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Some Modal Logics Based on

a Three-Valued Logic

OSAMU MORIKAWA

1 Introduction A ^-modal logic based on Lukasiewicz's three-valued logic
has been formulated by Schotch [2]. In this paper we formulate K-, M-, 54-, and
55-modal logics based on a general three-valued logic by using the notion of a
matrix in [3].

In Section 2, we define truth values, formulas, and matrices. In Section 3,
we introduce three-valued Kripke models defined in [1]. In Section 4, we pre-
sent the systems K, M, 54, and 55 of modal logic based on a general three-
valued logic (3-K3, 3-K2, 3-M3, 3-Af2, 3-543, 3-542, 3-S53, and 3-552). 3-K3,
3-M3, 3-543, and 3-553 are modal logics based on a three-valued logic in which
the modal operators take on all three of our truth-values. 3-K2, 3-M2, 3-542,
and 3-552 are modal logics based on a three-valued logic in which the modal
operators take only the two classical truth-values. In Section 5, we develop the
syntax of $-Kh 3-Mh 3-54/, and 3-55/ (/ = 2,3) and it will be shown that the
cut-elimination theorems no longer hold in 3-Kh 3-Mh 3-54/, and 3-55/. In Sec-
tion 6, we prove the completeness theorems for 3-Kh 3-Mh 3-54/, and 3-55/.

2 Matrices

2.1 Truth values We take 1,2, and 3 as truth-values. Intuitively ' Γ stands
for 'true' and '3 ' for 'false', whereas '2' may be interpreted as 'undefined' or
'meaningless'.

We denote the set of all the truth values by T. T = {1,2,3}.

2.2 Primitive symbols

(1) Propositional variables: p, q, r, etc.
(2) Propositional connectives:

Ή ( * i , . . . A O = i= I ,2, . . . , j8 ,a/^ 1.
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With each Ft we associate a function/; from Tα/ into T. We call/ the
truth function of JF) .

(3) Modal symbol: D.
(4) Auxiliary symbols: (, ).

2.3 Definition of a formula

(1) A propositional variable is a formula.
(2) If Λu... ,Aa. are formulas, then Fj{Aι,... ,Aαι) is a formula (/ =

(3) If yl is a formula, then Π\A is a formula.

2.4 Matrices Gentzen's sequent A\,... ,^4W -> Bx,... 9Bn means intuitively
that some formula of A\,... ,Am is false or some formula of Bx,... ,Bn is true.

The truth-value 1 corresponds to the succedent and the truth-value 3 cor-
responds to the antecedent. We extend the notion of a sequent to three-valued
logic.

When A μ ) (μ = 1,2,3; / = 1,2,... ,raμ; mμ > 0) are formulas, we call the
following ordered triple of finite sets of formulas a matrix:

We call A\l),... 9A% or A[2),... ,A^2 or A[3),... ,A%1 the 1-part or
the 2-part or the 3-part respectively. The matrix [A[1\. .. M ^ h U {A^\
. . . ,A%1 }i U (ylί3 ),... ,̂ 4^3 )3 means intuitively that some formula of A[l),
. . . ,Aml is false or some formula of A^,... 9A^l is undefined or some for-
mula of A[3),.. .A™ is true.

2.5 Abbreviations

(1) When L is a matrix, we denote the series of formulas occurring in the
/-part of L by Z,z .

(2) When mμ = 0 for all μ G T, we denote this matrix by Φ and call it the
empty matrix.

(3) Let R c T. The matrix such that mμ = 1 and A\μ) = 4̂ for all μ G
.R and mμ — 0 for all μ ^ î  is abbreviated by {A}R. In particular,
[A}τ_{μ] is denoted by {A}μ. {A}[μit...tμj] is denoted by {Λ}μi>...,μ</.

(4)For matrices L,Mwe put L U M = (L^Mjli U {L2,M2}2 U {L3,
M3}3.

(5) We write L C M, if for all μ E T every formula which occurs in Zμ

also occurs in Mμ.

3 Kripke models

3.1 Definition of a Kripke model A 3-̂ Γ3 model is a structure ΐί\l = (W,R,φ)
where

(1) W is a nonempty set
(2) /? is a binary relation on PΓ
(3) For all s G Wand every propositional variable/?, φ(p,s) assigns a truth-

value in T.



132 OSAMU MORIKAWA

3.2 Given any 3-K3 model 3ΪI, the truth value φ(A,s) of a formula A at s
is defined as follows:

(1) φ(Fi(Al9... 9Aa.)9s) =MΦ(Al9s),. . .,φ(Aaι,s))

1, if for all / such that sRt, φ(A,t) = 1.

π , , .Γ-, . v _ I 2, if there exists a ί such that sRt and </>(̂ 4,0 = 2.

3, if for all t such that sRt, Φ(A9t) Φ 2 and there

^ exists a u such that si?w and φ(A,u) = 3.

5.5 3-K2 models Now, a 3-Â 2 model is obtained from a 3-K3 model by
replacing (2) in 3.2 by the following (2').

Γl, if for all t such that sRt, φ(A,t) = 1
(2') φ(ΠA9s) =

[3, otherwise.

3.4 A matrix L = {Ay,... ,A%)

1}1 U [A?\ ... 9A%}2 U { > l ί 3 ) , . . . ,

^1^3 }3 is called 3 - ^ valid if for all 3-Kt models 9TCZ and any 5 G W9 there exists

an >ljμ ) in L such that φ(^4Jμ) ,s) = μ. In the case where m2 = 0, this definition

is consistent with the classical definition of the validity of a sequent.

5.5 Let 911/ be a 3-Kt model. We say that 9TZ, is a 3-M/ model if Z? is reflex-
ive, a 3-S4z model if i? is reflexive and transitive, and a 3-55/ model if R is an
equivalence relation.

3.6 We define 3-M/ validity, 3-S4, validity, and 3-55/ validity in the same
manner as we defined 3-AT, validity.

4 Formal systems Now we introduce the formal systems 3-K3, 3-M3, 3-543,
and 3-553 by using Takahashi's matrix. Henceforth K, L, M, etc. stand for
matrices.

4.1 3-K3

(1) A matrix of the form {A}γ U {A}2 U {A}3 is called a beginning matrix.
(2) Inference rules:

(1) Weakening

^(ifLCK)
A

(2) Cut

Z , υ ( Λ } μ > A U { , 4 } , ,

ΓTJ^ ^ ^ ^
(3) Inference for propositional connectives: L e t / ( μ 1 ( . . . ,μa.) — μ

LU{Aι}μi,...,LU{Aa,}μa

LU[Fi(Aι,...,Aaι))μ
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(4) Inferences for modal connectives:

[AhU{A9Γ,Σ}2U{Σh ( Ώ K )

[ΏA}X U { D ^ , D Γ , Π Σ } 2 U {ΠΣ}3

 U2)

lA}ιU{T,Σ}2U{A9Th ( π K )

where Γ, Σ, etc. mean (void or nonvoid) series of formulas and DΓ
denotes the set [ΠB: ΰ e Γ j .

(3) Provable matrices: A matrix is called 3-^-provable if it is obtained
from beginning matrices by a finite number of applications of the above
inference rules. We write \~L (in 3-K3) if L is provable in 3-K3.

4.2 3-M3 3-M3 is obtained from 3-K3 by adding the following rules Ώjfe
and D f .

{ Γ h U { Δ , Σ } 2 U { Δ , Π } 3 M

{ Γ h U { D Δ , E } 2 U { D Δ , Π } 3

 2 ' 3

{ Γ ) 1 U { ^ , Σ ) 2 U { Δ } 3 M

j Γ ) 1 U ( D Λ Σ ) 2 U ( Δ ) 3

 2)'

4.3 3-S43 3-543 is obtained from 3-M3 by replacing the rules Df;2 and Πf;3

by the following rules:

ίAhUίΠT9ΏΣ]2U{ΏTh ί D s 4 )

{D^l^fDΓ.DΣhUfDΓla l

[AhU IΠΓ9ΠΣ]2U IA9DT)3 S4

{ΠA}! U {DΓ,DΣ}2 U {DΛ,DΓ}3

 u

4.4 3-S53 3-553 is obtained from 3-543 by replacing the rules Π f and D $
by the following rules:

μ ) D Γ ) 1 U j D Δ ] 2 U { D Σ ) 3 S5

[ΠA9ΠΓ}1 U (DΔ}2U {GΣ}3

 l

M , D Γ 1 1 U ( D Δ ) 2 U ( Λ D Σ ) 3 ss)

lDA9DTh U {ΠΔ}2 U [ΏA9ΠΣ}3

 u

4.5 We define 3-M3 provability, 3-S43 provability and 3-553 provability in
the same manner as we defined 3-K3 provability.

4.6 3-K2 is obtained from 3-̂ Γ3 by adding the following beginning matrix:

4.7 We define 3-M2, 3-542, and 3-S52 in the same manner as we defined
3-K2.
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5 Syntax of the systems We can easily prove the following lemmas.

5.1 Lemma
(1) The rules Df2 and Df3 are admissible in 3-54,.
(2) The rules D?4 and Dfj are admissible in 3-55,-.
(3) The following rule Df>2 w admissible in 3-55/.

{^,DΓ}1U{>1,DΣ}2U{DΔ}3 5 5

( D Λ D Γ h U I D Λ D Σ h U f D Δ l a 1 U

5.2 Lemma
(1) V[A)X \J{ΏΛ}2Ό {A}3 in 3-Mh 3-54/, and 3-55/.
(2) \-[A)ι U {Q/4}2 U {Dv4j3 in 3-Mh 3-54/, α/irf 3-55/.
(3) H D D ^ h U {ΠA}2 U {ΠAh in 3-54/ α/id 3-S5/.
(4) \-{ΠΠA}ι U {D^} 2U {DDv4}3 //i 3-54/am/3-55,.

5.3 Theorem 1 The cut inference rule cannot be eliminated in 3-Kh 3-Mh

3-54/, and 3-55/.

Proof: We give an example of a provable matrix which is not provable without
using the cut inference rules.

(1) In the case of 3-Kt and 3-M,: Let F(*) be a propositional connective

with the associated function / from T to T which is defined by /(1) = /(2) =

/(3) = 1.

[A9F(A)hU{A}2

lF(A),F(A)hU[A}2

{F{A)}{ :.\-{F(A)}{.

Hence by weakening \-{F(A)\x U {F(A)}2 and \-{F(A)}ι U {F(A)}3.

[F(A)}ιU{F(A)}2 {F(A)h U [F(A)h κ

{ΠF(A)}xΌiΠF{A)}2

K U2) {ΠFWhUlΠFjA)}^ ι'3)

 φ

ΪUFΪA)), (Weakening)

Therefore \-{ΠF(A)}1 in 3-Kj and 3-M,. But it is evident that {ΠF(A)}1 is not
provable without the cut inference rules.

(2) In the case of 3-54/ and 3-55/: Let G(*) be a propositional connective
with the associated function g from T to T which is defined by g(l) = g(2) =
g(3) = 3. Similarly we can prove [G(A)h U {G(A)}3 and {G(A)}2 U [G(A)}3.

[G(A))xU[G(A)h ( π K ) l G ( i 4 ) ) 2 U ( G U ) l 3 M

( D G ^ h U I D G ^ 1 U3) jΠG(A)}2U{ΠG(A)h^ 2 > 3 J

 φ

By Lemma 5.1 \-{Π\G(A)}3 in 3-54/ and 3-55/. But it is evident that {ΠG(A)}3

is not provable without using the cut inference rules.
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6 Semantics of 3-Kh 3-Mh 3-S4h and 3-S5i.

6.1 Theorem 2 (Soundness Theorem) If a matrix is provable in 3-Kh 3-Mh

3-54/, or 3-55/, then it is valid in 3-Kh 3-Mh 3-S4h or 3-S5h respectively.

Proof: This can easily be proved by induction on the construction of a proof
of the given matrix.

6.2 Lemma If L is G-unprovable, then for any formula A, L\J {A\X\J
{A}2orL U [Ah U {A}3 or L U [A)2U {A}3 is G-unprovable.

Proof: Suppose t h a t L U [Ah U {A}2,LΌ{A}1 U [A}3, a n d L U [A}2Ό {A}3

are G-provable. By using the cut inference rules we can prove that L is G-provable.

6.3 Let the matrix K be fixed. We denote the set of subformulas of formulas
occurring in K by FL(K). If the matrix L is G-unprovable and for any A G
FL(K), A e Lx Π L2 or A e Lγ Π L3 or A G L2 Π L3, we call L G-complete.
We denote the set of G-complete matrices by CG(K).

6.4 Lemma (Lindenbaum's Lemma) If L is G-unprovable, there exists an
N such that
(I)NGCG(K)

(2) Nμ D Lμ for any μ e T.

Proof: We fix an enumeration of FL{K),BUB2,... ,Bm. We define Nn(n =
0,1, . . . ,m) as follows:

pV,, U {ΛΛ+1h U {^+1}2, if iVΛ U {fiΛ+1h U [Bn+ι}2 is consistent

N Λ + 1 = ΪNnΌ ( 5 Λ + 1 h U {5Λ + 1}3,ifiVπU {fiΛ +i)iU {BΛ+1} is consistent

[TV; U {fiΛ+1}2 U {Bn+ι}3, otherwise.

m

We put TV = \J Nn. It is evident that TV satisfies (1) and (2).

6.5 Lemma For any A ^FL(K), L e C G ( ί ) , andλ,μ,p£ T w/*ere λ, μ,
v are distinct,

Proof: Left-to-right is trivial. For right-to-left, suppose that Aφ.Lμ and \~Lμ U
{A}λ U {/I},. Since L G CG(K), AGLλΠ LV. SO h£. This is a contradiction.

We can easily prove the following lemmas.

6.6 Lemma For any ΏA G FL(K) and L G C3.Mi{K)

(1) // ΏA G L2, ίΛβΛ ^ G L 2 .
(2) // D^GL 2 Π L3, then AeL2ΓιL3.

6.7 Lemma For any UA G FL(ΛΓ) w d L G 03.54, (A')
( 1 ) / / D ^ G L 2 , /Λe/2 D D ^ G L 2 .
(2) // ΠA<EL2Π L3, then ΏΏA G L2 Π L 3 .
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6.8 We prove the completeness theorem by a powerful method of a canon-
ical model for G(G = 3-Kh 3-Mn 3-S4h 3-55,). We define the canonical G-
model CG = (CG(K)9RG,φG) (G = 3-Kh 3-Mh 3-S4, ) as follows:

(1) LRGN iff DA E L2 implies A E N2 and ΠA eL2Π L3 implies A E
iv2niV3.

(2) ψ G ( A l ) = μ iff/? G LA(μ = 1,2,3).

Similarly we define the canonical 3-S5,-model β3_S5/ = (C3_S5.(K),R3_S5ii

Φ3-S5,) as follows:

(1) LR3_S5iN iff ΠA E Lμ implies DA e Nμ (μ = 1,2,3).

(2) Φ3S5t(P,L) = μ iff/? G ^ ( μ = 1,2,3).

6.9 Lemma CG zs # G model.

Proof: (1) In the case G = 3-AΓ/: immediate from the definition.
(2) In the case G = 3-M, : by Lemma 6.6 β G is a G-model.
(3) In the case G = 3-S4,-: by Lemmas 6.6 and 6.7 GG is a G-model.
(4) In the case G = 3-S5, : it is sufficient to show that LRG TV implies NRGL.

Suppose it is not the case that ΠA G Lμ. Because L E CG(K), ΠA G L λ Π Lv,
by the assumption DA GNλΠ Nv. Therefore it is not the case that ΠA E Nμ.

6.10 Lemma For any L E CG(K) and A E FL(K)

φG(A,L)=μifAELμ.

Proof: We prove it by induction on the length of A. In the case of A =
Fi(Bι,... ,Ba), we can prove it as in [3]. Therefore we only consider the case
oϊA = DA

I. In the case of G = 3-K3 or 3-M3:
1(1). μ = 1: Suppose D2? G L\ = L2 Π L3. For any N such that

LRGN, BENι=N2ΠN3. By the induction hypothesis,
φG(B,N) = 1. Hence φG(ΠB,L) = 1.

1(2). μ = 2: Suppose D ^ G L ^ ^ i Π L3. Since [DBj, U {DC E
L2, ΠD<ΞL2Γ)L3}2U {ΠB9ΠD G L2 (Ί L3}3 is G-un-
provable as a restriction of L, {B}x U {C D C E L2}2 U
(D DD E L 2 Π L 3} 2 U [^}3 U {Z);DZ> <ΞL2Γ\ L3}3 is
also G-unprovable. By Lemma 6.4 there exists an TV such
that LRGN, B E Nx Π 7V3 = N2. By the induction
hypothesis φG(B,N) = 2. Hence φ G (D5,L) = 2.

1(3). μ = 3: Similar to 1(1), 1(2).
II. In the case of G = 3-S43: By Lemma 5.1, we can prove it as in I.

III. In the case of G = 3-S53:
III(l). μ = 1: Suppose ΠB E L\ = L2 Π L3. Let Â  be such that

LRGN. By the definition of RG and Lemma 6.6 B E
N2 Π N3. Therefore, by the induction hypothesis,
φG(B,N) = 1. Hence φG(ΠB,L) = 1.

111(2).μ = 2: Suppose ΠBeL2 = L{ ΠL3. Since {DB,DCeLx}i U
{ΠD E L2}2 U {D£,D£ E L3}3 is G-unprovable as a
restriction of L, by D f s l ^ D C G A h U {Di)EZ 2 } 2 U
{B,ΠE E L3}3 is also G-unprovable. By Lemma 6.4,
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there exists an N such that LRGN and B G Nλ Π N3.
By the induction hypothesis φG(B,N) = 2. Hence
φG(ΠB,L)=2.

111(3). μ = 3: We can prove it as in III(1),III(2).
IV. In the case of G = 3-K2 or G = 3-M2 or G = 3-S42 or G = 3-S52: We

now show that ΏB G Z^ cannot hold, so that in view of cases I, II, and III
above, φG(ΠB,L) = 2 cannot obtain. If ΏB G £2> then by the beginning
matrix (Πi?)! U {Π^) 3 we can prove that L is G-provable. This is a con-
tradiction.

6.11 From Lemmas 6.9 and 6.10 we have the following completeness
theorem:

Theorem III (Completeness Theorem) If a matrix is valid in 3-Kh 3-Mh

3-S4h or 3-S5lf then it is provable in 3-Kh 3-Mh 3-S4h or 3-55/ respectively.

REFERENCES

[1] Miura, S., "Embedding of modal predicate systems into lower predicate calculus,"
The Annals of the Japan Association for Philosophy of Science, vol. 6 (1983), pp.
147-160.

[2] Schotch, P. K., J. B. Jensen, P. F. Larsen, and E. J. Maclellan, "A note on three-
valued modal logic," Notre Dame Journal of Formal Logic, vol. 14 (1978), pp.
63-68.

[3] Takahashi, ML, "Many-valued logics of extended Gentzen style," Science Reports
of Tokyo Kyoiku Daigaku Section A, vol. 9 (1967), pp. 271-292.

Fukushima Technical College
Nagao 30, Kamiarakawa Taira
Iwaki, Fukushimaken, Japan




