Some Modal Logics Based on
 a Three-Valued Logic

OSAMU MORIKAWA

1 Introduction A K-modal logic based on Łukasiewicz's three-valued logic has been formulated by Schotch [2]. In this paper we formulate K-, M-, $S 4$-, and $S 5$-modal logics based on a general three-valued logic by using the notion of a matrix in [3].

In Section 2, we define truth values, formulas, and matrices. In Section 3, we introduce three-valued Kripke models defined in [1]. In Section 4, we present the systems $K, M, S 4$, and $S 5$ of modal logic based on a general threevalued logic ($3-K_{3}, 3-K_{2}, 3-M_{3}, 3-M_{2}, 3-S 4_{3}, 3-S 4_{2}, 3-S 5_{3}$, and $3-S 5_{2}$). 3- K_{3}, 3- $M_{3}, 3-S 4_{3}$, and 3-S5 5_{3} are modal logics based on a three-valued logic in which the modal operators take on all three of our truth-values. 3- $K_{2}, 3-M_{2}, 3-S 4_{2}$, and $3-S 5_{2}$ are modal logics based on a three-valued logic in which the modal operators take only the two classical truth-values. In Section 5, we develop the syntax of $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, and $3-S 5_{i}(i=2,3)$ and it will be shown that the cut-elimination theorems no longer hold in $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, and 3-S5 5_{i}. In Section 6, we prove the completeness theorems for $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, and $3-S 5_{i}$.

2 Matrices

2.1 Truth values We take 1, 2, and 3 as truth-values. Intuitively ' 1 ' stands

 for 'true' and ' 3 ' for 'false', whereas ' 2 ' may be interpreted as 'undefined' or 'meaningless'.We denote the set of all the truth values by $\mathbf{T} . \mathbf{T}=\{1,2,3\}$.

2.2 Primitive symbols

(1) Propositional variables: p, q, r, etc.
(2) Propositional connectives:

$$
F_{i}\left(*_{1}, \ldots, *_{\alpha_{l}}\right)=i=1,2, \ldots, \beta, \alpha_{i} \geqq 1 .
$$

With each F_{i} we associate a function f_{i} from $\mathbf{T}^{\alpha_{i}}$ into \mathbf{T}. We call f_{i} the truth function of F_{i}.
(3) Modal symbol:
(4) Auxiliary symbols: (,).

2.3 Definition of a formula

(1) A propositional variable is a formula.
(2) If $A_{1}, \ldots, A_{\alpha_{i}}$ are formulas, then $F_{i}\left(A_{1}, \ldots, A_{\alpha_{t}}\right)$ is a formula ($i=$ $1, \ldots, \beta)$.
(3) If A is a formula, then $\square A$ is a formula.
2.4 Matrices Gentzen's sequent $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ means intuitively that some formula of A_{1}, \ldots, A_{m} is false or some formula of B_{1}, \ldots, B_{n} is true.

The truth-value 1 corresponds to the succedent and the truth-value 3 corresponds to the antecedent. We extend the notion of a sequent to three-valued logic.

When $A_{i}^{(\mu)}\left(\mu=1,2,3 ; i=1,2, \ldots, m_{\mu} ; m_{\mu} \geq 0\right)$ are formulas, we call the following ordered triple of finite sets of formulas a matrix:

$$
\left\{A_{1}^{(1)}, \ldots, A_{m_{1}}^{(1)}\right\}_{1} \cup\left\{A_{1}^{(2)}, \ldots, A_{m_{2}}^{(2)}\right\}_{2} \cup\left\{A_{1}^{(3)}, \ldots, A_{m_{3}}^{(3)}\right\}_{3} .
$$

We call $A_{1}^{(1)}, \ldots, A_{m_{1}}^{(1)}$ or $A_{1}^{(2)}, \ldots, A_{m_{2}}^{(2)}$ or $A_{1}^{(3)}, \ldots, A_{m_{3}}^{(3)}$ the 1-part or the 2-part or the 3-part respectively. The matrix $\left[A_{1}^{(1)}, \ldots, A_{m_{1}}^{(1)}\right\}_{1} \cup\left\{A_{1}^{(2)}\right.$, $\left.\ldots, A_{m_{2}}^{(2)}\right\}_{2} \cup\left\{A_{1}^{(3)}, \ldots, A_{m_{3}}^{(3)}\right\}_{3}$ means intuitively that some formula of $A_{1}^{(1)}$, $\ldots, A_{m_{1}}^{(1)}$ is false or some formula of $A_{1}^{(2)}, \ldots, A_{m_{2}}^{(2)}$ is undefined or some formula of $A_{1}^{(3)}, \ldots A_{m_{3}}^{(3)}$ is true.

2.5 Abbreviations

(1) When L is a matrix, we denote the series of formulas occurring in the i-part of L by L_{i}.
(2) When $m_{\mu}=0$ for all $\mu \in \mathbf{T}$, we denote this matrix by Φ and call it the empty matrix.
(3) Let $R \subseteq \mathbf{T}$. The matrix such that $m_{\mu}=1$ and $A_{1}^{(\mu)}=A$ for all $\mu \in$ R and $m_{\mu}=0$ for all $\mu \notin R$ is abbreviated by $\{A\}_{R}$. In particular, $\{A\}_{\mathbf{T}-\{\mu\}}$ is denoted by $\{A\}_{\hat{\mu}}$. $\{A\}_{\left\{\mu_{1}, \ldots, \mu_{j}\right\}}$ is denoted by $\{A\}_{\mu_{1}, \ldots, \mu_{j}}$.
(4) For matrices L, M we put $L \cup M=\left\{L_{1}, M_{1}\right\}_{1} \cup\left\{L_{2}, M_{2}\right\}_{2} \cup\left\{L_{3}\right.$, $\left.M_{3}\right\}_{3}$.
(5) We write $L \subset M$, if for all $\mu \in \mathbf{T}$ every formula which occurs in L_{μ} also occurs in M_{μ}.

3 Kripke models

3.1 Definition of a Kripke model A $3-K_{3}$ model is a structure $\mathfrak{T}=(W, R, \phi)$ where

(1) W is a nonempty set
(2) R is a binary relation on W
(3) For all $s \in W$ and every propositional variable $p, \phi(p, s)$ assigns a truthvalue in \mathbf{T}.
3.2 Given any $3-K_{3}$ model \mathfrak{N}, the truth value $\phi(A, s)$ of a formula A at s is defined as follows:
(1) $\phi\left(F_{i}\left(A_{1}, \ldots, A_{\alpha_{i}}\right), s\right)=f_{i}\left(\phi\left(A_{1}, s\right), \ldots, \phi\left(A_{\alpha_{i}}, s\right)\right)$
(2) $\quad \phi(\square A, s)=\left\{\begin{array}{l}1, \text { if for all } t \text { such that } s R t, \phi(A, t)=1 . \\ 2, \text { if there exists a } t \text { such that } s R t \text { and } \phi(A, t)=2 . \\ 3, \text { if for all } t \text { such that } s R t, \phi(A, t) \neq 2 \text { and there } \\ \text { exists a } u \text { such that } s R u \text { and } \phi(A, u)=3 .\end{array}\right.$
3.3 3- K_{2} models Now, a $3-K_{2}$ model is obtained from a $3-K_{3}$ model by replacing (2) in 3.2 by the following (2^{\prime}).
$\left(2^{\prime}\right) \quad \phi(\square A, s)=\left\{\begin{array}{l}1, \text { if for all } t \text { such that } s R t, \phi(A, t)=1 \\ 3, \text { otherwise. }\end{array}\right.$
3.4 A matrix $L=\left\{A_{1}^{(1)}, \ldots, A_{m_{1}}^{(1)}\right\}_{1} \cup\left\{A_{1}^{(2)}, \ldots, A_{m_{2}}^{(2)}\right\}_{2} \cup\left\{A_{1}^{(3)}, \ldots\right.$, $\left.A_{m_{3}}^{(3)}\right\}_{3}$ is called 3-KK_{i} valid if for all $3-K_{i}$ models \mathfrak{N}_{i} and any $s \in W$, there exists an $A_{j}^{(\mu)}$ in L such that $\phi\left(A_{j}^{(\mu)}, s\right)=\mu$. In the case where $m_{2}=0$, this definition is consistent with the classical definition of the validity of a sequent.
3.5 Let \mathfrak{T}_{i} be a $3-K_{i}$ model. We say that \mathfrak{T}_{i} is a $3-M_{i}$ model if R is reflexive, a $3-S 4_{i}$ model if R is reflexive and transitive, and a $3-S 5_{i}$ model if R is an equivalence relation.
3.6 We define $3-M_{i}$ validity, $3-S 4_{i}$ validity, and $3-S 5_{i}$ validity in the same manner as we defined $3-K_{i}$ validity.

4 Formal systems Now we introduce the formal systems 3-K $, 3-M_{3}, 3-S 4_{3}$, and $3-S 5_{3}$ by using Takahashi's matrix. Henceforth K, L, M, etc. stand for matrices.

$4.13-K_{3}$

(1) A matrix of the form $\{A\}_{1} \cup\{A\}_{2} \cup\{A\}_{3}$ is called a beginning matrix.
(2) Inference rules:
(1) Weakening

$$
\frac{L}{K}(\text { if } L \subset K)
$$

(2) Cut

$$
\frac{L \cup\{A\}_{\mu}, K \cup\{A\}_{\nu}}{L \cup K}(\mu \neq \nu)
$$

(3) Inference for propositional connectives: Let $f_{i}\left(\mu_{1}, \ldots, \mu_{\alpha_{i}}\right)=\mu$

$$
\frac{L \cup\left\{A_{1}\right\}_{\mu_{1}}, \ldots, L \cup\left\{A_{\alpha_{i}}\right\}_{\mu_{\alpha_{i}}}}{L \cup\left\{F_{i}\left(A_{1}, \ldots, A_{\alpha_{t}}\right)\right\}_{\mu}}
$$

(4) Inferences for modal connectives:

$$
\begin{aligned}
& \frac{\{A\}_{1} \cup\{A, \Gamma, \Sigma\}_{2} \cup\{\Sigma\}_{3}}{\{\square A\}_{1} \cup\{\square A, \square \Gamma, \square \Sigma\}_{2} \cup\{\square \Sigma\}_{3}}\left(\square \square_{1,2}^{K}\right) \\
& \frac{\{A\}_{1} \cup\{\Gamma, \Sigma\}_{2} \cup\{A, \Gamma\}_{3}}{\{\square A\}_{1} \cup\{\square \Gamma, \square \Sigma\}_{2} \cup\{\square A, \square \Gamma\}_{3}}\left(\square_{1,3}^{K}\right)
\end{aligned}
$$

where Γ, Σ, etc. mean (void or nonvoid) series of formulas and $\square \Gamma$ denotes the set $\{\square B: B \in \Gamma\}$.
(3) Provable matrices: A matrix is called $3-K_{3}$-provable if it is obtained from beginning matrices by a finite number of applications of the above inference rules. We write $\vdash L$ (in $3-K_{3}$) if L is provable in $3-K_{3}$.
$4.23-M_{3} \quad 3-M_{3}$ is obtained from 3-K by adding the following rules $\square_{2,3}^{M}$ and \square_{2}^{M}.

$$
\begin{aligned}
& \frac{\{\Gamma\}_{1} \cup\{\Delta, \Sigma\}_{2} \cup\{\Delta, \Pi\}_{3}}{\{\Gamma\}_{1} \cup\{\square \Delta, \Sigma\}_{2} \cup\{\square \Delta, \Pi\}_{3}}\left(\square_{2,3}^{M}\right) \\
& \frac{\{\Gamma\}_{1} \cup\{A, \Sigma\}_{2} \cup\{\Delta\}_{3}}{\{\Gamma\}_{1} \cup\{\square A, \Sigma\}_{2} \cup\{\Delta\}_{3}}\left(\square_{2}^{M}\right) .
\end{aligned}
$$

4.3 3-S43 $\quad 3-S 4_{3}$ is obtained from 3- M_{3} by replacing the rules $\square 1,2$ and $\square_{1,3}^{K}$ by the following rules:

$$
\begin{gathered}
\frac{\{A\}_{1} \cup\{\square \Gamma, \square \Sigma\}_{2} \cup\{\square \Gamma\}_{3}}{\{\square A\}_{1} \cup\{\square \Gamma, \square \Sigma\}_{2} \cup\{\square \Gamma\}_{3}}(\square 1) \\
\frac{\{A\}_{1} \cup\{\square \Gamma, \square \Sigma\}_{2} \cup\{A, \square \Gamma\}_{3}}{\{\square A\}_{1} \cup\{\square \Gamma, \square \Sigma\}_{2} \cup\{\square A, \square \Gamma\}_{3}}\left(\square \square_{1,3}^{S 4}\right) .
\end{gathered}
$$

4.4 3-S5 $\quad 3-S 5_{3}$ is obtained from 3-S4 by replacing the rules $\square_{1}^{S 4}$ and $\square_{1,3}^{S 4}$ by the following rules:

$$
\begin{gathered}
\frac{\{A, \square \Gamma\}_{1} \cup\{\square \Delta\}_{2} \cup\{\square \Sigma\}_{3}}{\{\square A, \square \Gamma\}_{1} \cup\{\square \Delta\}_{2} \cup\{\square \Sigma\}_{3}}\left(\square{ }_{1}^{S 5}\right) \\
\frac{\{A, \square \Gamma\}_{1} \cup\{\square \Delta\}_{2} \cup\{A, \square \Sigma\}_{3}}{\{\square A, \square \Gamma\}_{1} \cup\{\square \Delta\}_{2} \cup\{\square A, \square \Sigma\}_{3}}\left(\square \square_{1,3}^{S 5}\right) .
\end{gathered}
$$

4.5 We define $3-M_{3}$ provability, $3-S 4_{3}$ provability and $3-S 5_{3}$ provability in the same manner as we defined $3-K_{3}$ provability.
4.6 $\quad 3-K_{2}$ is obtained from $3-K_{3}$ by adding the following beginning matrix:

$$
\{\square A\}_{1} \cup\{\square A\}_{3} .
$$

4.7 We define $3-\mathrm{M}_{2}, 3-S 4_{2}$, and $3-S 5_{2}$ in the same manner as we defined $3-K_{2}$.

5 Syntax of the systems We can easily prove the following lemmas.

5.1 Lemma

(1) The rules $\square_{1,2}^{K}$ and $\square_{1,3}^{K}$ are admissible in 3-S4 ${ }_{i}$.
(2) The rules $\square_{1}^{S 4}$ and $\square_{1,3}^{S 4}$ are admissible in $3-S 5_{i}$.
(3) The following rule $\square_{1,2}^{S 5}$ is admissible in 3-S5 ${ }_{i}$.

$$
\frac{\{A, \square \Gamma\}_{1} \cup\{A, \square \Sigma\}_{2} \cup\{\square \Delta\}_{3}}{\{\square A, \square \Gamma\}_{1} \cup\{\square A, \square \Sigma\}_{2} \cup\{\square \Delta\}_{3}}\left(\square \square_{1,2}^{S 5}\right)
$$

5.2 Lemma

(1) $\vdash\{A\}_{1} \cup\{\square A\}_{2} \cup\{A\}_{3}$ in $3-M_{i}, 3-S 4_{i}$, and $3-S 5_{i}$.
(2) $\vdash\{A\}_{1} \cup\{\square A\}_{2} \cup\{\square A\}_{3}$ in 3-Mi, 3-S4 ${ }_{i}$, and 3-S5 ${ }_{i}$.
(3) $\vdash\{\square \square A\}_{1} \cup\{\square A\}_{2} \cup\{\square A\}_{3}$ in $3-S 4_{i}$ and $3-S 5_{i}$.
(4) $\vdash\{\square \square A\}_{1} \cup\{\square A\}_{2} \cup\{\square \square A\}_{3}$ in $3-S 4_{i}$ and $3-S 5_{i}$.
5.3 Theorem 1 The cut inference rule cannot be eliminated in 3- $K_{i}, 3-M_{i}$, $3-S 4_{i}$, and $3-S 5_{i}$.

Proof: We give an example of a provable matrix which is not provable without using the cut inference rules.
(1) In the case of $3-K_{i}$ and $3-M_{i}$: Let $F(*)$ be a propositional connective with the associated function f from \mathbf{T} to \mathbf{T} which is defined by $f(1)=f(2)=$ $f(3)=1$.

$$
\frac{\frac{\{A\}_{1} \cup\{A\}_{2} \cup\{A\}_{3}}{\{A, F(A)\}_{1} \cup\{A\}_{2}}}{\frac{\{F(A), F(A)\}_{1} \cup\{A\}_{2}}{\{F(A)\}_{1}}} \quad \therefore \vdash\{F(A)\}_{1} .
$$

Hence by weakening $\vdash\{F(A)\}_{1} \cup\{F(A)\}_{2}$ and $\vdash\{F(A)\}_{1} \cup\{F(A)\}_{3}$.

$$
\frac{\frac{\{F(A)\}_{1} \cup\{F(A)\}_{2}}{\{\square F(A)\}_{1} \cup\{\square F(A)\}_{2}}\left(\square_{1,2}^{K}\right) \quad \frac{\{F(A)\}_{1} \cup\{F(A)\}_{3}}{\{\square F(A)\}_{1} \cup\{\square F(A)\}_{3}}\left(\square_{1,3}^{K}\right)}{\frac{\{\square F(A)\}_{1} \cup\{\square F(A)\}_{1}}{\{\square F(A)\}_{1}}(\text { Weakening })}(2 \neq 3)
$$

Therefore $\vdash\{\square F(A)\}_{1}$ in 3- K_{i} and 3-M. But it is evident that $\{\square F(A)\}_{1}$ is not provable without the cut inference rules.
(2) In the case of $3-S 4_{i}$ and $3-S 5_{i}$: Let $G(*)$ be a propositional connective with the associated function g from \mathbf{T} to \mathbf{T} which is defined by $g(1)=g(2)=$ $g(3)=3$. Similarly we can prove $\{G(A)\}_{1} \cup\{G(A)\}_{3}$ and $\{G(A)\}_{2} \cup\{G(A)\}_{3}$.

$$
\frac{\frac{\{G(A)\}_{1} \cup\{G(A)\}_{3}}{\{\square G(A)\}_{1} \cup\{\square G(A)\}_{3}}\left(\square_{1,3}^{K}\right) \quad \frac{\{G(A)\}_{2} \cup\{G(A)\}_{3}}{\{\square G(A)\}_{2} \cup\{\square G(A)\}_{3}}\left(\square_{2,3}^{M}\right)}{\frac{\{\square G(A)\}_{3} \cup\{\square G(A)\}_{3}}{\{\square G(A)\}_{3}} \text { (Weakening) }}(1 \neq 2)
$$

By Lemma $5.1 \vdash\{\square G(A)\}_{3}$ in $3-S 4_{i}$ and $3-S 5_{i}$. But it is evident that $\{\square G(A)\}_{3}$ is not provable without using the cut inference rules.

6 Semantics of 3-Ki, 3-Mi, 3-S4i, and 3-S5 . $^{\text {. }}$
6.1 Theorem 2 (Soundness Theorem) If a matrix is provable in 3-Ki, 3-M, $3-S 4_{i}$, or $3-S 5_{i}$, then it is valid in $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, or $3-S 5_{i}$, respectively.
Proof: This can easily be proved by induction on the construction of a proof of the given matrix.
6.2 Lemma If L is G-unprovable, then for any formula $A, L \cup\{A\}_{1} \cup$ $\{A\}_{2}$ or $L \cup\{A\}_{1} \cup\{A\}_{3}$ or $L \cup\{A\}_{2} \cup\{A\}_{3}$ is G-unprovable.

Proof: Suppose that $L \cup\{A\}_{1} \cup\{A\}_{2}, L \cup\{A\}_{1} \cup\{A\}_{3}$, and $L \cup\{A\}_{2} \cup\{A\}_{3}$ are G-provable. By using the cut inference rules we can prove that L is G-provable.
6.3 Let the matrix K be fixed. We denote the set of subformulas of formulas occurring in K by $F L(K)$. If the matrix L is G-unprovable and for any $A \in$ $F L(K), A \in L_{1} \cap L_{2}$ or $A \in L_{1} \cap L_{3}$ or $A \in L_{2} \cap L_{3}$, we call $L G$-complete. We denote the set of G-complete matrices by $C_{G}(K)$.
6.4 Lemma (Lindenbaum's Lemma) If L is G-unprovable, there exists an N such that
(1) $N \in C_{G}(K)$
(2) $N_{\mu} \supset L_{\mu}$ for any $\mu \in \mathbf{T}$.

Proof: We fix an enumeration of $F L(K), B_{1}, B_{2}, \ldots, B_{m}$. We define $N_{n}(n=$ $0,1, \ldots, m$) as follows:
$N_{0}=L$
$N_{n+1}=\left\{\begin{array}{l}N_{n} \cup\left\{B_{n+1}\right\}_{1} \cup\left\{B_{n+1}\right\}_{2}, \text { if } N_{n} \cup\left\{B_{n+1}\right\}_{1} \cup\left\{B_{n+1}\right\}_{2} \text { is consistent } \\ N_{n} \cup\left\{B_{n+1}\right\}_{1} \cup\left\{B_{n+1}\right\}_{3}, \text { if } N_{n} \cup\left\{B_{n+1}\right\}_{1} \cup\left\{B_{n+1}\right\} \text { is consistent } \\ N_{n} \cup\left\{B_{n+1}\right\}_{2} \cup\left\{B_{n+1}\right\}_{3}, \text { otherwise. }\end{array}\right.$
We put $N=\bigcup_{n=0}^{m} N_{n}$. It is evident that N satisfies (1) and (2).
6.5 Lemma For any $A \in F L(K), L \in C_{G}(K)$, and $\lambda, \mu, \nu \in \mathbf{T}$ where λ, μ, ν are distinct,

$$
A \in L_{\mu} \text { iff } \vdash L_{\mu} \cup\{A]_{\lambda} \cup\{A\}_{\nu}
$$

Proof: Left-to-right is trivial. For right-to-left, suppose that $A \notin L_{\mu}$ and $\vdash L_{\mu} \cup$ $\{A\}_{\lambda} \cup\{A\}_{\nu}$. Since $L \in C_{G}(K), A \in L_{\lambda} \cap L_{\nu}$. So $\vdash L$. This is a contradiction.

We can easily prove the following lemmas.
6.6 Lemma For any $\square A \in F L(K)$ and $L \in C_{3-M_{i}}(K)$
(1) If $\square A \in L_{2}$, then $A \in L_{2}$.
(2) If $\square A \in L_{2} \cap L_{3}$, then $A \in L_{2} \cap L_{3}$.
6.7 Lemma For any $\square A \in F L(K)$ and $L \in C_{3-54}(K)$
(1) If $\square A \in L_{2}$, then $\square \square A \in L_{2}$.
(2) If $\square A \in L_{2} \cap L_{3}$, then $\square \square A \in L_{2} \cap L_{3}$.
6.8 We prove the completeness theorem by a powerful method of a canonical model for $G\left(G=3-K_{i}, 3-M_{l}, 3-S 4_{i}, 3-S 5_{i}\right)$. We define the canonical G model $\mathcal{C}_{G}=\left(C_{G}(K), R_{G}, \phi_{G}\right)\left(G=3-K_{i}, 3-M_{i}, 3-S 4_{i}\right)$ as follows:
(1) $L R_{G} N$ iff $\square A \in L_{2}$ implies $A \in N_{2}$ and $\square A \in L_{2} \cap L_{3}$ implies $A \in$ $N_{2} \cap N_{3}$.
(2) $\phi_{G}(p, L)=\mu$ iff $p \in L_{\hat{\mu}}(\mu=1,2,3)$.

Similarly we define the canonical 3-S5 5_{i}-model $\mathcal{C}_{3-S 5_{t}}=\left(C_{3-S 5_{i}}(K), R_{3-S 5_{i}}\right.$, $\phi_{3-S 5_{t}}$) as follows:
(1) $L R_{3-S 5_{i}} N$ iff $\square A \in L_{\mu}$ implies $\square A \in N_{\mu}(\mu=1,2,3)$.
(2) $\phi_{3-S 5_{l}}(p, L)=\mu$ iff $p \in L_{\hat{\mu}}(\mu=1,2,3)$.
6.9 Lemma $\quad \mathcal{C}_{G}$ is a G model.

Proof: (1) In the case $G=3-K_{i}$: immediate from the definition.
(2) In the case $G=3-M_{i}$: by Lemma $6.6 \mathcal{C}_{G}$ is a G-model.
(3) In the case $G=3-S 4_{i}$: by Lemmas 6.6 and $6.7 \mathcal{C}_{G}$ is a G-model.
(4) In the case $G=3-S 5_{i}$: it is sufficient to show that $L R_{G} N$ implies $N R_{G} L$. Suppose it is not the case that $\square A \in L_{\mu}$. Because $L \in C_{G}(K), \square A \in L_{\lambda} \cap L_{\nu}$, by the assumption $\square A \in N_{\lambda} \cap N_{\nu}$. Therefore it is not the case that $\square A \in N_{\mu}$.
6.10 Lemma For any $L \in C_{G}(K)$ and $A \in F L(K)$

$$
\phi_{G}(A, L)=\mu \text { if } A \in L_{\hat{\mu}} .
$$

Proof: We prove it by induction on the length of A. In the case of $A=$ $F_{i}\left(B_{1}, \ldots, B_{\alpha_{i}}\right)$, we can prove it as in [3]. Therefore we only consider the case of $A=\square B$.
I. In the case of $G=3-K_{3}$ or $3-M_{3}$:
$\mathrm{I}(1) . \mu=1$: Suppose $\square B \in L_{\hat{1}}=L_{2} \cap L_{3}$. For any N such that $L R_{G} N, B \in N_{\hat{1}}=N_{2} \cap N_{3}$. By the induction hypothesis, $\phi_{G}(B, N)=1$. Hence $\phi_{G}(\square B, L)=1$.
$\mathrm{I}(2) . \mu=2$: Suppose $\square B \in L_{\hat{2}}=L_{1} \cap L_{3}$. Since $\{\square B\}_{1} \cup\{\square C \in$ $\left.L_{2}, \square D \in L_{2} \cap L_{3}\right\}_{2} \cup\left\{\square B, \square D \in L_{2} \cap L_{3}\right\}_{3}$ is G-unprovable as a restriction of $L,\{B\}_{1} \cup\left\{C ; \square C \in L_{2}\right\}_{2} \cup$ $\left\{D ; \square D \in L_{2} \cap L_{3}\right\}_{2} \cup\{B\}_{3} \cup\left\{D ; \square D \in L_{2} \cap L_{3}\right\}_{3}$ is also G-unprovable. By Lemma 6.4 there exists an N such that $L R_{G} N, B \in N_{1} \cap N_{3}=N_{2}$. By the induction hypothesis $\phi_{G}(B, N)=2$. Hence $\phi_{G}(\square B, L)=2$.
$\mathrm{I}(3) . \mu=3$: Similar to $\mathrm{I}(1), \mathrm{I}(2)$.
II. In the case of $G=3-S 4_{3}$: By Lemma 5.1, we can prove it as in I.
III. In the case of $G=3-S 5_{3}$:

III(1). $\mu=1$: Suppose $\square B \in L_{\hat{1}}=L_{2} \cap L_{3}$. Let N be such that $L R_{G} N$. By the definition of R_{G} and Lemma $6.6 B \in$ $N_{2} \cap N_{3}$. Therefore, by the induction hypothesis, $\phi_{G}(B, N)=1$. Hence $\phi_{G}(\square B, L)=1$.
III(2). $\mu=2$: Suppose $\square B \in L_{\hat{2}}=L_{1} \cap L_{3}$. Since $\left\{\square B, \square C \in L_{1}\right\}_{1} \cup$ $\left\{\square D \in L_{2}\right\}_{2} \cup\left\{\square B, \square E \in L_{3}\right\}_{3}$ is G-unprovable as a restriction of L, by $\square 1,3$, $\left\{B, \square C \in L_{1}\right\}_{1} \cup\left\{\square D \in L_{2}\right\}_{2} \cup$ $\left\{B, \square E \in L_{3}\right\}_{3}$ is also G-unprovable. By Lemma 6.4,
there exists an N such that $L R_{G} N$ and $B \in N_{1} \cap N_{3}$. By the induction hypothesis $\phi_{G}(B, N)=2$. Hence $\phi_{G}(\square B, L)=2$.
$\operatorname{III}(3) . \mu=3$: We can prove it as in III(1), $\mathrm{III}(2)$.
IV. In the case of $G=3-K_{2}$ or $G=3-M_{2}$ or $G=3-S 4_{2}$ or $G=3-S 5_{2}$: We now show that $\square B \in L_{\hat{2}}$ cannot hold, so that in view of cases I, II, and III above, $\phi_{G}(\square B, L)=2$ cannot obtain. If $\square B \in L_{\hat{2}}$, then by the beginning matrix $\{\square B\}_{1} \cup\{\square B\}_{3}$ we can prove that L is G-provable. This is a contradiction.
6.11 From Lemmas 6.9 and 6.10 we have the following completeness theorem:

Theorem III (Completeness Theorem) If a matrix is valid in 3- $K_{i}, 3-M_{i}$, $3-S 4_{i}$, or $3-S 5_{l}$, then it is provable in $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, or $3-S 5_{i}$ respectively.

REFERENCES

[1] Miura, S., "Embedding of modal predicate systems into lower predicate calculus," The Annals of the Japan Association for Philosophy of Science, vol. 6 (1983), pp. 147-160.
[2] Schotch, P. K., J. B. Jensen, P. F. Larsen, and E. J. Maclellan, "A note on threevalued modal logic," Notre Dame Journal of Formal Logic, vol. 14 (1978), pp. 63-68.
[3] Takahashi, M., "Many-valued logics of extended Gentzen style," Science Reports of Tokyo Kyoiku Daigaku Section A, vol. 9 (1967), pp. 271-292.

Fukushima Technical College
Nagao 30, Kamiarakawa Taira
Iwaki, Fukushimaken, Japan

