by $t+for all l.m.s. $1.
(ii) A is S-satisfied by SΓ** for all finite l.m.s. SL

Proof: If ^20A then A is S-satisfied by all mac algebras, by Theorem D;
and so by $ + , for all (finite) l.m.s. ^ , since these are mac algebras, by
Theorem F. Conversely if ~ ̂ 2θA then some finite mac algebra S-falsifies
A, by Theorems D and E. Hence, by Theorem G, A is S-falsified by SΓ*" for
some (finite) m.s. $.
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A valuation model for a wff A on an m.s. U is a binary function v(p, H),
where p ranges over sentential variables of A and H over items of K, whose
values lie in {T, F}. A value v(B, H) for any subformulae B of A for a given
valuation model for A on an m.s .$ is defined recursively as follows: if B
is atomic v(B,H) is as in the valuation model; v(~B, H) = T iff v(B, H) = F;
v(B => C, H) = T iff v(J5, H) = F or v(C, H) = T; v(D£, ff) = T iff v(B, #') = T
for all # ' € ϋΓ such that HRH', and JEΓcJNT.

Wff A is ίrwβ m valuation model v(p, H) for A on m.s. Sϊ = (G, if, iV, i2)
«ί H'eK iff v(A, #') = T. A is S2°-true on model v(/>, H) on Lewis m.s.
£ = (G, K, N, R) iff v(A, G) = T. A is $2°-valid in U = (G, K, N, R) iff A is
true in all models on m.s.ft at all W e N, i.e., at H! e K where H'/Q for all
H'eK. A is S2°-valid on Lewis m.s. ^ = <G, K, N, R) iff A is S2°-true in
all models v(p, H) on l.m.s. $i. A is S2°-valid iff A is S2°-valid in all Lewis
m.s.

Lemma A is S20-valid iffA is S2°-valid on all l.m.s.

A is S2°-valid over m.s.ft = <G, A", AT, Λ> iff, for every H'eK,H'eN
materially implies A is true in all models in m.s .$ at all Hr e K.

Where v(p, H) is a valuation model for a wff A, which contains variable
pi9 on an m.s.Sϊ,

V(A) =Df {H: HeK& v(pi9 H) = T},

and an assignment % to the variables pu...,pnofA from $ + is defined:

* = <V(pi),..., V(pJ>.

For any assignment 51 from St* to the variables of A, V^iB) is the value
assigned to subformula B of A in ^ + for the assignment 3Ϊ. Where % is an
assignment $( = (Aίf... ,Λz)> with A, c /Γ, from $t+ to the variables of A, a
valuation model vm(p, H) for A on St is defined thus: v^ipi, H) = T iff HeA{.

Lemma (i) Where v(/>, /ί) is α valuation model for wff A on m.s. U =
(G,K,N,R),forallHeK,v(A,H) = T iff He V»(A).
(ii) Where % is an assignment to the variables of wff A from ®+for some
m.s. £ = (G, K, N, R), for all HeK, vw(A, H) = TiffHe V^ίA).

Proofs as in Lemmon [2], p. 61.

Theorem I (i) Where $t = (G, K, N, R) is any Lewis m.s., A is S-satisfied
by fl+ iffA is S2°-valid in, or on, $ .
(ii) Where $1 is any m.s., A is satisfied by $l+ iff A is S2°-valid over ^
{provided paradoxical implications are admitted).

Proof: (i) (a) Let A be S-satisfied by $t+, and consider a valuation model
v(p, Iϊ) for A on U. Then V^A) D N*K, where N* is the necessity operator
in $ + and 51 is any assignment from Sί+ to A's variables. Now N*K =
- P * Λ = : - Q = iVr. Thus V<j,(A) DiNΓ. Since then, for all HeN, HeVs2ί(A\ it
follows by Lemma (i) that for all HeN, v(A, H) = T. Hence A is S2°-valid
in ®. Since too G e N, v(A, G) = T. Hence A is S2°-valid on St.
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(b) Let A be S2°-valid in $1, and consider an assignment $1 to the variables
of A. Since A is S2°-valid in it, for all He N, vn(A, H) = T. Hence by
Lemma (ii) for all HeN, He VH(A). As then V%(A) D N, V,,(A) D N*K. Thus
A is S-satisfied by &+. For A is S-satisfied by ^ + iff the value of A for
assignments from Sϊ+ to its variables is designated, i.e., includes N*K.
Next let A be S2°-valid on l.m.s. $ and consider any assignment $ί to the
variables of A from &+. Since A is S-valid on $, vs2l(A, G) = T, whence by
Lemma (ii), Ge VjjCA). Since however, G may be any element of Sϊ, since
that is G= eH: HeK, N c V*(A); and that A is S-satisfied follows as
before.
(ii) Where ^ is an m.s. which is not a Lewis m.s. N is null. Then, for
every H if HeN then # € Vg(A) is true vacuously provided the if-then is
paradoxical. Likewise, for any H, if HeN then v(A, H) = T, holds vacu-
ously.

Theorem J (i) ^ 2 θA iffA is S2°-valid.
(ii) H2θA iffA is S2°-valid over all m.s. {provided paradoxical implications
are exploited).

Proof: (i) Vgl0A iff A is S-satisfied by $ί+ for all l.m.s. ^ , by Theorem
H (i), iff A is S2°-valid in all l.m.s. ®, by Theorem I (i), iffA is S2°-valid.
(ii) Similar to (i) but using Theorem I (ii).

Definition: An m.s.St is strictly epistemic (S epistemic) iff {c4H){HeQ v
HRH).

Theorems F-J (for S2)

Theorem F (for S2) If ft is a strictly epistemic l.m.s., then ®+ is a
strictly epistemic mac algebra.

Proof: Because of Theorem F (for S2°) it suffices to show that when
{c4H)(HeQvHRH), A c PA for A c K. Now given the premiss, He A
materially implies He A & (HRHv He Q), which in turn implies (He A &
HRH)vHeQ, and so implies (SHr)(Hr eA & HRHf) vHe Q, i.e., He ?A, as
required for a classical inclusion.

Theorem G(for S2) Any finite strictly epistemic mac algebra is isomorphic
to the algebra on some finite strictly epistemic l.m.s.

Proof is similar to Lemmon [2], Theorem 19, p. 59.

For the remaining systems considered it is enough to establish
Theorems F and G. For Theorems H-J they follow as before. The main
connections may be summed up in a table like this:

System Corresponding algebra Corresponding m.s.
S2° mac l.m.s.
S2 strictly epistemic mac strictly epistemic l.m.s.

(compare Lemmon [3], p. 207-208). We condense, e.g., the S2 line of this
table to:
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System S2 ~ strictly epistemic mac algebra ~ strictly epistemic l.m.s.

Definitions of truth and validity are of course appropriately modified to
reflect these connections. For instance, wff A is S2-true on model v(p, H)
on strictly epistemic l.m.s. ft = (G, Ky N, R) iff v(A, G) = T. Definitions of
Sl-valid (in) and S2-valid on are similarly modified by replacing '(Lewis)
m.s.' by 'strictly epistemic (Lewis) m.s.'

Theorems H-J (for S2) are similar in statement (and proof) to those for
S2°, except that 'strictly epistemic (Lewis) m.s.' systematically replaces
'(Lewis) m.s.' and 'S2-valid' replaces 'S2°-valid\ Consider to illustrate:

Theorem J (for S2) (i) ^2A iff A is S2-valid;
(ii) ^2A iff A is S2-valid over all strictly epistemic m.s. (provided para-
doxical implications are exploited).

That is, given the proviso, iff for every # ' , W e N materially implies A is
true in all models on all strictly epistemic m.s. at all W e K.

Theorem J (i) strikes us as a better result than Lemmon's Theorem 26
in [3], p. 202, which corresponds rather to Theorem J (ii). Unfortunately
Lemmon offers no sufficient definition of his key notion 'weak validity'; for
truth at leN, in terms of which weak validity is to be defined, is nowhere
defined in Lemmon's papers. The obvious way of defining truth at le N—by
adding '& 1{Q9 to the definition of truth at le K given in [2], p. 60—renders
Lemmon's Theorem 26 in [3] incorrect. A way to repair Lemmon's result
is to use a connective which effectively drops off the cases where truth is
evaluated at some le Q; and this can be done by exploiting paradoxical
features of O' , by requiring (in Lemmon's terminology): A is true for
model Φ{v, K) at le(K - Q) in an m . s . (K, Q, U) iff lp Q => Φ'(A, I) = T.

Similarly a better result* for S2-provability is given by the corollary to
Theorem E for S2, in terms of satisfaction in all finite strictly epistemic
l.m.s., than is given by Lemmon's Theorem 23 ([3], p. 201), in terms of
weak satisfaction in all finite e-algebras. For the matrices corresponding
to Lemmon's finite e-algebras may be improper. But since improper
matrices satisfy everything, in virtue of features of paradoxical implica-
tion, they can be thrown in without upset.

Definition: An m.s. ^ is strictly directive (s directive) iff R is transitive
from pairs of elements in N, i.e., for Hi, H2 e N and H3eK, HιRH2 and
H2RH3 imply HJtHz.

Theorems F-J (for S30)

Theorem F (for S30) If ® is a strictly directive l.m.s., then St+ is a

strictly directive mac algebra.

*Just as satisfaction in normal (transitive) e-algebras gives, as Lemmon claims
in [3], p. 201, better results for T and S4 than, what is equivalent, weak satisfaction
in closed (transitive) e-algebras.
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Proof: It suffices to show, where St is strictly directive, PA = P(PA -
Q .u. A) for A Q K. A one way inclusion is immediate. For the other
suppose He P(PA - Q .U. A). If He Q then He ?A by a lemma. If then # e AT,
by definition of <P', for some H\ H' e ?A - Q or # ' e A and # # # ' . If We A
and HRHr then Jϊ e PA as required, so it remains to consider the case where
for some H\W e PA - Q and HRH'. Then H' e N and for some H'\H" e A &
H'RH". Since H,H' eN and # # # ' and H'RH" by strict directiveness tfβtf".
Thus since H" eA, by predicate logic, He PA.

Theorem G (for S30) Any finite strictly directive mac algebra is isomor-
phic to the algebra on some finite strictly directive l.m.s.

Proof: By i s o m o r p h i s m φ, P(PA - Q U. PA) = PA, for A c K. Suppose Hl9

H2 e N, HλRH29 and H2RH3. Then Hι e P {H2} and H2 e P {H3} - Q ( see Lemmon

[2], p. 56). Thus {H2} c P {jy3} - Q c. P {̂ 3} - Q U {#3}; hence P fe} c
P(P {̂ 3} - Q U. {H3}) [= P{^3}] Since ^ e P{#2}, ^ e P f e } , that is HXRHZ as
required.

The remaining results for S30 simply follow out the connections:

System S30 ~ strictly directive mac algebra ~ strictly directive l.m.s.

Theorems F-J (for S3)

System S3 - s epistemic s directive mac algebra
~s epistemic s directive l.m.s.

Proofs of Theorems F-G combine those for S2 and for S30.

Theorems F-J (for C30)

System C30 ~ s directive modal algebra ~ s directive m.s. Proofs of
theorems extend those in Lemmon [2] for C2 in much the way that those for
S30 extend those for S2°.

Definition: An m.s. ̂  is strictly deontic (s deontic) iff {<AH){SH')(HRHf v
HeQ).

Theorems F-J (for D30)

System D30 ~ s directive s deontic modal algebra
~ s directive s deontic m.s.

Theorems F-J (for S2sd and S3sd)

System S2sd ~ s deontic mac algebra ~ s deontic l.m.s.
System S3sd ~ s directive s deontic mac algebra

~ s directive s deontic l.m.s.

The methods of the paper also suffice to treat many other necessitated
extensions of S2° which have not so far been discussed in detail in the
literature, for example, the systems S4° and S8 (both explained in [1]).
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