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/ Introduction Our aim, in this paper, is to study the relationships between
constructive truth and classical truth under a unified point of view, namely, to
analyze the properties of constructive systems whose language is enriched by a
sentential operator T assumed to represent the concept of classical truth. By a
"constructive system" we mean a system S in which if \γA v B then \γA or
\γB and if 1-̂ 3x̂ 4 then \γΛ[t/x], for some term t. We say that an operator
T represents in S the concept of classical truth if

0) ^CPKΓ-4 i f f ^ T - 4

where CPrC is classical predicate calculus (we will also use "CPC", "IPC", and
"IPrC" to denote, respectively, classical propositional calculus, intuitionistic
propositional calculus, and intuitionistic predicate calculus).

The importance of this study should be evident to whoever is interested not
in reducing classical truth to constructive notions or vice versa, but in determin-
ing the laws of interaction of these notions.

For brevity's sake we shall limit our exposition to the propositional frag-
ments of our calculi, giving some indications about their predicative extensions
in notes.

In Section 2 we will introduce the calculus Eo and its Kripke semantics; in
Section 3 we will deal with the problem of finding maximal constructive systems
in which T represents classical truth and we will prove a theorem of maximal-
ity for a calculus we call E*. For this calculus we will introduce a kind of seman-
tics based on the notion of "valuation form", and its specific features will be
discussed in Section 3.

At this point, let us look at some problems connected with the introduc-
tion of an operator T in a constructive setting.

As IPrC is the most famous system and, let us say, the paradigmatic exam-
ple of a constructive system, the most obvious way to reach our aim would seem
to consist of adding an operator T to IPrC and then characterizing it by suit-
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able axioms or rules. The difficulty with this approach is that, owing to the well-
known property of intuitionistic double negation

(2) I ipc ~~A iff I C P C A,

we should adopt for T axioms or rules for which

(3) h^ A i f f hpcτΎA

where IPCT is the hypothetical system obtained by adding T to IPC. On the other
hand, the axioms or rules for T should not allow us to have \jpjyf~~A++ΎA9

for, in this case, we should obviously also have l I P r C T ~ — A ++ΎA, from which

it follows that \-^Q A iff 1 I P r C T T A, while it is not true that hjp^ A
1 CPrC iff A (take, for instance, the formula ~ — Vx(P(x) v ~P(x))).

The difficulty pointed out seems to entail that it is not possible to repre-
sent truth in a natural way by taking IPrC as a basis.

The approach we have chosen involves the following two points:

(i) We axiomatize the operator T in such a way that it represents truth uni-
formly, namely, both at the propositional and at the predicative level

(ii) We take as a basis a constructive system whose negation connective ->
does not have property (2).

Concerning step (i) our idea is to start by adopting for T a rule similar to
the one of intuitionistic double negation, namely

(4) :
B -iB

ΎA

and then to modify the Kripke semantics for intuitionism in such a way as to
force T to represent classical truth at the predicative level.

Let us consider the Kuroda formula Vx—P(x) -> —VxP(x). It is a typi-
cal example of the divergence between double negation and an operator intended
to represent classical truth, since the formula

(5) VxΎP(x) -> ΎVxP(x)

should be intuitively valid if T represents classical truth.
Let us consider a Kripke countermodel <N,<,^,Φ> to the Kuroda for-

mula, where Nis the set of natural numbers ordered by <,Ψ (the "domain func-
tion") is the function that to every number n E Nassigns {x: x < n), and Φ (the
valuation) is a function for which Φ(P,n) = {x: x G Ψ(n — I)}. A peculiar fea-
ture of this model may be intuitively described by saying that we will never attain
a cognitive status n in which we eventually know if \=^P(x) or ^~P(x), for
every x in its domain.

In a way, it is the very legitimacy of such an ideal cognitive status that
intuitionists would deny, and it is this denial which prevents intuitionistic double
negation from representing truth at the predicative level. So our suggestion
is to modify Kripke semantics for intuitionism by imposing the possibility of
reaching an "ideal final status" from each cognitive status; more precisely:
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every point of a Kripke model has, among its accessible points, some point w
from which it is accessible to at most itself and such that, for every sentence
A, \=A or h=-υ4.

As for step (ii), we start by observing that, if a Kripke model for intui-
tionism is finite, there are necessarily some points w of it in which we have
V^A or \=^ -A for every formula A and, consequently, for every classical tau-
tology V, we have l=̂= V. Thus, these points play a role similar to the one played
by our "final" points. Because of the forcing clause of intuitionistic negation,
it follows that " — F" is true at every point of any finite Kripke model. From
this, and from the fact that h^^A iff, for every finite Kripke model K, \=ψA,
property (2) of intuitionistic double negation follows. But we are seeking a nega-
tion that does not have property (2), even if we want to have final points. So,
our idea has been to adopt a concept of negation different from intuitionistic
negation, in that it is not sufficient to know that A will not be verified at any
future time in order to assert A at a given time; it is necessary to have actually
verified the falsity of A, where the concept of falsity of an atomic formula is
as primitive as the concept of its truth.

It is not difficult to recognize that this notion of negation is similar to the
notion of constructible falsity introduced by Nelson [4] and studied by Thoma-
son [10]; but in Sections 2.2 and 2.3 it will be seen that Eo is not a conservative
extension of Thomason's calculus, even at the propositional level.

In intensional mathematics (see Shapiro [9]) the relations between classi-
cal and constructive truth are studied in the framework of classical systems to
which an operator K (of "knowability") is added. Our systems are constructive,
but the operator T is intended to represent classical truth. So, in a sense, the two
approaches are reciprocally "dual". An exact comparison between them deserves
closer attention.

2 The logic Eo Now we present the propositional fragment of the logic Eo

(the letter E occurring in the names of our systems stands for "effective"), which
formalizes the operator T and the constructible -i along the lines previously dis-
cussed.

The language of Eo is the standard propositional language (with -i, Λ, V, -+
primitives), enriched with the unary operator T. The notation A <-• B will be
taken as an abbreviation of (A -> B) Λ (B -• A).

2.1 The calculus We present Eo in the form of a natural-like calculus. We
say "natural-like" rather than "natural" since no inverse rule is given for the T-
rule and the -ιT rule below, even if these rules allow us to introduce nonatomic
formulas in an inference. However, the "naturalness" of the calculus can per-
haps be defended, if one takes as "elementary" the T-formulas and the -πT-
formulas.1

The formal setting of the rules and the notational conventions will be sim-
ilar to the ones in [5] and in [6], to which the reader is referred. For instance,
we will enclose in square brackets classes of occurrences of undischarged as-
sumptions to be put into evidence; we will "slash" classes of occurrences of
undischarged assumptions in order to show that they become discharged in cor-
respondence with the application of rules such as (-•!), (vE), (T), (-ιT), etc.
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With each of the connectives Λ, V, -»we will associate four rules: an intro-
duction rule, an elimination rule, an introduction of the negation related to the
connective, and an elimination of the negation related to the connective. We will
also have an introduction and an elimination of double negation. Finally, we
will have the contradiction rule and the key rules (T) (allowing us to introduce
the operator T) and (->T) (allowing us to introduce a -iT-formula). The rules
are:

(Basic): every wff A is a proof where A is the consequence and the only un-
discharged assumption;

A B AAB AAB
( Λ l ) : A^B' ( Λ E ) : — ' ~B~'

_, -.Λ ^B ^(AΛB) C C
( " Λ l ) : -^xτFy ^ϊATTy ( ) : c ;

i TΛ A B < ^ A y B C C

( v I ) : AVB> AVB; ( V E ) : c ;

(^vl): - A - B ; (,vE): ^ A " B \ " M V *>

ί-n -B— (-E)
 A A ^ B .

{ l ) A-+B' ( E ) B '
n A -^B ->(A^B) -Λ(A^B)

( ^ I ) : ^ΪA^B-y ( ^ E ) : —A— '^=ΓF~;

(..I): - ^ (^E): ^

/4 -iy4 A -iA
(Contr): , p any atomic formula;

P ~Φ
\?ά\ \pA [/] [/]

,τ, B ^B _B -π5
( T ) : ί^4 ; ( ^ T ) : -^ΓA-

If we omit the rules (T) and (-ιT) then Eo becomes the propositional frag-
ment F p r o p of the logic F with "constructive" falsity, described in appendix B
of [5]; apart from the different presentation, the logic F coincides with the logic
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studied in Thomason [10], we call it F again, F p r o p being again its propositional
fragment. As concerns (Contr), in Eo it can be shown to be equivalent to each
of the following two rules:

A -ιA
(Contr7): for any wff B

B

Ύ A Ύ-ΛA
(Contr"): for any wff B.

B

As concerns the T-rules (T) and (~>T), we remark the following: if from -\A
both B and ~^B follow, then we can assert the classical truth of A (and this asser-
tion has a "constructive" character, since we don't intend to claim anything dif-
ferent from the classical truth of A); likewise, if from A both B and -ιJ5 follow,
then we can "constructively" falsify the classical truth of A.

Let us denote by " l f^4" and "Γbj?-/1" the fact that there is a proof in
Eo of A without undischarged assumptions and the fact that there is a proof in
Eo of A whose undischarged assumptions belong to the (finite or infinite) set Γ
of wffs, respectively (a similar convention will hold also for the other calculi we
will introduce). Now, first of all we will set forth the provability or the unprov-
ability in Eo of some important wffs; all unprovable formulas will also turn out
to be unprovable in the stronger logic E*.

Considering negation, we have the following obvious facts:

(pi) ΓE^A<->-I-IA

(p2) ΓE^-A Λ B H I ( - , A v -iB)
(p3) h^ i (A Λ B ) ^ - I A V Π B

(p4) h^A V B H Π ( Π A Λ I B )

(p5) r^- -i(A V B ) H - ! A A Π B

(P6) ^ - ( A - ^ B ) O A Λ Π B

(p7) h ^ i A v B - ^ ( A ^ B ) .

Despite (pl)-(p7), E0-negation is a constructible negation much weaker
than classical negation; as a matter of fact, for some wffs A and B, we have:

(ul) b^--(AΛ-iA)
(u2) b ^ ( A - B ) - ( - . B - * i A )
(u3) b^(A-*B)-* π A v B .

Let us briefly discuss (ul) and (u2). The failure of the contradiction law
formulated in terms of the constructible -ι (fact (ul)) means that, to assert the
falsity of a conjunction, we have to exhibit explicitly the falsity of one of the
conjuncts; the failure of the contraposition law (fact (u2)) means that, even if
from the constructive truth of A we can infer the constructive truth of B, from
the constructive falsity of B we cannot infer the constructive falsity of A.

On the other hand, the contradiction law and the contraposition law can
be proved in Eo if formulated in terms of the negation of classical truth, i.e.,

(p8) Y^^Ί(AA^A)

(P9) h^(A-*B)-*(^ΊB-+-iΎA).
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Important properties of T and -ιT provable in Eo are:

(plO) b^A-+ΎA
(pll) h^^Λ^^ΎA.

On the other hand, for appropriate A, we have:

(u4) V^ΎA^A
(u5) \T^-ΛTA-+^A.

We remark that (u4) and (u5) prevent the collapse into classical logic.
Other important properties are:

(pl2) h^ΎA^ΎΊA
(pl3) h^^ΎA^Ύ^A
(pl4) h^ΎA +> ^Ύ^ΎA
(pl5) \~^-TA ΛΎB<+ Ύ(A Λ B)
(pl6) h^ (ΎA -> T£) ^ T(>1 -> B)
(pi 7) ^ T ( v 4 V 5 ) H T ( T ^ v T5)
(pl8) ^ T ^ T ( i v ^ )
(P19) ^^TTyl^-πT^.

We end this list of provable and unprovable facts by pointing out that the
principle of replacement of equivalents does not hold (in Eo as well as in the
logics we will present later) as a consequence of the joint features of -« and T.
For we have

1^- -. (Ύ-^A Λ Ύ-iB) ++ΊAvΎB

and

I^T-v4 Λ T-.£ H T - I ( ^ V 5 ) .

Now, if in the former equivalence we replace T~u4 Λ Ύ-ιB with the equiv-
alent T-i (A v 5), then we obtain 1^- —ιT—i (A v B) <-> T^l v T J5, from which
I^-T(y4 v £) ^ Ty4 v ΊB follows; but the latter fact is unprovable even in the
stronger logic E*.

Now we want to justify the meaning of T as a classical operator. To do so,
also in view of our further treatment, it is useful to consider the classical
(propositional) logic CPCT having the same set of wffs as Eo. From the seman-
tical point of view, of course, we will interpret the unary operator T of this logic
as the identity unary turth-function (i.e., Ύ(t) = t and T(/) = / , where t and
/denote, respectively, truth and falsehood), while the other connectives -ι, Λ,
v, -» will be the usual truth-functions. A complete axiomatization of CPCT can
be given, for instance, by adding to the system Eo the following rule:

(CL): for any formula A.
A

Of course, with this addition, many of the rules of Eo become redundant in
CPCT: namely, in the proof of Proposition 1 below we can assume that CPCT
contains exactly the rules (ΛI), (ΛE), (vl), (VE), (-+I), (-»E), (T), (πT), and (CL)
(together with the rule allowing the introduction of assumptions).

Now we can state the following proposition, justifying the meaning of T:
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Proposition 1 Γ I C P C T AiffYY^ΎA.2

Proof (outline): If Γ h^ ΎA, then Γ I C P C T ΎA; since I C P C T T ^ -> A,
Γ b^- ΎA implies Γ 1 C P C T A.

To prove the converse, let T(Γ) = ( T 5 : 5 E Γ ) ; then it suffices to prove
that if Γ l c p c τ A then T(Γ) ^ ΎA (since h^B -• T £ for every 5 ) . To do

so, one can show that, given a proof Π in CPCT ([Bι] . . . [Bn] the

A

classes of undischarged assumptions of the proof Π, A its consequence), a proof

[TBx]...[TBn]
IT can be constructed in Eo. This requires a straightforward in-

ΎA
duction on the complexity of Π, where the knowledge of facts such as (pl)-(pl9)
is very useful.

We will consider only the cases where the last inference rule applied in Π
is (-•I) or (vE), leaving to the reader the remaining ones.

Let Π be of the form , where E^ is the main subproof of Π
Aι-+A2

and where A = Ax -+A2. Then, by the induction hypothesis, one can construct

... \JΛ{\ ...
Πί

Ύ A
in Eo the proof the assertion then follows from (pi6).

Ύ A\ —• T A2

π 0 π, π 2
B v C A A

Let Π be of the form then, by applying

the induction hypothesis to the subproofs Πo, Πj, Π 2, one can construct the
proof

111 = = = = = J^2 = = = = = = =

ΎA (ind.hyp.) -^ΎA ((pll)) ΎA (ind.hyp.) ~^ΎA ((pll))

-iTTB((-«T) disc.2) -«TTC((-iT) disc.3)

-.T5((pl9)) ^TC((pl9))

ΠQ Π T 5 Λ Π T C

T(5 v C) (ind.hyp.) -i (T5 v ΎC) ((p5))

T(T5 v TC) ((pi7)) -πT(T£ v TC) ((pll))

ΎA ((T) disci)

where " = = = " stands for an inference derivable in Eo.
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We remark that the proof of the above proposition doesn't require the use
of the rule (Contr) of Eo. In other words, Proposition 1 holds as well for the
logic we call Eg1111, where Efn is the sublogic of E m i n obtained by deleting the
rule (Contr). In this sense, the comparison we shall make in Section 2.3 between
Eo and IPC cannot be generalized to a comparison between EQ1111 and minimal
logic: for, while for IPC one has l̂ pc A iff \~cpc~A, the same doesn't hold
for minimal logic.

2.2 Semantical characterization of Eo The semantics for Eo is given by
appropriately adapting the one of [10].

An Eo-model is a triple <K,R,I>, where:

(a) K is a nonempty set of states
(b) R is a reflexive and transitive relation on K satisfying the following

additional property:
(bO for every w E K there is a w' E K such that wRw' and, for every

w" E K, if w'Rw" then w' = w" (in other words, some final state w'
is accessible from every state w of K)

(c) I (the valuation function) associates with every w E K a partial func-
tion lw from the set of atomic formulas to the set [t9f] of the truth-
values; moreover, the two following properties are satisfied:

(ci) for every w,w' and atomic formula/?, if wRw' and/? belongs to the
domain of I w , then p belongs to the domain of IW ' , and lw(p) —
Kip)

(c2) for every w and/7, there is a w' such that wRw' and either lW'(p) =
t or lW'(p) =/.

We remark that in the semantics of [10] conditions (b{) and (c2) are not
required.

Now, given an E0-model <K,R,I>, one extends the valuation function I to
the wffs of any kind as follows:

(1) M - v l ) = t iff lw(Λ) = / ; M-.Λ) =/iff lw(Λ) = t
(2) lw{Λ ΛB) = t iff IW(Λ) = t and 1W(B) = t;

K(AΛB) =fifflw(A) =foτIw(B) =f
(3) lw(A vB) = t iff lw(A) = t or lw(B) = t;

lw(AwB) =fifflw(A) = / a n d IW(B) =f
(4) lw(A -• B) = t iff, for every w' such that wRw', either ^'(^4) is undefined,

or lw.{A) =f, or IW,(B) = t; lw(A -+ B) =/iff 1W(A) = t and IW(B) =f;
(5) lw(ΎA) = t iff, for every w' such that wRw' there is a w" such that w'Rw"

and 1W»(A) = t; lw(ΎA) = yiff, for every w' such that wRw\ either 1W>(A)
is undefined or 1W>(A) = / .

One easily extends by induction the above properties (ci) and (c2), involv-
ing atomic formulas, to any wff A, i.e.,

(Pi) if wRw' and A is in the domain of I w , then A is in the domain of IW ' and
IW(A)=1W>(A)

(P2) for every w there is a w' such that wRw' and either \w> (A) = toτ lw> (A) —f?
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By Γ |== A we mean that lw(Λ) - t whenever w is a state of an E0-model
such that lw(B) = t for every B G Γ; then, we can state the soundness and com-
pleteness of Eo with respect to this semantics.

Theorem 1 Γ \= A iffV h^- A.4

The proof of the soundness is given by induction on the complexity of an
E0-proof, where property (PO is used for the rule (->I) and both properties (Pi)
and (P2) are required for the rules (T) and (->T).

The proof of completeness is an easy generalization of the technique of
[10]. Here the canonical model is given by a set of states consisting of Eo-
saturated sets of formulas, where the relation R is defined in terms of the inclu-
sion of these sets; for every state w, the set of the final states following w is the
set of all maximal consistent extensions of w.

We remark that Eo can be proved to satisfy the finite model property, so
that it is decidable.

Now we briefly outline the semantics of the sublogic EQ1111, defined at the
end of the previous section. This semantics is obtained by modifying the one of
Eo as follows:

• for every w, lw is not necessarily a function, but only a relation; i.e., we
may have both p\wt and p\wf

• if for some w and some p we have p\wt and plwf, then for every atomic
formula q there is a w' such that wRw' and q\w t and qlwf.

With this semantics we obtain a soundness and completeness result, i.e.:

T^AiffΓ^A.

Finally, we state that Eo is a constructive logic, i.e., it satisfies the disjunc-
tion property. This result can be established using purely syntactical tools, but
the proof requires a formal setting which exceeds the scope of the present paper.
Having the semantical characterization at our disposal, this result can be
obtained with a standard technique (see, e.g., [10]).

Theorem 2 IfTh^ AvB9 then Dη^AorT^B ifT^-^iAAB),
then Γ f ^ - π y l o r Γ ^ - -ift

This result holds as well for E{?in.

2.3 A comparison with other known logics The first comparison is with
IPC. As seen in Section 2.1, intuitionistic negation and E0-negation have dif-
ferent properties; for Y^r~A <-• -ι-vl while bip^A *+ ~~A, and b^~^(A Λ
-I^4) while [^r ~ (A Λ —A). Nevertheless, we can translate intuitionistic neg-
ation into Eo in three different but equivalent ways. To be more precise, let 3!
be the following translation-map from the set of wffs of IPC to the set of wffs
of Eo:

(l)3i(p)=p

(2)31(~>l) = -iT(31M))
( 3 ) 3 ! O 4 Λ J J ) = 3 1 ( Λ ) Λ 3 1 ( J ? )

(4)3 1MvΛ) = 31(^)v31(Λ)
(5)31M->β) = 3 1 U ) - 3 1 ( 5 ) .
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The translation-map 3 2 is obtained by modifying clause (2) of 3! into the fol-
lowing:

(2')32(~Λ)=T(i3204)).

The translation-map 3 3 is defined by modifying clause (2) of 3! into the fol-
lowing:

(2") 33(~^4) = 33(^4) -•/? Λ -1/7, for some fixed propositional variable p.

Then we can prove the following proposition:

Proposition 2 Yj^A iffh^^A) iff^32(A) iff^33(A).5

Proof: That \jpQ-A simultaneously implies hg-3i(A), h^32(A), and \jj-33(A)
can be easily proved using a standard axiomatization of IPC and remarking that
(as already seen) \^-~iΎB++Ύ^B (for every B) and that:

(p20) h^ -^ΎB ++ (B -+ C Λ -.C) (for every 5 and C).

To simultaneously prove the converse implications, we assume that \τ^ A.
Then, there is a finite Kripke model K for IPC such that, for some state w of
K, w doesn't force A. If for every final state w' of K and every atomic formula
q one sets \w>{q) =/iff w' doesn't force q in K (leaving unchanged the posi-
tive forcing of the variables in K, i.e., for every w" of K, lw»(q) = t iff w"
forces q in K), then one gets an Eo-model K': by induction on A one easily sees
that, for every w,w forces A in K iff in K' Iw(3i(>4)) = t iff Iw(32(>4)) = ί iff
lw{^{A)) = t.

The above result can be stated in a different form: i.e., we can define in
Eo (in three different but equivalent ways) intuitionistic negation, thus obtaining
a logic which is a conservative extension of IPC.

To be more precise, first of all we enrich the language of Eo with the
unary connective — then we define E0(~,-ι~) as the logic obtained by adding
to Eo one of the three equivalent definitions of ~:

(I) ~A ++ ^ΎA
(II) ~A <-> Ύ^A

(III) ~A*+(A->pΛ-ιp),

and the following axiom characterizing the meaning of -i ~ :

(IV) Ύ A -• -i—>1.

We remark that the converse of (IV), i.e., -ι~A -+ ΎA, can be proved
using the rules of Eo and the definition of —.

The semantics for E o (~ ,-> — ) is obtained from the one of Eo with the
addition of the following clauses:

(Γ) lw(~A) = t iff, for every w' such that wRw', either \W>(A) is unde-
fined or \W'(A) = / ; \W(~A) =/iff, for every w' such that wRw', there
is a w" such that w'Rw" andl^(>l) = t; lw(^~A) = tifflw(~A) =/;
lw(--~A)=fifϊIw(~A) = L
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Thus, one obtains a soundness and completeness result for E0(~,-ι~)
quite similar to the one for Eo, to be used to prove the following proposition
in the nontrivial direction.

Proposition 3 For every wff A belonging to the language of IPC, Vj^A
iffVτ^zyA*

Now we compare Eo with the above quoted propositional fragment F p r o p

of the logic F studied in [5] and in [10]. One immediately sees that F p r o p is a
sublogic of Eo, so the question arises whether or not Eo is a conservative exten-
sion of F p r o p . The answer is negative. For, we have that

\~E^((A ^p Λ -./?) ->/7Λ I/?) <-• (-IA -+p Λ -1/7),

while, in general,

l/pprop (~ιA ->/? Λ -1/?) - • ((A -+ p Λ -1/7) -+/7 Λ -1/7),

as one easily verifies using the semantics of [10].
We also remark that in F p r o p we can introduce intuitionistic negation with

the definition: -A <-> {A -+p Λ -1/7). Thus, we set Fp r o p(~,-i~) to be F p r o p with
the addition of such a definition of ~ and of the axiom for -1 — : — ~A -• -<~ A.
The semantics of Fp r o p(~,-ι~) is given by simply adding to Thomason's seman-
tics the above-considered (Γ) for —.

In this way, one obtains a soundness and completeness result for Fp r o p(~,-ι~)
and can show that Fp r o p(~,-i~) is a conservative extension of IPC; i.e., for
every A of the language of IPC, b ^ " A iff I FProP(^ _,^ A?

Now, the previously seen formula:

(-1,4 -• p Λ -./?) - > ( ( > ! -• /7 Λ -1/7) -* /7 Λ 1/7)

becomes equivalent, in F p r o p(~,-i~), to —-î 4 -> —>4. Again, in Fp r o p(~,-i~)
the latter formula is unprovable, while it is provable in E 0 (~,-ι~); hence,
E0(~,-i~) is not conservative over F p r o p (~,- i-) .

To put the question in another way, in F p r o p(~,-ι~) we can define T by:
ΎA <-> ~~A, in such a way that I C P C T A iff I F P r O P e ^^ > T ) T^4; but the prop-
erties of the T of Fprop(~,-<~,T) are weaker than the ones of the T of
E o ί - , " 1 - ) , since in the latter logic T is equivalent to ~-», while in the former
this doesn't hold.8

To complete this discussion, we remark that Eo(— ,"> — ) is a conservative
extension of F / p r o p (~,^~) , where F / p r o p (~,^~) is Fp r o p(~,-π~) with the addi-
tion of the axiom-schema:

(V) ~-ΛA-+-—A.

This depends on the fact that the addition of (V) to Fp r o p(~,-i~,T) provides an
equivalent presentation of Eo(~,->~). Thus, it is just (V) that requires an
essential modification in Thomason's semantics.



78 PIERANGELO MIGLIOLI, ET AL.

The differences between Eo and F p r o p are further stressed by taking into
account Thomason's translation of F into the predicative modal logic S4 sup-
plemented by the Barcan formula: here we will be interested only in the subtrans-
lation of F p r o p into propositional S4. Such a translation is given by:

(I) 3 4(p) = Dp
( 2 ) 3 4 ( ^ ) = D--/>
(3) 3404 v B) = 3 4 M) v 34(Λ)
(4) 3 4 ( π μ vfi)) = 3 4 ( - I ^ ) Λ 3 4 ( Π 5 )

(5) 34(A-+B) = Π (34(A) -> 34(5))
(6) 34(-.(Λ ->£)) = 34(Λ) Λ 34(-.Λ)
(7)3 4 (- .- >l) = 3 4 (^) .

Now, as proved in [10], one has: 1 FPrOP A iff \-^-^4(A) (we remark that in
Thomason's presentation F p r o p does not have the logical constant Λ, which can
be defined in terms of v and -•).

Let us extend 3 4 to cover all wffs as follows:

( 8 ) 3 4 ( Λ Λ 5 ) = 3 4 ( , 4 ) Λ 3 4 ( £ )

( 9 ) 3 4 ( i M Λ f i ) ) = 34(-iΛ) v 3 4 ( π 5 )
(10)34(TΛ) = DO34(,4)
(II) 34(^T^4) = DO34(-«v4).

Then one can find a formula A such that \~^A and b^-34(v4). However, it
is possible to translate Eo, according to 3 4, into a suitable extension of S4. For
consider the propositional modal logic S4.1, which can be given, for instance,
by adding to S4 the axiom-schema: 0(0^4 -» ΏA) (see [3]). The semantics of
S4.1 is just the semantics of S4, with the only additional requirement that some
final (in the same sense as for the Eo-models) state be accessible from each
state; then, using the above semantical characterization of Eo, one can prove:

Proposition 4 \-^A iff \-^γ34(A).

Using the Bulldozer Theorem, the latter result can be almost immediately

extended to S4 4- Grz (see [7], [8]).

To conclude this section, we take into account the minimal propositional

logic MPC and Efn. A possible interpretation of the ~ of MPC in Efn seems

to be given, e.g., by -ιT. As a matter of fact, considering the above translation

3i, we have: if h^p^A then hgmπr3iG4). But the converse doesn't hold; e.g.,

we have h^--^Ύ^Ύ(A Λ ^ΎA -> 5), while bufc —( A *~A-*B). This

should better illuminate the remark at the end of Section 2.1.

3 The logic E*

3.1 The calculus A general problem which can be raised at this point is the
following: are there systems which are maximal among the constructive systems
such that T represents in them classical truth? In this section we will answer this
problem by introducing the system E*, which extends Eo and has the required
property.
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E* is obtained by adding to Eo the following rules:

\τf\ [γύ\ [/] [/]

(*1): — — , (*2): — —
P ^P

where p is any atomic formula, and

(E): Ί±lll£
(ΎA ->5) v (ΊA-+C)

Let us call " E j " the calculus obtained by adding to Eo only the rules (*1) and
(*2). The reader will recognize (*1) and (*2) as rules quite similar to Prawitz's
Λc-rule (see [5], [6]), which provides a natural calculus for classical logic, pre-
sented in a language not containing v (where A v B is intended as an abbrevia-
tion in the metalanguage of -ι(->/4 Λ -»5), and where -ι does not have the
constructive properties we have seen in the logic Eo).

Indeed, (*1) and (*2) give rise to the following fact, which can be proved
with a straightforward induction on the complexity of A:

Proposition 5 For every A not containing subformulas of the form By C or
of the form - I ( 5 Λ C ) out of the scopes ofΎ, \-g*-ΎA <-• A.

However, the presence of v and -IΛ in our language prevents the collapse
of EQ into classical logic. Thus, for instance, we have: bφrT(/? v -7?) -»/? v -1/7.

By rules (*1) and (*2), we have that the uniform substitution property is
not satisfied in EQ; i.e., there are wffs A(p) such that \-grA{p) (p an atomic
subformula of A) but there is a wff B such that [^rA{B)i A{B) being the for-
mula obtained by substituting every occurrence of p in A with an occurrence
of B.

One may wonder at the lack of uniform substitution in a system which is
called "logical". On the one hand, we observe that even if this feature of EQ
(and of E*) makes it rather nonstandard, one could argue for the logical
legitimacy of it along the following line: if one equates atomic formulas of a lan-
guage (not with any sentences whatever) with atomic sentences of some theory,
and if, moreover, one wants to express the fact that classical and constructive
truth of such atomic sentences coincide (as is the case for the most usual the-
ories), then the adoption of rules (*1) and (*2) seems to be sufficiently justified;
in this line, one easily sees that EQ (as well as E*) is closed under substitution
of atomic formulas with arbitrary T-formulas and, more generally, with arbi-
trary formulas satisfying Proposition 5 (to better understand the meaning of this
remark, see Section 3.4). On the other hand, starting from the maximality of
E*, we can also obtain a maximality result for a subsystem of it satisfying the
uniform substitution property; in this case, however, a restricted notion of max-
imality is involved (see Section 3.4).

The Kripke style semantics for EQ is a natural extension of the one for Eo.
We define the EQ -models to be Eo-models with the following additional prop-
erty: for every w E K and for every atomic /?, if neither lw(p) = t nor lw(p) =
/, then there are w',w" E K such that wRw' and wRw" and lW'{p) = t and
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Iw"(P) =/• With this notion of an Eo-model, we obtain a soundness and com-
pleteness result for EQ, i.e.,

Γ ^ i f f Γ ^ 9

Now we state a simple result which will be very useful later:

Proposition 6 LetA(px,... ,pn) be any wff containing exactly the atomic for-

mulas pu. . .,/?„; then \-^-A(pΪ9. . .,/?„) ++A(Ίpι,... ,T/?Π), where A(Ύpu

... ,Ίpn) is obtained by simultaneously substituting in A(pu . . . ,pn) the for-

mula Ίpi for /?i, . . . , the formula Ύpn for pn.

Proof: Rules (*1) and (*2) provide the basis, i.e., h^r/7 <-• Ύp and h^r ""/? <-•

-ιT/7. The induction step is carried out straightforwardly, using the logic E o .

If we add rule (E) to Eo instead of to EQ, then we obtain the sublogic E of
E*. We remark that both Eo and E, which do not contain (*1) and (*2), satisfy
the uniform substitution property.

We point out that the rule (E) by no means can be taken as a rule of a nat-
ural calculus in the sense of [5], since on the one hand it introduces a
'nonelementary' formula (a disjunction of implications), and on the other hand
there is no corresponding inverse rule. It is possible to present E* in the form
of a special sequent calculus (allowing proofs with more than one consequence)
for which something similar to the inversion principle can be stated; the expla-
nation of such a calculus, however, exceeds the purpose of the present paper.

One can show: if h^T.4 -> B v C then V^ΎA -* B or h^T,4 -> B\ the
same for EQ. However, rule (E) cannot be eliminated in the systems E and E*,
if the formula ΎA-+BvC depends on undischarged assumptions: for instance,
using a suitable Eo-model, one can falsify the formula (ΎA -^5vC)-> (ΎA -+
B)v (ΎA-+C).

In the frame of IPC, where negation is not 'constructive', the meaning of
our rule (E) can be captured by the principle (~A -> B v C) -• (~A -> B) v
(-A-+C), introduced in [2].

We end this section by stating the normal-form theorem for E*, which
requires the previously seen Proposition 6 concerning EQ.

Theorem 3 For every formula A there are Ύ-formulas ΎAU ... ,ΎAm (m >
0) such that \-^rA <-> ΎAX v . . . v ΎAm.10

Proof: By Proposition 6, we can assume that A does not contain occurrences
of atomic formulas which are not in the scope of T. With this assumption, we
can prove our theorem by induction on the complexity of A, starting from the
T-subformulas of A.

Basis: A = ΎB: immediate.
Step: (i) A = ~^ΎB: immediate, since h ^ - ι T £ ^ T - i £ .
(ii) A — B Λ C: by induction hypothesis, \~rB <-• T B{ v . . . v T B m and

V-rC^ΎCx v . . . v T C r t ; t h e n ^ 5 Λ C ^ ( T ^ V . . . V T 5 J Λ (TCΊ V . . . V

T CΛ), from which Y~τB Λ C ^ ( T 5 1 Λ T C 1 ) V . . . V ( T 5 1 Λ T C J V . . . V ( T 5 W Λ

TCΊ) v . . . v (ΎBmΛΎCn), from which, by (pi 5) of Section 2.1, \^-BΛC^

T(BX Λ CΊ) v . . . v T ( # ! Λ Cn) v . . . v Ύ(Bm Λ CX) V . . .V Ύ(Bm Λ Cn), which

proves our assertion.
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(iii) A = ~^(B SKC): here ^ Π ( 5 Λ C ) O Π 5 V Π C , from which, by the
induction hypotheses on -ΛB and -ιC, hp--i(fi Λ C) <-> ΎB{ v . . . v TZ?^ v
T C ( v . . . v T C ή , which is our assertion.

(iv) The cases A = -1 (B v C) and >4 = -• (Z? -> C) are similar to the case
A = B Λ C; the case 4̂ = 5 v C is similar to the case A = -> (Z? Λ C) the case
/I = -TΠ5 is obvious.

(v) A = B -• C: this is the oπ/y case requiring the rule (E); by induction
hypothesis, \-r{B-^C)^ {Ύ Bx v. . .vΎBm-+ΊCx v. .. vTC Λ ), from which,
since h^ (HvK-> Z) -+ (H-+ Z) Λ (#-» Z) for any // ,#, Z, we obtain hgr(B-+
C) <* (ΎB{ - ^ T C 1 V . . . V T C W ) Λ . . . Λ ( T 5 W - > T C 1 V . . . V T Q ; now, by re-

peatedly applying rule (E), we deduce h^r (B -> C) <-• [ ( T B ^ T C j ) v . . . v
( T ^ - ^ T C J ] Λ...Λ [ ( T 5 w - > T C 1 ) v . . . v ( T ί m - > T C Λ ) ] , from which, re-
peatedly applying (pl6) of Section 2.1, l ^ r ( 5 -> C) ^ (Ύ(B{ -> CΊ) v. . . v
T(#! -> CJ) Λ .. . Λ (Ύ(Bm -+ CO v. . . v T(£ m -» Cπ)); starting from the latter
fact, our proof can be concluded as in the case A = B A C.

Let us remark that, in the proof of Theorem 3, rules (*1) and (*2) are used
only to put every atomic formula in the scope of T (Proposition 6). Thus, we
obtain:

Corollary Let A be a formula where every occurrence of an atomic formula
is in the scope of some occurrence ofΎ: then there are Ύ-formulas ΎAι,...9

ΎAm(m > 0) such that \γA ^ΎAλ v. . .v ΎAm.

3.2 The semantics of the valuation forms Even if one can provide a Kripke
style semantics for E*, we present here a new kind of semantics, which seems
to us to provide a reasonably flexible tool for the semantical analysis of con-
structive logics, and which, in the case of E*, is particularly simple.

The basic notion of our semantics is that of valuation form (vf) of a sen-
tence. Intuitively, the vf's of A represent the possible ways of analyzing A in
order to ascertain its truth value. So, the adequacy condition we impose upon
the definition of this notion is that a sentence is true in a (classical) interpreta-
tion iff there is a vf of it which is true in that interpretation. Proposition 7 below
shows that the adequacy condition is satisfied by the definition we are going to
give. Let us consider first some cases. A sentence of the form AM B can be
analyzed in two ways: according to the former, its truth value depends on the
truth value of A, according to the latter, its truth value depends on the truth
value of B. So, the vf's of A v B will be of two kinds, which we shall denote by

V V

and by respectively, where A stands for any vf of A and B stands
AM B AM B

for any vf of B. A sentence of the form A -> B can be analyzed in as many ways
as there are combinatorial possibilities of associating a way of analyzing A to
a way of analyzing B. So, the vf's of A -» B will be functions from the vf's
of A to the vf's of B. In the case of an atomic, structureless, sentence, there
is of course only one trivial way to 'analyze' it, namely, to take itself as the result
of having analyzed it. So, the vf of an atomic formula will be the formula itself.
In our semantics T-sentences are also treated as atomic, in the sense that the vf
of a T-sentence is the formula itself; this technical peculiarity reflects the intu-
ition that what is necessary to know in order to ascertain the truth value of ΎA
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is merely the truth value of A; the effect of the operator is, then, so to speak,
'to block' the constructive analysis of the sentences inside its scope.

Let us define, for each formula A, the class F(^4) of its vfs; we recall that
66A" will denote any element of F(^4). The definition of F(^4) is given induc-
tively as follows:

(1) F(/?) = {/?} for every atomic p
(2) F(-I/?) = {-1/7} for every atomic/?
(3) F(Tv4) = {T^}
(4) F(-nΊM) = h T i ]

(5) F(π^)=ί-^:i4GFM)J

(A B v v )
(6) F(v4 /\B) =\ : A G ¥(A) and B E Έ(B)

(A Λ B )

(7) Fh^ABD^^^^FN))

u J^75) : ^ e F H
(8) F(/lvl l)= f - ^ - : / ί e F ( Λ ) ) U f—?—: 5 e F(£?)j

(9) F(-i(yl v£)) = f ~"^ " * g : -π!4 6 F ( M ) and -7fieF(-.5) |

(10) F(/l-» 5) = F ( 5 ) F ( ' 4 )

ί V y >.

^ ^ : A G FM) and -,V5 G F ( - fi) j .
In other words, a valuation form for A -+ B is any function having Έ(A)

as the domain and taking values in Έ(B). It may be useful to represent such a
form (which in propositional logic is always finite) by a tree such as

<A,B)...(A,B)

A->B

V 1 V Λ

where A,. . . ,A are (enumerated in some way) all the valuation forms of A
V 1 V Λ

and B,...,B are the corresponding forms of B.
The forms (l)-(4) are called "elementary forms"; by the presence of cases

(7) and (8), in general there are several nonelementary forms of a formula A.
Now we define the truth value \{A) of a vf A in a (classical) interpretation

I, where I is a function assigning one of the two truth values t a n d / t o every
propositional variable (in other words, I is a total interpretation). In order that
every vf assumes one (and only one) truth value, we stipulate that \{A) =/iff
I {A) Φ t; the definition of 1(^4) is completed by the following inductive
clauses, which start from the elementary vΓs:

(1) l(p)=I(p)
(2) I{-ϊp) = t iff I(p)=f
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(3) I (1^4) = l(ΎA), where I(Tv4) is evaluated in the usual classical way (we
recall that T(/) = t and T(/) = / )

(4) l(-^TA) = tiffl(ΊA) =f

A B\ v v
= t iff 1{A) = ί and I(J5) = t

A Λ 5/

(7) l(_^i-)=I(^)
\ -i (Aj\ B) )

(7') l( " * )=I(-fr)

(8) ' ( ^ H ^
( B \

( 8 / ) * 1—5 = I ( i ? )

\- .(>4v5)/ v v

(10) 1(̂ 1 -> 5) v= t iff, for every yl e Γ(v4) such that \{A) = t, the corre-
sponding B G Γί.δ) is such that l(B) = t

<Π) ! ί ^ ~ΊL) =MffI(i) = ̂ andI(i!B) = Λ

The relation between the classical interpretation of formulas and the
interpretation of vf's (i.e., vfs can be seen as 'grounds' of the classical truth of
formulas) is stated by the following proposition, which requires a straightfor-
ward induction on the complexity of A.

Proposition 7 For every I, l(A) = t iff there exists an A GF(A) such that

I(i) = t.

By "K4" we will mean that A is classically valid and by "Γ 1= 4̂" we will

mean that A is a classical consequence of Γ, i.e., every classical interpretation

satisfying all formulas of Γ satisfies A too; by Γ we will denote any function

associating a vf B to every B E Γ; also, we will say that I satisfies (or verifies)

f iff l(B) = ί for every B associated by f with B E Γ. Since T \= A implies

Γ' t= A for some finite subset Γ' of Γ, from Proposition 7 we easily deduce the

following corollary:

V V

Corollary 1 K4 iff for every I there is an A E F(v4) such that 1{A) = t\

Y V A iff for every Γ and I, there is an A G¥(A) such that if I satisfies Γ then

l(Λ) = t.

In contrast with classical validity and consequence, we now define the
notions of "constructive validity" and of "constructive consequence".

• A formula A is said to be constructively valid (and we denote this by
"\=^A") iff there is an A E ¥(A) such that, for every I, \{A) = t.
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• A formula A is said to be a constructive consequence of the (finite or in-
finite) set of formulas Γ (and we denote this by "Γ ĥ = ̂ 4") if for^very
Γ there is an A G F(^4) such that, for every I, if I satisfies Γ then I (A) = t.

As compared with the nonconstructive notions analyzed in Corollary 1, the
constructive notions involve an exchange of quantifiers.

Examples:
1. p v -I/? is not constructively valid, though it is classically valid. There

/? ~~ι/7
are exactly two vfs belonging to F(/7 v ->/?): and . The first

p v -1/7 p v -1/7

vf is falsified by every interpretation with l(p) = / a n d the second one is falsi-
fied by every interpretation with l(p) = t.

2. (T( -1/7 v -ι#) -• T/7 v Ύq) -+ T/7 v Ύq is constructively valid. For, there
are four vfs for this formula, among which is the vf

T/7 Ύq

<T(-n/7V^),T/7VTff) T/7 <T(-i/7V-Hff),T/7vTff) Ύq

T(-«/7v -i(7) -> T/7 v Tg ' T/7 vT<7 T(-i/? v -ιg) -> T/7 v T<? ' ΎpyΎq

(T( -π/7 v -itf) -> T/7 v T#) -> T/7 v Ύq

which is easily seen to be satisfied by every interpretation.

3.3 The soundness theorem, the completeness theorem, and the maximality the-
orem for E* Now we state the soundness theorem for E* in the following
general form:

Theorem 4 IfYY^A then Γ \=^ A.

[Aλ]...[An]

Proof: It suffices to prove the following: given an E*-proof Π

A

(Au... ,An the undischarged assumptions, A the consequence) and given any

Ai G F(v4i),. . . ,An G F(^4Λ), there exists (and one can build it up starting
V V V

from Au. . . ,An and the proof Π) a vf A G F(yl) such that every I simul-
V V V

taneously satisfying Au . . . ,^4Π satisfies 4̂ too.
The proof of the latter fact is given by induction on the complexity of Π,

where the basis, corresponding to the introduction of an assumption, is immedi-
ate. We will treat only the cases corresponding to the rules (-> Λ E), (->I), (->E),
(T), and (E), leaving to the reader the remaining ones.

\^\ ^€i..
Πj Π 2 Π 3

If Π is , then given A i , . . . ,An

A A

one has, in particular, a vf for every undischarged assumption of Π ^ Thus,

by applying the induction hypothesis to Π l 9 one has a vf -?(B Λ C) satisfied

by every interpretation satisfying AΪ9... 9An\ let, for definiteness, this vf be

— — — — . Then one takes the subform -ι2? and has a vf for all undischarged

assumptions of Π 2 (including - i^) , where these vfs are satisfied by every
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V V

interpretation satisfying Aλ,... ,An: then our assertion follows by applying the
induction hypothesis to Π2.

• i^i

If Π is , letAi,... ,An be given and let B e F(5) be any
A B ^ C

V

vf of B: by applying the induction hypothesis to Γ^, we can construct a C such
that, for every I satisfying Au... ,An, if I satisfies B then I satisfies C. By

V V

repeating this reasoning for every B G F(£), we can correctly associate a C e
v v

F(C) with every 2? E F(i?), which gives rise to be required vf B -> C, with
,4 = 5 -> C.

Πi Π 2

B B -^ A v v
If Π is , then given Au...,An, one applies the indue-

A A

V

tion hypothesis to Hi and obtains a vf 5 satisfying the theorem; likewise, one
applies the induction hypothesis to Π2 and obtains a vf B ̂ > A satisfying the
theorem. Since the domain of the vf B -^ A coincides with ¥(B)9 the vf B is in
the domain ofB^A; the vf A associated by B ̂ > A with B is easily seen to be
the required vf for A.

. . . [ 7 * ] [ 7 ^ ] . . -
Πi Π2

C -ιC
If Π is , then, by applying the induction

A ΎB

hypothesis to both Π^ and Π2, one sees that there is no interpretation I which
satisfies Au ... ,An and some -?B: for, by Proposition 7, we would have both
I(C) = t and I(C) = / . Hence, every I satisfying Au . . . ,An satisfies ΎB.

Πi
If Π is , then we apply the induction hypothesis

A (T£-+C)v(TC-+Z))'
to Uι and obtain avϊΎB^+CvD satisfying our theorem. Now, since the latter
vf is an implication and F(ΊB) is the one-element set {ΎB}9ΎB ^ Cv D will
be of one of the two following kinds:

V V

C D

<T Bf Cv D) <T B, Cv D)

ΎB^Cv D9 ΎB^CvD'
v

In the first case we take the subforms T B and C and construct the required vf:
<ΎB,C)
ΎB-+C

(ΎB-+C) v (ΎB-+D) '
V

In the second case we take the subforms Ύ B and D and proceed similarly.
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Using the soundness theorem and Example 1 of Section 3.2, we immedi-
ately deduce b^prp v -\p\ likewise, we can show bjpr(p -> q) v (q -* p) and
the unprovability of all formulas quoted as unprovable in the previous sections,
there considered as unprovable in subsystems of E*.

As a corollary of Theorem 4, we obtain:

Corollary 2 // YjrA v B then \=^A or \=^B\ if\^r^(A/\B) then \=^ ~^A
or^^B.

Proof: Let us consider only the first case. If \-^rA v B9 then, by Theorem 4,

there is a vf A v B satisfied by every interpretation; but A v B — or
v Ay B

v B
A\JB— , from which our assertion follows.

AM B
Corollary 2 doesn't state the disjunction property, since V^A might not

imply F^rA. The disjunction property can be obtained using a direct proof;
we will state it as a consequence of Corollary 2 and of the completeness theorem
in the following special form:

Theorem 5 If \^A then Y—rA.

Proof: By Theorem 3, there are ΊAU... ,ΎAm such that:

(1) hgrA-*TAl v . . . v T 4 ;

(2) hgrΎAx v...vΎAm-+A.
From implication (1) we immediately deduce that there is an E*-proof

[A]

Π whose only undischarged assumption is A. On the other hand,
ΎAx...ΎAm

f=^4, i.e., there is a vf A E F(^4) true in every interpretation I. Then, by
Theorem 4, there is a vf ΎA{ v. T. v ΎAm true in every interpretation I. By the
definition of a vf of a disjunction of T-formulas, the latter fact implies that,
for some /, 1 < / < m, TAt is satisfied by every interpretation I, i.e., \=^=ΎAi.
By the completeness theorem of classical logic, we therefore deduce I c p c τ ΎAh

from which, by Proposition 1 (see Section 2.1) we deduce hg^-TT^,, which
gives rise, by (pl2) of Section 2.1, to b^ ΊAi. The latter fact implies, a for-
tiori, h^rΎAi v . . . v ΎAm. By implication (2) we obtain \-^rA.

As an immediate consequence of Theorem 5 and Corollary 2, we can state

the disjunction property for E*.

Corollary 3 //\^rA vB then Y^rA or \γrB; if Yjr -• {A Λ B) then h^r ^A

or^-^B.

Let us remark that Theorem 5, together with the normal form theorem,
provides a decision procedure for E*; another decision procedure directly fol-
lows, of course, from the definition of an interpretation of a vf and from the
circumstance that the number of vf s of any wff is finite.

The proof of the above Theorem 5 is very simple, but requires the com-
pleteness theorem of CPCT and the normal form theorem for E*. As such, it



CONSTRUCTIVISM 87

uses a rather particular technique which cannot be generalized to wider contexts.
Also, we have obtained a special completeness theorem dealing only with con-
structive validity.

With a more general technique, which can be extended to the predicative
frame, we can prove the following general completeness theorem:

if Γ \= A thenΓ I—r A.
CS tL

For the sake of brevity we omit the proof.
Even if particular, the technique used in the proof of Theorem 5 allows a

very simple proof of the next theorem also. To state this theorem, the follow-
ing definitions are needed.

• By an E0-logic L we mean any set of wffs containing all the E0-provable
formulas and closed under modus ponens (i.e., A G L and A ^ B E
L^ BEL).

• We say that an Eo -logic is constructive iff: AVBEL=*AEL or BE
L.

• We say that an E0-logic is classically valid iff: A E L => I C P C T >4.

Now we can state the following maximality theorem for E*:

Theorem 6 Let L be any constructive and classically valid E0-logic such
that: if V^rA then A E L. Then L = {A: \~prA}.

Proof: That {A: \-£*-A} c L is a hypothesis of the theorem. To prove the con-
verse, we remark that, since L is an extension of E*, the normal form theorem
holds in L too; i.e., for every wff A, there are T-formulas TAx,...,TAm

such that A <-• ΎAX v . . . v TAm G L. Now, let A G L: since L is an E0-logic,
Ύ Ax v . . . v ΎAm G L. Since L is constructive, for some /, 1 < / < m, TAt G
L. Since L is classically valid, I c p c τ TAt\ it follows, by Proposition 1 of Sec-
tion 2.1, Y^ΎΎAh from which, by (pl2) of Section 2.1, b^T Ah A fortiori,
bprT A i v . . . v T Am, from which, by the normal form theorem for E*, Y^yA.

We remark that a normal form theorem (Theorem 3 bis) holds for the sub-
logic E with respect to the wffs containing only atomic formulas in the scope
of T. Then, without any change in the proofs of Theorem 5 and Theorem 6
respectively, we obtain:

Theorem 5 bis If A doesn't contain atomic formulas out of the scope of the
occurrences ofΎ, then ^Λ implies V^A.

Theorem 6 bis Let L be any constructive and classically valid E0-logic such
that for every A not containing atomic formulas out of the scopes of the occur-
rences o/T, YJΓA implies A EL. Then, for every A not containing atomic for-
mulas out of the scopes of the occurrences ofΎ,AEL implies \γA.

3.4 Concluding remarks The maximality of E* doesn't imply that, for
every constructive and classically valid E0-logic L9 L is a sublogic of E*. For,
by adapting a proof of [1], one can show that the greatest E0-logic cannot exist.
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E* doesn't satisfy the uniform substitution property, but satisfies the fol-
lowing restricted substitution property:

(rsp) if V-rΛ{pu. . .,pn) then, for any T-formulas TAu...,ΎAn,
^rA(ΎAu...9ΎAn).

One easily proves the following proposition:

if L is any consistent Eo-logic satsifying (rsp), then L is classically valid.

Thus, the above Theorem 6 can be stated as a maximality result involving con-
structive and consistent E0-logics satisfying (rsp). But we can get more.

Let SE* (stable part of E*) be the set of formulas so defined:

S E * = [A(pl9.. . ,pn): n>0 a n d , for e v e r y Bu... ,Bn, h^A{Bu.. . ,Bn)}.

Then, SE* turns out to be consistent, closed under modus ponens and satisfy-
ing the uniform substitution property; moreover, one can prove the following
facts:

• SE* satisfies the disjunction property
• SE* is maximal in the family of consistent sets of formulas closed under

modus ponens and satisfying the uniform substitution property and the
disjunction property.

We don't know of an axiomatization of E* (we don't even know whether SE*
is decidable).

NOTES

1. If the T-formulas and the -πT-formulas are assumed to be atomic, one obtains a
normalization result for Eo. For a discussion of the plausibility of this assumption
see Section 3.

2. We can extend in a quite natural way propositional Eo into predicative Eo, we will
call Egred, by introducing the usual rules (vl), (VE), (31), (3E), and the following
dual rules (—.31), (-i3E), (-»Vl), and (->VE):

(-"31): —^- (-^E): —
^3xA(x) -iA(t)

-ιA(t) -IVJ&4(*) B
(--VI): — (-iVE): — .

-^VxA(x) B

The cautions to be taken in order to correctly apply these rules are the usual (and
obvious) ones. In particular, in (~»3l) and (->vE), a is a parameter in the sense of
[5] and [6]; in (~>3E) and (~>Vl), t is a term free for x in A(x). Now, Proposition
1 can be straightforwardly extended to Egred, taking CPrCT instead of CPCT.
Thus, our T-rules allow a grasp of the essential meaning of the operator T also in
a predicative frame, without requiring special rules (different from the introduction
and elimination ones) for the quantifiers. We recall that the classical provability of
a formula A does not imply, in a predicative frame, the intuitionistic provability
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of ~ ~A to get the latter fact one has to add to IPrC a special principle such as
Kuroda's.

3. In the predicative frame, (P2) cannot be stated without the explicit requirement of
condition (b^ involving the existence of the final states. On the other hand, at the
propositional level (P2) is a consequence of conditions (c^ and (c2) alone; this
means that in this case the latter conditions automatically imply that for every wff
A there is a set of states (depending on A) which behave as final with respect to A,
i.e., we can develop the semantics of Eo without requiring (bj).

4. The above semantics is extended without any difficulty to the predicative case, the
only novelty being the existence of (possibly) growing domains associated with the
states (where -ιV and 3 are interpreted in a similar way, the like for V and -i3).
With this semantics we can prove a soundness and completeness result for Eored.

5. This proposition and Proposition 3 no longer hold in the predicative frame. Take,
for instance, the Kuroda formula, which is unprovable in IPrC while its translations
according to 3i, 32, and 33 are provable in Eored.

6. With a slightly more complicated proof, involving the transformation of a possi-
bly infinite Kripke countermodel for IPC into a possibly infinite E 0(~,-ι~)
model, one can generalize the above proposition in the following form: for every
set Γ of wffs and every wff A such that Γ U [A] is contained in the language
of IPC, Γ hjp̂ Γ A iff Γ 1 E o ( ,_ 1 ^ ) A. In the predicative frame, on the other hand,
we can prove the following: for every set Γ of wffs and every wff A such that Γ U
{A} is contained in the language of IPrC, Γ h -̂ A iff Γ 1 E P r e d A, where K is the
logic obtained by adding the Kuroda principle to IPrC.

7. The soundness and the completeness, as well as this result, hold in the predicative
frame.

8. In the predicative frame the T of F(~,-ι~,T) no longer has the meaning of the
classical operator, since the Kuroda formula doesn't hold; here it is equivalent
to — , but ~ has the properties of intuitionistic negation. On the other hand, in
Eored(~,""—) the operator T is still equivalent to — , but ~ no longer has the
properties of intuitionistic negation; in other words, T-rules modify in an essential
way the meaning of ~.

9. The predicative logic EJp r e d is obtained by adding (*1) and (*2) to Egred (here the
atomic formulas are the ones of predicate calculus). Then, a soundness and com-
pleteness result can be proved for EJp r e d with respect to the obvious predicative
extension of the notion of an EQ-model.

10. In the predicative frame one cannot state a normal form theorem even with the
addition of the following rule:

(Epred). TΛ-»3χg(s)

3x(ΎA-^B(x))

Also, one can devise more than one extension of the propositional notion of vf, so
that a number of different predicative extensions of E* might be proposed. To
deal adequately with these aspects, the authors are collecting the material for a sub-
sequent paper.
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