Notre Dame Journal of Formal Logic Volume 30, Number 1, Winter 1989

Some Modal Logics Based on a Three-Valued Logic

OSAMU MORIKAWA

1 Introduction A K-modal logic based on Łukasiewicz's three-valued logic has been formulated by Schotch [2]. In this paper we formulate K-, M-, S4-, and S5-modal logics based on a general three-valued logic by using the notion of a matrix in [3].

In Section 2, we define truth values, formulas, and matrices. In Section 3, we introduce three-valued Kripke models defined in [1]. In Section 4, we present the systems K, M, S4, and S5 of modal logic based on a general three-valued logic (3- K_3 , 3- K_2 , 3- M_3 , 3- M_2 , 3- $S4_3$, 3- $S4_2$, 3- $S5_3$, and 3- $S5_2$). 3- K_3 , 3- M_3 , 3- $S4_3$, and 3- $S5_3$ are modal logics based on a three-valued logic in which the modal operators take on all three of our truth-values. 3- K_2 , 3- M_2 , 3- $S4_2$, and 3- $S5_2$ are modal logics based on a three-valued logic in which the modal operators take only the two classical truth-values. In Section 5, we develop the syntax of 3- K_i , 3- M_i , 3- $S4_i$, and 3- $S5_i$ (i = 2,3) and it will be shown that the cut-elimination theorems no longer hold in 3- K_i , 3- M_i , 3- $S4_i$, and 3- $S5_i$. In Section 6, we prove the completeness theorems for 3- K_i , 3- M_i , 3- $S4_i$, and 3- $S5_i$.

2 Matrices

2.1 Truth values We take 1, 2, and 3 as truth-values. Intuitively '1' stands for 'true' and '3' for 'false', whereas '2' may be interpreted as 'undefined' or 'meaningless'.

We denote the set of all the truth values by T. $T = \{1, 2, 3\}$.

2.2 Primitive symbols

- (1) Propositional variables: p, q, r, etc.
- (2) Propositional connectives:

$$F_i(*_1,\ldots,*_{\alpha_i})=i=1,2,\ldots,\beta,\alpha_i\geq 1.$$

Received October 28, 1985; revised August 28, 1986 and April 9, 1987

With each F_i we associate a function f_i from \mathbf{T}^{α_i} into \mathbf{T} . We call f_i the truth function of F_i .

(3) Modal symbol: \Box .

(4) Auxiliary symbols: (,).

2.3 Definition of a formula

- (1) A propositional variable is a formula.
- (2) If $A_1, \ldots, A_{\alpha_i}$ are formulas, then $F_i(A_1, \ldots, A_{\alpha_i})$ is a formula $(i = 1, \ldots, \beta)$.
- (3) If A is a formula, then $\Box A$ is a formula.

2.4 Matrices Gentzen's sequent $A_1, \ldots, A_m \to B_1, \ldots, B_n$ means intuitively that some formula of A_1, \ldots, A_m is false or some formula of B_1, \ldots, B_n is true.

The truth-value 1 corresponds to the succedent and the truth-value 3 corresponds to the antecedent. We extend the notion of a sequent to three-valued logic.

When $A_i^{(\mu)}$ ($\mu = 1, 2, 3$; $i = 1, 2, ..., m_{\mu}$; $m_{\mu} \ge 0$) are formulas, we call the following ordered triple of finite sets of formulas a matrix:

$$\{A_1^{(1)},\ldots,A_{m_1}^{(1)}\}_1 \cup \{A_1^{(2)},\ldots,A_{m_2}^{(2)}\}_2 \cup \{A_1^{(3)},\ldots,A_{m_3}^{(3)}\}_3.$$

We call $A_1^{(1)}, \ldots, A_{m_1}^{(1)}$ or $A_1^{(2)}, \ldots, A_{m_2}^{(2)}$ or $A_1^{(3)}, \ldots, A_{m_3}^{(3)}$ the 1-part or the 2-part or the 3-part respectively. The matrix $[A_1^{(1)}, \ldots, A_{m_1}^{(1)}]_1 \cup \{A_1^{(2)}, \ldots, A_{m_2}^{(2)}\}_2 \cup \{A_1^{(3)}, \ldots, A_{m_3}^{(3)}\}_3$ means intuitively that some formula of $A_1^{(1)}, \ldots, A_{m_1}^{(1)}$ is false or some formula of $A_1^{(2)}, \ldots, A_{m_2}^{(2)}$ is undefined or some formula of $A_1^{(3)}, \ldots, A_{m_3}^{(3)}$ is true.

2.5 Abbreviations

- When L is a matrix, we denote the series of formulas occurring in the *i*-part of L by L_i.
- (2) When $m_{\mu} = 0$ for all $\mu \in \mathbf{T}$, we denote this matrix by Φ and call it the empty matrix.
- (3) Let R ⊆ T. The matrix such that m_μ = 1 and A₁^(μ) = A for all μ ∈ R and m_μ = 0 for all μ ∉ R is abbreviated by {A}_R. In particular, {A}_{T-{μ}} is denoted by {A}_μ. {A}_{{μ1},...,μ_j} is denoted by {A}_{μ1},...,μ_j.
 (4) For matrices L, M we put L ∪ M = {L₁, M₁} ∪ {L₂, M₂}₂ ∪ {L₃,
- (4) For matrices L, M we put $L \cup M = \{L_1, M_1\}_1 \cup \{L_2, M_2\}_2 \cup \{L_3, M_3\}_3$.
- (5) We write $L \subset M$, if for all $\mu \in \mathbf{T}$ every formula which occurs in L_{μ} also occurs in M_{μ} .

3 Kripke models

3.1 Definition of a Kripke model A $3-K_3$ model is a structure $\mathfrak{M} = (W, R, \phi)$ where

- (1) W is a nonempty set
- (2) R is a binary relation on W
- (3) For all s ∈ W and every propositional variable p, φ(p,s) assigns a truthvalue in T.

3.2 Given any 3- K_3 model \mathfrak{M} , the truth value $\phi(A, s)$ of a formula A at s is defined as follows:

(1)
$$\phi(F_i(A_1, \dots, A_{\alpha_i}), s) = f_i(\phi(A_1, s), \dots, \phi(A_{\alpha_i}, s))$$

(2) $\phi(\Box A, s) = \begin{cases} 1, \text{ if for all } t \text{ such that } sRt, \phi(A, t) = 1. \\ 2, \text{ if there exists a } t \text{ such that } sRt \text{ and } \phi(A, t) = 2. \\ 3, \text{ if for all } t \text{ such that } sRt, \phi(A, t) \neq 2 \text{ and there exists a } u \text{ such that } sRu \text{ and } \phi(A, u) = 3. \end{cases}$

3.3 3- K_2 models Now, a 3- K_2 model is obtained from a 3- K_3 model by replacing (2) in 3.2 by the following (2').

(2')
$$\phi(\Box A, s) = \begin{cases} 1, \text{ if for all } t \text{ such that } sRt, \phi(A, t) = 1 \\ 3, \text{ otherwise.} \end{cases}$$

3.4 A matrix $L = \{A_1^{(1)}, \ldots, A_{m_1}^{(1)}\}_1 \cup \{A_1^{(2)}, \ldots, A_{m_2}^{(2)}\}_2 \cup \{A_1^{(3)}, \ldots, A_{m_3}^{(3)}\}_3$ is called 3- K_i valid if for all 3- K_i models \mathfrak{M}_i and any $s \in W$, there exists an $A_j^{(\mu)}$ in L such that $\phi(A_j^{(\mu)}, s) = \mu$. In the case where $m_2 = 0$, this definition is consistent with the classical definition of the validity of a sequent.

3.5 Let \mathfrak{M}_i be a 3- K_i model. We say that \mathfrak{M}_i is a 3- M_i model if R is reflexive, a 3- $S4_i$ model if R is reflexive and transitive, and a 3- $S5_i$ model if R is an equivalence relation.

3.6 We define $3-M_i$ validity, $3-S4_i$ validity, and $3-S5_i$ validity in the same manner as we defined $3-K_i$ validity.

4 Formal systems Now we introduce the formal systems $3-K_3$, $3-M_3$, $3-S4_3$, and $3-S5_3$ by using Takahashi's matrix. Henceforth K, L, M, etc. stand for matrices.

 $4.1 \ 3-K_3$

A matrix of the form {A}₁ ∪ {A}₂ ∪ {A}₃ is called a beginning matrix.
 Inference rules:

(1) Weakening

$$\frac{L}{K} \text{ (if } L \subset K \text{)}$$

(2) Cut

$$\frac{L \cup \{A\}_{\mu}, K \cup \{A\}_{\nu}}{L \cup K} \ (\mu \neq \nu)$$

(3) Inference for propositional connectives: Let $f_i(\mu_1, \ldots, \mu_{\alpha_i}) = \mu$

$$\frac{L \cup \{A_1\}_{\mu_1}, \ldots, L \cup \{A_{\alpha_i}\}_{\mu_{\alpha_i}}}{L \cup \{F_i(A_1, \ldots, A_{\alpha_i})\}_{\mu}}$$

(4) Inferences for modal connectives:

$$\frac{\{A\}_1 \cup \{A, \Gamma, \Sigma\}_2 \cup \{\Sigma\}_3}{\{\Box A\}_1 \cup \{\Box A, \Box \Gamma, \Box \Sigma\}_2 \cup \{\Box \Sigma\}_3} (\Box_{1,2}^K)$$
$$\frac{\{A\}_1 \cup \{\Gamma, \Sigma\}_2 \cup \{A, \Gamma\}_3}{\{\Box A\}_1 \cup \{\Box \Gamma, \Box \Sigma\}_2 \cup \{\Box A, \Box \Gamma\}_3} (\Box_{1,3}^K)$$

where Γ , Σ , etc. mean (void or nonvoid) series of formulas and $\Box\Gamma$ denotes the set { $\Box B: B \in \Gamma$ }.

(3) Provable matrices: A matrix is called $3-K_3$ -provable if it is obtained from beginning matrices by a finite number of applications of the above inference rules. We write $\vdash L$ (in $3-K_3$) if L is provable in $3-K_3$.

4.2 3-M₃ 3-M₃ is obtained from 3-K₃ by adding the following rules $\Box_{2,3}^M$ and \Box_2^M .

$$\frac{\{\Gamma\}_1 \cup \{\Delta, \Sigma\}_2 \cup \{\Delta, \Pi\}_3}{\{\Gamma\}_1 \cup \{\Box \Delta, \Sigma\}_2 \cup \{\Box \Delta, \Pi\}_3} (\Box_{2,3}^M)$$
$$\frac{\{\Gamma\}_1 \cup \{A, \Sigma\}_2 \cup \{\Delta\}_3}{\{\Gamma\}_1 \cup \{\Box A, \Sigma\}_2 \cup \{\Delta\}_3} (\Box_2^M).$$

4.3 3-S4₃ 3-S4₃ is obtained from 3- M_3 by replacing the rules $\Box_{1,2}^K$ and $\Box_{1,3}^K$ by the following rules:

$$\frac{\{A\}_1 \cup \{\Box\Gamma, \Box\Sigma\}_2 \cup \{\Box\Gamma\}_3}{\{\BoxA\}_1 \cup \{\Box\Gamma, \Box\Sigma\}_2 \cup \{\Box\Gamma\}_3} (\Box_1^{S4})$$
$$\frac{\{A\}_1 \cup \{\Box\Gamma, \Box\Sigma\}_2 \cup \{A, \Box\Gamma\}_3}{\{\BoxA\}_1 \cup \{\Box\Gamma, \Box\Sigma\}_2 \cup \{\BoxA, \Box\Gamma\}_3} (\Box_{1,3}^{S4}).$$

4.4 3-S5₃ 3-S5₃ is obtained from 3-S4₃ by replacing the rules \Box_1^{S4} and $\Box_{1,3}^{S4}$ by the following rules:

$$\frac{\{A,\Box\Gamma\}_{1}\cup\{\Box\Delta\}_{2}\cup\{\Box\Sigma\}_{3}}{\{\Box A,\Box\Gamma\}_{1}\cup\{\Box\Delta\}_{2}\cup\{\Box\Sigma\}_{3}}(\Box_{1}^{S5})$$
$$\frac{\{A,\Box\Gamma\}_{1}\cup\{\Box\Delta\}_{2}\cup\{A,\Box\Sigma\}_{3}}{\{\Box A,\Box\Gamma\}_{1}\cup\{\Box\Delta\}_{2}\cup\{\BoxA,\Box\Sigma\}_{3}}(\Box_{1,3}^{S5}).$$

4.5 We define $3-M_3$ provability, $3-S4_3$ provability and $3-S5_3$ provability in the same manner as we defined $3-K_3$ provability.

4.6 3- K_2 is obtained from 3- K_3 by adding the following beginning matrix: $\{\Box A\}_1 \cup \{\Box A\}_3$.

4.7 We define $3-M_2$, $3-S4_2$, and $3-S5_2$ in the same manner as we defined $3-K_2$.

OSAMU MORIKAWA

5 Syntax of the systems We can easily prove the following lemmas.

5.1 Lemma

The rules □^K_{1,2} and □^K_{1,3} are admissible in 3-S4_i.
 The rules □^{S4}₁ and □^{S4}_{1,3} are admissible in 3-S5_i.

(3) The following rule $\Box_{1,2}^{S5}$ is admissible in 3-S5_i.

$$\frac{\{A,\Box\Gamma\}_1 \cup \{A,\Box\Sigma\}_2 \cup \{\Box\Delta\}_3}{\{\Box A,\Box\Gamma\}_1 \cup \{\Box A,\Box\Sigma\}_2 \cup \{\Box\Delta\}_3} (\Box_{1,2}^{S5})$$

5.2 Lemma

(1) $\vdash \{A\}_1 \cup \{\Box A\}_2 \cup \{A\}_3 \text{ in } 3-M_i, 3-S4_i, \text{ and } 3-S5_i.$ $(2) \vdash \{A\}_1 \cup \{\Box A\}_2 \cup \{\Box A\}_3 \text{ in } 3-M_i, 3-S4_i, \text{ and } 3-S5_i.$ (3) $\vdash \{\Box \Box A\}_1 \cup \{\Box A\}_2 \cup \{\Box A\}_3 \text{ in } 3\text{-}S4_i \text{ and } 3\text{-}S5_i.$ (4) $\vdash \{\Box \Box A\}_1 \cup \{\Box A\}_2 \cup \{\Box \Box A\}_3 \text{ in } 3\text{-}S4_i \text{ and } 3\text{-}S5_i.$

5.3 Theorem 1 The cut inference rule cannot be eliminated in $3-K_i$, $3-M_i$, $3-S4_i$, and $3-S5_i$.

Proof: We give an example of a provable matrix which is not provable without using the cut inference rules.

(1) In the case of $3-K_i$ and $3-M_i$: Let F(*) be a propositional connective with the associated function f from T to T which is defined by f(1) = f(2) =f(3) = 1.

$$\frac{\{A\}_1 \cup \{A\}_2 \cup \{A\}_3}{\{A, F(A)\}_1 \cup \{A\}_2}}{\frac{\{F(A), F(A)\}_1 \cup \{A\}_2}{\{F(A)\}_1}} \quad \therefore \vdash \{F(A)\}_1$$

Hence by weakening $\vdash \{F(A)\}_1 \cup \{F(A)\}_2$ and $\vdash \{F(A)\}_1 \cup \{F(A)\}_3$.

$$\frac{\{F(A)\}_{1} \cup \{F(A)\}_{2}}{\{\Box F(A)\}_{1} \cup \{\Box F(A)\}_{2}} (\Box_{1,2}^{K}) - \frac{\{F(A)\}_{1} \cup \{F(A)\}_{3}}{\{\Box F(A)\}_{1} \cup \{\Box F(A)\}_{3}} (\Box_{1,3}^{K})}{\frac{\{\Box F(A)\}_{1} \cup \{\Box F(A)\}_{1}}{\{\Box F(A)\}_{1}}} (\text{Weakening})} (2 \neq 3)$$

Therefore $\vdash \{\Box F(A)\}_1$ in 3- K_i and 3- M_i . But it is evident that $\{\Box F(A)\}_1$ is not provable without the cut inference rules.

(2) In the case of 3-S4_i and 3-S5_i: Let G(*) be a propositional connective with the associated function g from T to T which is defined by g(1) = g(2) =g(3) = 3. Similarly we can prove $\{G(A)\}_1 \cup \{G(A)\}_3$ and $\{G(A)\}_2 \cup \{G(A)\}_3$.

$$\frac{\{G(A)\}_1 \cup \{G(A)\}_3}{\{\Box G(A)\}_1 \cup \{\Box G(A)\}_3} (\Box_{1,3}^K) \quad \frac{\{G(A)\}_2 \cup \{G(A)\}_3}{\{\Box G(A)\}_2 \cup \{\Box G(A)\}_3} (\Box_{2,3}^M)} \\ \frac{\{\Box G(A)\}_3 \cup \{\Box G(A)\}_3 \cup \{\Box G(A)\}_3}{\{\Box G(A)\}_3} \text{ (Weakening)}$$

By Lemma 5.1 $\vdash \{\Box G(A)\}_3$ in 3-S4, and 3-S5. But it is evident that $\{\Box G(A)\}_3$ is not provable without using the cut inference rules.

134

MODAL LOGICS

6 Semantics of $3-K_i$, $3-M_i$, $3-S4_i$, and $3-S5_i$.

6.1 Theorem 2 (Soundness Theorem) If a matrix is provable in $3-K_i$, $3-M_i$, $3-S4_i$, or $3-S5_i$, then it is valid in $3-K_i$, $3-M_i$, $3-S4_i$, or $3-S5_i$, respectively.

Proof: This can easily be proved by induction on the construction of a proof of the given matrix.

6.2 Lemma If L is G-unprovable, then for any formula $A, L \cup \{A\}_1 \cup \{A\}_2 \text{ or } L \cup \{A\}_1 \cup \{A\}_3 \text{ or } L \cup \{A\}_2 \cup \{A\}_3 \text{ is G-unprovable.}$

Proof: Suppose that $L \cup \{A\}_1 \cup \{A\}_2$, $L \cup \{A\}_1 \cup \{A\}_3$, and $L \cup \{A\}_2 \cup \{A\}_3$ are *G*-provable. By using the cut inference rules we can prove that *L* is *G*-provable.

6.3 Let the matrix K be fixed. We denote the set of subformulas of formulas occurring in K by FL(K). If the matrix L is G-unprovable and for any $A \in FL(K)$, $A \in L_1 \cap L_2$ or $A \in L_1 \cap L_3$ or $A \in L_2 \cap L_3$, we call L G-complete. We denote the set of G-complete matrices by $C_G(K)$.

6.4 Lemma (Lindenbaum's Lemma) If L is G-unprovable, there exists an N such that (1) $N \in C_{-}(K)$

(1) $N \in C_G(K)$ (2) $N \supset L$ for any u

(2) $N_{\mu} \supset L_{\mu}$ for any $\mu \in \mathbf{T}$.

Proof: We fix an enumeration of $FL(K), B_1, B_2, \ldots, B_m$. We define $N_n(n = 0, 1, \ldots, m)$ as follows:

$$N_0 = L$$

 $N_{n+1} = \begin{cases} N_n \cup \{B_{n+1}\}_1 \cup \{B_{n+1}\}_2, \text{ if } N_n \cup \{B_{n+1}\}_1 \cup \{B_{n+1}\}_2 \text{ is consistent} \\ N_n \cup \{B_{n+1}\}_1 \cup \{B_{n+1}\}_3, \text{ if } N_n \cup \{B_{n+1}\}_1 \cup \{B_{n+1}\} \text{ is consistent} \\ N_n \cup \{B_{n+1}\}_2 \cup \{B_{n+1}\}_3, \text{ otherwise.} \end{cases}$

We put $N = \bigcup_{n=0}^{m} N_n$. It is evident that N satisfies (1) and (2).

6.5 Lemma For any $A \in FL(K)$, $L \in C_G(K)$, and $\lambda, \mu, \nu \in \mathbf{T}$ where λ, μ, ν are distinct,

$$A \in L_{\mu} iff \vdash L_{\mu} \cup \{A\}_{\lambda} \cup \{A\}_{\nu}.$$

Proof: Left-to-right is trivial. For right-to-left, suppose that $A \notin L_{\mu}$ and $\vdash L_{\mu} \cup \{A\}_{\lambda} \cup \{A\}_{\nu}$. Since $L \in C_G(K)$, $A \in L_{\lambda} \cap L_{\nu}$. So $\vdash L$. This is a contradiction.

We can easily prove the following lemmas.

6.6 Lemma For any $\Box A \in FL(K)$ and $L \in C_{3-M_i}(K)$ (1) If $\Box A \in L_2$, then $A \in L_2$. (2) If $\Box A \in L_2 \cap L_3$, then $A \in L_2 \cap L_3$. **6.7 Lemma** For any $\Box A \in FL(K)$ and $L \in C_{3-S4_i}(K)$ (1) If $\Box A \in L_2$, then $\Box \Box A \in L_2$. (2) If $\Box A \in L_2 \cap L_3$, then $\Box \Box A \in L_2 \cap L_3$. **6.8** We prove the completeness theorem by a powerful method of a canonical model for $G(G = 3-K_i, 3-M_i, 3-S4_i, 3-S5_i)$. We define the canonical *G*-model $\mathcal{C}_G = (C_G(K), R_G, \phi_G)$ ($G = 3-K_i, 3-M_i, 3-S4_i$) as follows:

- (1) LR_GN iff $\Box A \in L_2$ implies $A \in N_2$ and $\Box A \in L_2 \cap L_3$ implies $A \in N_2 \cap N_3$.
- (2) $\phi_G(p,L) = \mu$ iff $p \in L_{\hat{\mu}}(\mu = 1,2,3)$.

Similarly we define the canonical 3-S5_i-model $\mathcal{C}_{3-S5_i} = (C_{3-S5_i}(K), R_{3-S5_i}, \phi_{3-S5_i})$ as follows:

- (1) $LR_{3-S5_i}N$ iff $\Box A \in L_{\mu}$ implies $\Box A \in N_{\mu}$ ($\mu = 1,2,3$).
- (2) $\phi_{3-S5_i}(p,L) = \mu$ iff $p \in L_{\hat{\mu}}$ $(\mu = 1,2,3)$.

6.9 Lemma \mathcal{C}_G is a G model.

Proof: (1) In the case $G = 3-K_i$: immediate from the definition.

- (2) In the case $G = 3-M_i$: by Lemma 6.6 \mathbb{C}_G is a G-model.
- (3) In the case $G = 3-S4_i$: by Lemmas 6.6 and 6.7 \mathcal{C}_G is a G-model.

(4) In the case $G = 3-S5_i$: it is sufficient to show that LR_GN implies NR_GL . Suppose it is not the case that $\Box A \in L_{\mu}$. Because $L \in C_G(K)$, $\Box A \in L_{\lambda} \cap L_{\nu}$, by the assumption $\Box A \in N_{\lambda} \cap N_{\nu}$. Therefore it is not the case that $\Box A \in N_{\mu}$.

6.10 Lemma For any $L \in C_G(K)$ and $A \in FL(K)$

$$\phi_G(A,L) = \mu \text{ if } A \in L_{\hat{\mu}}.$$

Proof: We prove it by induction on the length of A. In the case of $A = F_i(B_1, \ldots, B_{\alpha_i})$, we can prove it as in [3]. Therefore we only consider the case of $A = \Box B$.

I. In the case of $G = 3-K_3$ or $3-M_3$:

- I(1). $\mu = 1$: Suppose $\Box B \in L_1 = L_2 \cap L_3$. For any N such that $LR_GN, B \in N_1 = N_2 \cap N_3$. By the induction hypothesis, $\phi_G(B,N) = 1$. Hence $\phi_G(\Box B,L) = 1$.
- I(2). $\mu = 2$: Suppose $\Box B \in L_2 = L_1 \cap L_3$. Since $\{\Box B\}_1 \cup \{\Box C \in L_2, \Box D \in L_2 \cap L_3\}_2 \cup \{\Box B, \Box D \in L_2 \cap L_3\}_3$ is *G*-unprovable as a restriction of L, $\{B\}_1 \cup \{C; \Box C \in L_2\}_2 \cup \{D; \Box D \in L_2 \cap L_3\}_2 \cup \{B\}_3 \cup \{D; \Box D \in L_2 \cap L_3\}_3$ is also *G*-unprovable. By Lemma 6.4 there exists an *N* such that LR_GN , $B \in N_1 \cap N_3 = N_2$. By the induction hypothesis $\phi_G(B,N) = 2$. Hence $\phi_G(\Box B,L) = 2$.

I(3). $\mu = 3$: Similar to I(1), I(2).

- II. In the case of $G = 3-S4_3$: By Lemma 5.1, we can prove it as in I. III. In the case of $G = 3-S5_3$:
 - III(1). $\mu = 1$: Suppose $\Box B \in L_1 = L_2 \cap L_3$. Let N be such that LR_GN . By the definition of R_G and Lemma 6.6 $B \in N_2 \cap N_3$. Therefore, by the induction hypothesis, $\phi_G(B,N) = 1$. Hence $\phi_G(\Box B,L) = 1$.
 - III(2). $\mu = 2$: Suppose $\Box B \in L_2 = L_1 \cap L_3$. Since $\{\Box B, \Box C \in L_1\}_1 \cup \{\Box D \in L_2\}_2 \cup \{\Box B, \Box E \in L_3\}_3$ is *G*-unprovable as a restriction of *L*, by $\Box_{1,3}^{S5} \{B, \Box C \in L_1\}_1 \cup \{\Box D \in L_2\}_2 \cup \{B, \Box E \in L_3\}_3$ is also *G*-unprovable. By Lemma 6.4,

136

there exists an N such that LR_GN and $B \in N_1 \cap N_3$. By the induction hypothesis $\phi_G(B,N) = 2$. Hence $\phi_G(\Box B, L) = 2$.

III(3). $\mu = 3$: We can prove it as in III(1), III(2).

IV. In the case of $G = 3-K_2$ or $G = 3-M_2$ or $G = 3-S4_2$ or $G = 3-S5_2$: We now show that $\Box B \in L_2$ cannot hold, so that in view of cases I, II, and III above, $\phi_G(\Box B, L) = 2$ cannot obtain. If $\Box B \in L_2$, then by the beginning matrix $\{\Box B\}_1 \cup \{\Box B\}_3$ we can prove that L is G-provable. This is a contradiction.

6.11 From Lemmas 6.9 and 6.10 we have the following completeness theorem:

Theorem III (Completeness Theorem) If a matrix is valid in $3-K_i$, $3-M_i$, $3-S4_i$, or $3-S5_i$, then it is provable in $3-K_i$, $3-M_i$, $3-S4_i$, or $3-S5_i$ respectively.

REFERENCES

- Miura, S., "Embedding of modal predicate systems into lower predicate calculus," *The Annals of the Japan Association for Philosophy of Science*, vol. 6 (1983), pp. 147-160.
- [2] Schotch, P. K., J. B. Jensen, P. F. Larsen, and E. J. Maclellan, "A note on threevalued modal logic," *Notre Dame Journal of Formal Logic*, vol. 14 (1978), pp. 63-68.
- [3] Takahashi, M., "Many-valued logics of extended Gentzen style," Science Reports of Tokyo Kyoiku Daigaku Section A, vol. 9 (1967), pp. 271-292.

Fukushima Technical College Nagao 30, Kamiarakawa Taira Iwaki, Fukushimaken, Japan