implies

$$
V(A \rightarrow \bar{B}, a)=T, V(\bar{B}, a \cdot c)=F
$$

implies

$$
V(A, c)=F
$$

for each c with $(a \cdot b)^{*} \leq c<1$ - so that $V(\bar{A}, a \cdot b)=T$ as required.
Department of Mathematics
University of Canterbury
Christchurch I
New Zealand

VOLUME 14

Corrigendum to 'Diagonalization and the recursion theorem', by James C. Owings, Jr., Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 95-99.

It has been recently pointed out to me by Maurizio Negri that Application 4 of the abovementioned paper contains a serious error. It is the purpose of this note to rectify this mistake. I sincerely thank Professor Negri for bringing this matter to my attention. In the original treatment it was falsely claimed that there existed a formula $\delta(v)$ of elementary number theory such that, for any $n \in N, \vdash \delta(\mathbf{n}) \leftrightarrow \Phi_{n}(\mathbf{n})$. However, if there were such a formula, then, letting $\neg \delta$ be Φ_{k}, we would have $\vdash \delta(\mathbf{k}) \leftrightarrow \neg \delta(\mathbf{k})$, implying that number theory was inconsistent. A corrected version follows.

Application 4 (Feferman's fixed-point theorem for elementary number theory). Let $S=N$, let $\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots$ be the customary enumeration of all formulas of elementary number theory with at most one free variable v, and, if Ψ is such a formula, let $\ulcorner\Psi\urcorner=e$, where $\Psi=\Phi_{e}$. Also, let $\phi_{0}, \phi_{1}, \phi_{2}, \ldots$ be a standard enumeration of all partial recursive functions of one variable. If $p, q \in N$, let $p \square q=\phi_{p}(q), p * q=p \cdot q=\left\ulcorner\Phi_{p}(\mathbf{q})\right\urcorner, p \circ q=\left\ulcorner\exists z\left(\Phi_{p}(z) \wedge\right.\right.$ $\left.\left.\theta_{q}(v, z)\right)\right\urcorner$, where θ_{q} is a formula which strongly represents the partial recursive function ϕ_{q} (i.e., for all $m, n \in N, \phi_{q}(m)=n \Leftrightarrow \vdash \theta_{q}(\mathbf{m}, \mathbf{n})$ and, for all $m \in$ $\left.N, \vdash \forall y \forall z\left(\left(\theta_{q}(\mathbf{m}, y) \wedge \theta_{q}(\mathbf{m}, z)\right) \rightarrow y=z\right)\right)$. Let δ be any number such that, for all $p, \phi_{\delta}(p)=\left\ulcorner\Phi_{p}(\mathbf{p})\right\urcorner$ and let $p \equiv q$ mean $\vdash \Phi_{p} \leftrightarrow \Phi_{q}$.

By definition of $\delta, \delta \square p=p * p$. We have that $\left.(p \circ q) * r)={ }^{\ulcorner } \Phi_{p \circ q}(\mathbf{r})\right\urcorner=$ $\left.{ } \exists z\left(\Phi_{p}(z) \wedge \theta_{q}(\mathbf{r}, z)\right)\right\urcorner$; so $\Phi_{(p \circ q) * r}=\exists z\left(\Phi_{p}(z) \wedge \theta_{q}(\mathbf{r}, z)\right)$. On the other hand, $p \cdot(q \square r)=\left\ulcorner\Phi_{p}(q \square r)\right\urcorner=\left\ulcorner\Phi_{p}\left(\underline{\phi_{q}(r)}\right)\right\urcorner$, so $\Phi_{p \cdot(q \square r)}=\Phi_{p}\left(\phi_{q}(r)\right)$. One now
 orem 1 of this paper, given any formula $\Psi(v)$ there exists a sentence θ such that $\vdash \Psi(\ulcorner\theta\urcorner) \leftrightarrow \theta$, namely $\theta=\exists z\left(\Psi(z) \wedge \theta_{\delta}\left(\left\ulcorner\exists z\left(\Psi(z) \wedge \theta_{\delta}(z, v)\right)\right\urcorner, z\right)\right)$.

Department of Mathematics
The University of Maryland
College Park, Maryland 20742

