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Constructing ω-stable Structures: Rank k-fields

John T. Baldwin and Kitty Holland

Abstract Theorem: For every k, there is an expansion of the theory of al-

gebraically closed fields (of any fixed characteristic) which is almost strongly

minimal with Morley rank k.

1 Introduction

Answering an old question of Berline and Lascar, we showed in [1] and [2] that

there is an expansion of an algebraically closed field by a unary predicate which has

Morley rank 2. Recently Zilber asked whether this result extended from 2 to arbitrary

k < ω. It does. While no essentially new methods are needed in the proof, there are

some significant new cases to consider. We have taken the opportunity to lay out the

proof for all k uniformly.

In presenting the argument there is a tension between an exposition following the

method of discovery, making the motivation clear, and one emphasizing uniformities

in the proofs of various aspects of the complicated arguments, showing why it is true.

We have chosen to err in the latter direction, hoping with comments to keep the goal

in sight.

We begin by defining a predimension δ(ā) = k · td(ā)− |ā ∩ P| on expansions of

algebraically closed fields by a unary predicate P (bicolored fields). We fix a finite-

to-one function µ limiting the number of realizations of “primitive” extensions. In

Section 2 we show that (K
µ

0 ,≤), the class of such expansions with hereditarily non-

negative dimension, has strong separation of quantifiers and amalgamation. We de-

note by T k,µ the first-order theory of the resulting generic model, which (by Section

1 of [1]) is ω-saturated; it follows that T k,µ is ω-stable. In Section 3 we show that

the universe of a model of T k,µ has Morley rank k.

If k > 2, one new type of argument is introduced in the proof that the theory has

strong separation of quantifiers. We can categorize the minimal strong extensions

b̄ ≤ b̄ā ≤ 〈b̄ā〉 ∈ K 0 according to the possibilities for δ(ā/b̄).
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1. δ(ā/b̄) = k; ā is a white singleton independent from b̄.

2. δ(ā/b̄) = k − 1; ā is a black singleton independent from b̄.

3. δ(ā/b̄) = m with 1 ≤ m < k − 1; ā is a black tuple with transcendence

degree of ā/b̄ equal to
lg(ā)

k
+ m.

4. δ(ā/b̄) = 0; ā is a black primitive.

Cases 1, 2, and 4 can be handled exactly as those of the same description are handled

in [2]; this corresponds to δ(ā/b̄) is 2, 1, 0, respectively, in the earlier argument.

However, Case 3 is new. Like Cases 1 and 2, in Case 3 the structure C[ḡ] is always

in K
µ

0 . Unlike Cases 1 and 2 and like Case 4, the hypothesis that the function µ

is finite-to-one must be applied; that is, a formula β(ȳ), chosen in the construction,

depends not only on the formula τ but on the primitive codes {d i : i < ℓ} such

that µ(d i ) < 3 lg(ā) (where lg(ā) denotes the length of the sequence ā). These

observations led to a reorganization of the argument in which this case structure is

no longer explicit.

Our notation follows that in [1] and [2] (with the latter dominating as some terms

have been updated over time). A careful reading of this article will require having

those papers in hand. However, we have attempted to describe the argument so that

a person familiar with the earlier papers can grasp the new points. In particular, we

rely on the notion of strong submodel, the notation I (ȳ) for a type guaranteeing that

its realizations are strong, and the notions of primitive codes and δ-formulas. The

underlying field language is denoted L f and L is the expansion of L f by one unary

predicate P . In some cases we must make a distinction between the field part of

formula and the L-formula. Recall that in [1] Ed(x̄) indicated the presence of lg(x̄)

“sufficiently independent” realizations of the code d. Here we write E
f

d
for the field

part of Ed (omitting the assertion that certain points are black).

2 Strong Separation of Quantifiers

In [1] we defined the notion of a complete δ-formula for a pair ā/b̄. One of the impor-

tant properties of such a formula ϕ(x̄; ȳ) is that if ϕ(ā′; b̄′) holds, δ(ā′/b̄′) ≤ δ(ā/b̄).

This implies that the assertion that b̄ ≤ M (read b̄ is strong in M and meaning for

every c̄ ∈ M , δ(c̄/b̄) ≥ 0) is type definable. To avoid constant repetition of “finite

conjunction of”, we slightly modify the definition from [1]. We require now that

the type I (ȳ) denote the collection of finite conjunctions of formulas (∀x̄)¬ϕ(x̄; ȳ)

where ϕ(x̄; ȳ) is a complete δ-formula for a minimal intrinsic extension of b̄. Sim-

ilarly I ∗(b̄) denotes the collection of finite conjunctions of formulas from I (ȳ) and

the quantifier-free L-diagram of b̄.

We showed in [1] that if the class (K 0, δ) admits strong separation of quantifiers

in (a minor variant of) the following sense, then the generic model is ω-saturated.

Definition 2.1 We say (K 0, δ) admits strong separation of quantifiers if for any

b̄ ≤ āb̄ ≤ 〈āb̄〉 ∈ K 0 with ā minimal strong over 〈b̄〉, the following holds: For any

formula τ (x̄; ȳ) in I (x̄, ȳ) ∪ Diag(ā, b̄) there is a β(ȳ) ∈ I ∗(b̄) such that whenever

b̄′ ⊆ C ∈ K 0 and C |H β(b̄′), there is D ∈ K 0 with C ≤ D and ā′ ∈ D such that

D |H τ (ā′; b̄′).

We work here with K
µ

0 , the finitely generated models with hereditarily nonnegative

dimension that satisfy the µ-constraint, playing the role of K 0 (cf. [2]).
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Notation 2.2

1. Fix b̄≤ āb̄≤〈āb̄〉∈ K
µ

0 with ā minimal strong over 〈b̄〉 and τ (x̄; ȳ)∈ I ∗(āb̄).

Let ρ(x̄, ȳ) be a complete δ-formula for ā over b̄ and let ρ f (x̄, ȳ) be the field

part of ρ.

2. If ā is primitive over b̄, find a primitive code c and c̄ ⊆ acl f (b̄) such that ā is

a generic solution of ϕ
f

c (x̄; c̄). Let γ (ū; ȳ) isolate the L f -type of c̄ over b̄.

We must show that there is β(ȳ) in I ∗(b̄) such that whenever b̄′ ⊆ C ∈ K
µ

0 and

C |H β(b̄′), there is D ∈ K
µ

0 with C ≤ D and D |H (∃x̄)τ (x̄; b̄′). Let C[ḡ]

be the white algebraic closure of Cḡ where ḡ is a realization of ρ(x̄, b̄′) which is

independent from C over b̄′. We will show that one of C[ḡ] or C can be taken as

D. We will choose a sequence of formulas βi whose conjunction is the required β.

β0(b̄
′) asserts that the rank of ρ f (x̄, b̄′) is the same as the rank of ρ f (x̄, b̄). We

require a minor variant of Lemma 2.6 of [2].

Lemma 2.3 Suppose d is a primitive code, and that ē1, . . . , ēH ⊆ C[ḡ] with

Ed(ē1, . . . , ēH ) and H > µ(d) ≥ q(d) + m(d). Then either ēi = ḡ for some i ,

up to a possible reordering of variables, or H ≤ 3 lg(ḡ).

This lemma was proved in [2] only when ḡ/C is primitive; it holds for ḡ/C minimal

strong by the same argument.

Notation 2.4

1. Let D be the finite (since µ is finite to one) collection of primitive codes d

with µ(d) < 3 lg(ā).

2. Fix a primitive code d ∈ D. For each σ , a sequence of m(d) distinct n(d)-

tuples from {1, . . . , lg(ā))}, and sequence of constants ā (variables x̄) with

length lg(ā), āσ or x̄σ denotes the sequence from rg(ā) or rg(x̄) indexed by

σ .

3. Let Z be the finite set of pairs (d, σ ) with d ∈ D and σ such a sequence of

tuples.

We have the following weakening of a key idea in proving the primitive case in [2].

Lemma 2.5 Suppose ā is black.

1. T0 ∪ I ∗(b̄) ∪ {ρ(x̄; ȳ)} ⊢ Diag(ā, b̄).

2. For any σ and d with lg(ā) ≥ n(d) · m(d), if ē is a realization of

ϕd(z̄; Fd(ā)
σ ) that is independent from acl(āb̄) over Fd (ā

σ ),

T0 ∪ I ∗(b̄) ∪ {ρ(x̄, ȳ), z̄ ∩ x̄ ȳ = ∅, ϕ
f

d
(z̄, Fd (x̄

σ ))} ⊢ Diag f (ā, b̄, ē).

Proof For the first part, it suffices to show T0 ∪ I ∗(b̄) ∪ {ρ(x̄; ȳ)} ⊢ Diag(ā, b̄)

since ρ specifies that ā is black. Suppose ā′b̄′ satisfies I ∗(b̄) ∪ ρ(x̄; ȳ). Then 〈āb̄〉

and 〈ā′b̄′〉 are isomorphic as fields since, as a realization of I ∗(b̄), 〈b̄〉 ≈ 〈b̄′〉 and

td(ā′/b̄′)must equal td(ā′/b̄′). Otherwise, noting that δ(ā/b̄) ≤ k −1 (as ā is black),

we would have

δ(ā′/b̄′) ≤ k · (td(ā/b̄)− 1)− lg(ā′) = δ(ā/b̄)− k < 0,

contradicting b̄′ ≤ ā′b̄′.

To see the second, let ā′, b̄′ satisfy T0 ∪ I ∗(b̄) ∪ {ρ(x̄, ȳ)}. By the first part,

〈āb̄〉 and 〈ā′b̄′〉 are isomorphic as fields. Consider an arbitrary black ē′ such that
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ϕ
f

d
(ē′, Fd (ā

′)σ ) and ē′ ∩ ā′b̄′ = ∅. If td(ē′/ā′b̄′) < RM (ϕ
f

d
(z̄, Fd (ā

σ ))) = s, then

(since ks = lg(z̄))

δ(ē′/ā′b̄′) = k · td(ē′/ā′b̄′)− lg(z̄) ≤ k(s − 1)− lg(z̄) = −k.

Since ā is black, δ(ā′/b̄′) ≤ δ(ā/b̄) ≤ k − 1, so

δ(ē′ā′/b̄′) = δ(ē′/ā′b̄′)+ δ(ā′/b̄′) ≤ −k + (k − 1) < 0.

But this contradicts the hypothesis that b̄′ satisfies I ∗(b̄). So every black realization

of ϕ
f

d
(z̄, Fd (ā

′)σ ) is generic for ϕ
f

d
(z̄, Fd (ā

′)σ ). This implies that 〈ēāb̄〉 and 〈ē′ā′b̄′〉

are isomorphic as fields as required. �

It is fairly straightforward to find βi guaranteeing the following. Details are on page

10 of [2].

Lemma 2.6 For i = 1, 2, 3, there are βi , each a conjunction of members of I ∗(b̄),

such that for every (d, σ ) ∈ Z,

1. if C |H β1(b̄
′), then for any r and sequence of r distinct n(d)-tuples z̄1, . . . , z̄r

from x̄ ȳ, E
f

d
(z̄1, . . . , z̄r ) is realized in ḡb̄′ if and only E

f

d
(ȳ1, . . . , ȳr ) is re-

alized in āb̄. In particular, this holds when z̄1, . . . , z̄r is x̄σ ;

2. if C |H β2(b̄
′) and if Fd(ā

σ ) ⊆ acl(b̄), then Fd(ḡ
σ ) ⊆ acl(b̄′);

3. in the case that ā is primitive over b̄, we have, if C |H β3(b̄
′) then

C |H ∀ū z̄ [γ (ū; b̄′) ∧ ϕ
f

d0
(z̄; ū) → τ (z̄; b̄′)].

We also need the following preparatory lemma. Its proof is the bottom half of page

9 of [2].

Lemma 2.7 Let ǫ(z̄, x̄, ȳ) be any field formula such that for any ā′, b̄′,

RM (ǫ (z̄, ā′, b̄′)) <
lg(z̄)

2
. There is a formula βǫ in I ∗(b̄) such that if C |H βǫ(b̄

′)

then

C[ḡ] |H (∀z̄)[z̄ ∩ ḡb̄′ = ∅ ∧ z̄ ⊂ P → ¬ǫ(z̄, ḡ, b̄′)].

With the aid of this lemma we choose two more of the βi . The next lemma is im-

mediate since τ (x̄, ȳ) has the form (∀z̄)[¬τ ′′(z̄, x̄, ȳ)] where τ ′′(z̄, x̄, ȳ) satisfies the

conditions on ǫ in Lemma 2.7. We apply the result first to show C[ḡ] |H τ (b̄′) and

again to choose β5.

Lemma 2.8 Let τ ′′(z̄; x̄ ȳ) be a complete δ-formula for a minimal intrinsic ex-

tension of x̄ ȳ. There is a formula βτ (ȳ) ∈ I ∗(b̄) such that if C |H βτ (b̄′) then

C[ḡ] |H (∀z̄)¬τ ′′(z̄; x̄ ȳ); that is, C[ḡ] |H τ (ḡb̄′).

Proof Either τ (x̄, ȳ) has the form (∀z̄)[¬τ ′′(z̄, x̄, ȳ)] where τ ′′(z̄, x̄, ȳ) is z̄ ⊂

P ∧ ǫ(z̄, x̄, ȳ) and ǫ(z̄, x̄, ȳ) satisfies the conditions in Lemma 2.7 (and we finish)

or is in Diag(āb̄). In the second case the result is trivial if ā is a white singleton (our

original Case 1) and the result is immediate by Lemma 2.5(1) otherwise. �

For any d ∈ D we want to control the realizations of d in C[ḡ]. In Lemmas 2.9 and

2.10 we forbid first with those that don’t intersect ḡb̄′ and then with those that split

over ḡb̄′.

Lemma 2.9 There is a β4 ∈ I ∗(b̄) such that if C |H β4(b̄
′) and Fd (ā

σ ) 6⊆ acl f (b̄)

then for every (d, σ ) ∈ Z, every solution in C[ḡ] of ϕd(z̄; Fd(ḡ
σ )) intersects ḡb̄′

nontrivially.
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Proof As usual we work for each (d, σ ) separately and take the conjunction of

the results as β4. Let ē satisfy the unique L-type q ∈ S(acl f (āb̄)) of a realization of

ϕ
f

d
(z̄, Fd (ā

σ ))with td(ē/āb̄) = RM (ϕ
f

d
(z̄, Fd (ā

σ ))); that is, Fd(ā
σ ) is the canonical

base of tp(ē/āb̄). By standard properties of canonical bases (2.26(2) of Pillay [4])

or by the special argument on page 9 of [2], ē depends on ā over b̄. Thus, there are

l, strictly less than the rank of ρ(x̄; b̄), and an L f -formula ψ(x̄; ȳz̄) with ψ(ā; b̄ē)

(i.e., ψ(ā, b̄, z̄) ∈ q), such that for any r̄ s̄ the rank of ψ(x̄ ; r̄ s̄) is l. By part (2) of

Lemma 2.5, there is a β(ȳ) which is a conjunction of formulas from I ∗(b̄) so that

T0 ∪ {β(ȳ)} ∪ {ρ(x̄, ȳ), z̄ ∩ x̄ ȳ = ∅, ϕ
f

d
(z̄, Fd (x̄

σ ))} ⊢ ψ(x̄, ȳ, z̄).

Now suppose C |H β(b̄′) and ē is solution in C[ḡ] of ϕ
f

d
(z̄, Fd (ḡ

σ )) that is disjoint

from ḡb̄′. Then ē ∈ C − b̄′ so ē is independent from ḡ over b̄′. On the other

hand, C[ḡ] |H ψ(ḡ, b̄′, ē), so RM (ḡ/b̄
′ē) < RM (ḡ/b̄

′). This contradiction yields the

result. �

Lemma 2.10 There is a β5 ∈ I ∗(b̄) such that for every (d, σ ) ∈ Z, if C |H β5(b̄
′)

no solution in C[ḡ] of ϕd(z̄; Fd(ḡ
σ )) splits over ḡb̄′.

Proof A solution of ϕd(z̄; Fd (ḡ
σ )) that splits over ḡb̄′ determines a nontrivial par-

tition of z̄ into z̄1 z̄2 and a subsequence, which we denote (x̄ ȳ)τ of x̄ ȳ with the same

length as z̄2 such that

C[ḡ] |H (∃z̄)[z̄ ∈ P ∧ z̄1 ∩ ḡb̄′ = ∅ ∧ ϕd(z̄1(ḡb̄′)τ ; Fd(ḡ
σ ))].

Now for each choice of d, σ, τ , taking ϕ
f

d
(z̄1(x̄ ȳ)τ ; Fd(x̄

σ )) as ǫ(z̄1; x̄, ȳ) satisfies

the hypothesis of Lemma 2.7 so there is a βd,σ,τ (ȳ) such that if C |H βd,σ,τ (b̄
′) then

C[ḡ] |H (∀z̄)[(z̄ ∈ P ∧ z̄1 ∩ ḡb̄′ = ∅) → ¬ϕd(z̄1 ḡb̄′)τ ; Fd(ḡ
σ )].

Now let β5 be the conjunction of the βd,σ,τ . �

Theorem 2.11 Fix b̄ ≤ āb̄ ≤ 〈āb̄〉 ∈ K
µ

0 with ā minimal strong over 〈b̄〉

and τ (x̄; ȳ) ∈ I ∗(āb̄). There is a formula β(ȳ) ∈ I ∗(b̄) such that whenever

b̄′ ⊆ C ∈ K
µ

0 and C |H β(b̄′),

1. C[ḡ] |H τ (ḡ, b̄′) and

2. either C[ḡ] ∈ K
µ

0 or C |H (∃v̄)τ (v̄, b̄′).

Thus, K
µ

0 has strong separation of variables.

Proof Part 1 is immediate by Lemma 2.8. By Lemma 2.3, D is the finite collection

of codes which can prevent C[ḡ] ∈ K
µ

0 . Now let β(ȳ) be the conjunction of βτ and

the βi (ȳ), depending on ā/b̄, for i < 6 defined above. Now suppose ē0, . . . , ēr is

a sequence of maximal length contained in C[ḡ] such that C[ḡ] |H Ed(ē0, . . . , ēr )

with d ∈ D. We aim to show r < µ(d) or C |H τ (b̄′).

Case 1 C[ḡ] |H Ed(ḡ
σ ) for some σ . By the choice of β1, 〈āb̄〉 |H E

f

di
(āσ ).

Case 1a Fd (ḡ
σ ) ⊆ acl f (b̄′) ⊆ C . Since C ≤ C[ḡ] and ϕd(ēi , Fd (ḡ

σ )), the

m(d) of the ēi which are proper subsets of ḡ contradict that ḡ/C is a minimal strong

extension.

Case 1b Fd (ḡ
σ ) 6⊆ acl f (b̄′). Then, by the choice of β2, Fd(ā

σ ) 6⊆ acl f (b̄). By

our choice of β4(ȳ), every solution of Ed(z̄, ḡσ ) in C intersects b̄′. But by the choice



144 John T. Baldwin and Kitty Holland

β5, none of them split over ḡ′b̄. So all r of the ēi are in b̄′ḡ. Applying β1 again, this

would imply 〈āb̄〉 6∈ K
µ

0 . From this contradiction, we deduce C[ḡ] ∈ K
µ

0 .

Case 2 C[ḡ] |H ¬Ed(ḡ
σ ) for every σ . By Lemma 2.3 of [2], either at most

q(d) lie in or split over C and we finish since q(d)+ m(d) < µ(d) or none split and

Fd (ē1, . . . , ēm) ∈ C . Then no ēi can be a proper subset of ḡ so C[ḡ] ∈ K
µ

0 or ḡ must

be one of the ēi and we have C[ḡ] |H ϕd(ḡ, Fd (ē1, . . . , ēm)). Since C ≤ C[ḡ], ḡ is

a generic solution of ϕd(z̄, Fd(ē1, . . . , ēm)). We also have ḡ is a generic solution of

ϕc(x̄, c̄) (see Notation 2.2). By uniqueness of codes and parameters d is c up to order

of variables, so without loss of generality d is c. By the choice of β3 in Lemma 2.6,

C |H τ (ē1, b̄′) and we finish. �

To summarize, we briefly return to the organization of the proof in the earlier papers

around the (now) four types of minimal strong extension. In the first three (nonprim-

itive) cases, we are in Case 1 of the proof as organized here and C[ḡ] ∈ K
µ

0 . But

when ā/b̄ is primitive we may be in the situation that C attains the maximum number

of realizations of the code for ā/b̄. Then adding one more takes C[ḡ] out of K
µ

0 but

C still satisfies τ and the proof succeeds.

To emphasize that strong separation of quantifiers was an additional condition

beyond amalgamation (which might fail for some choices of µ which satisfied amal-

gamation) in [1], we proved amalgamation first. It is actually simpler to return to the

scheme of Holland [3] and derive amalgamation from strong separation of quantifiers

as follows.

Corollary 2.12 If M ≤ N1, N2 and all are in K 0 then there is an N ∈ K 0 with

N1, N2 ≤ N (by maps which agree on M).

Proof For every ḡ ∈ N2 − M , δ(ḡ/M) > 0, we take N as the white algebraic

closure of the free amalgamation of N1 and N2 over M . Moreover, by expanding M ,

we may assume there is no ḡ ∈ N2 − M which can be mapped by an M-embedding

into N1 − M . Now fix ḡ ∈ N2 − M which satisfies a primitive code c and ϕc(ḡ; c̄)

for some c̄ ∈ M . By Theorem 2.11, either N1[ḡ] ∈ K 0 and we finish or there are

µ(c)+ 1 realizations of c in N1. But at most µ(c) of them lie in M (since N2 ∈ K 0)

and none split over M since M ≤ N1 so there must be one in N1 − M . But then we

can embed M[ḡ] into N1 after all. �

We now know that the class of expansions of algebraically closed fields with strong

submodel (≤) induced from the given predimension, such that the number of real-

izations of any primitive is bounded by the function µ, has both the amalgamation

property and strong separation of variables. It follows from [1] that there is a generic

model which is ω-saturated; we denote the theory of this model by T k,µ. In the next

section we show it has Morley rank k.

3 Computing Rank

The proof that the dimension function δ(ā) = k · td(ā) − |ā ∩ P| yields a theory

with Morley rank k follows the argument in [2] with a couple of variants. The use

of the µ-function guarantees that if δ(ā/A) = 0, tp(ā/A) is algebraic. We need the

following general remark, Lemma 3.3 of [2].
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Fact 3.1 Let N ≤ M |H T k,µ. If ā and ā′ are disjoint from N , Nā ≤ M ,

Nā′ ≤ M , ā′ satisfies a complete δ-formula, ϕ(x̄, n̄), for ā over N with base n̄,

and δ(ā/N) = δ(ā′/N), then tp(ā/N) = tp(ā′/N).

With this in hand we get the upper bound by a simpler version of the upper bound

argument for infinite rank, Lemma 3.6 of [2].

Lemma 3.2 Let N ≺ M |H T k,µ, ā ∩ N = ∅ and suppose that ϕ(x̄; m̄) is a

complete δ-formula for ā over N based on m̄, then

RM (ϕ(x̄; m̄)) ≤ δ(ā/m̄).

Proof We proceed by induction on δ(ā/m̄). Fix ϕ, m̄, ā, k and assume that for all

m̄′ ∈ N and all ϕ′, ā′ for which δ(ā′/m̄′) < δ(ā/m̄) : RM (ϕ
′(x̄ ′; m̄′)) ≤ δ(ā′/m̄′).

By Fact 3.1 there is at most one type q(x̄) ∈ S(N) such that ϕ(x̄; m̄) ∈ q and

for some (hence any) b̄ realizing q , δ(b̄/N) = δ(ā/m̄), Nb̄ ≤ M, and b̄ ∩ N = ∅.

We will show that all other complete types over N containing ϕ(x̄; m̄) also contain

a formula of rank strictly less than δ(ā/m̄). The lemma follows immediately.

Fix ā′ satisfying ϕ(x̄; m̄) and suppose that the type of ā′ over N is not of the form

q described above. Set b̄′ = ā′ − N . Now RM (tp(ā
′/N)) = RM (tp(b̄

′/N)), so it

suffices to show that tp(b̄′/N) contains a formula of rank strictly less than δ(ā/m̄).

If δ(b̄′/N) < δ(ā/m̄), we are done by the inductive hypothesis. If Nb̄′ 6≤ M, let

d̄ denote icl(b̄′/N), whence, since d̄ ⊆ acl(b̄′N), RM (tp(d̄/N)) = RM (tp(b̄
′/N)).

But δ(d̄/N) < δ(b̄′/N) ≤ δ(ā/m̄), so we may again appeal to the inductive hypoth-

esis.

In the remaining case, δ(b̄′/N) = δ(ā/N) and Nb̄′ ≤ M but b̄′ 6= ā′. Write

ā′ = b̄′c̄′ so that c̄′ = ā′ ∩ N , and let ā = b̄c̄ be the corresponding partition of ā.

Since ā′ satisfies the complete δ-formula ϕ(x̄; m̄) for ā over m̄ ≤ N , we get the

second inequality in the following expression.

δ(ā/N) = δ(b̄′/N) ≤ δ(b̄′/c̄′m̄) ≤ δ(b̄/c̄m̄) ≤ δ(b̄/c̄m̄)+ δ(c̄/m̄) = δ(ā/N), (1)

so δ(c̄/m̄) = 0. (We knew δ(c̄/m̄) ≥ 0 since N ≤ Nā.) But this implies (since

m̄ ≤ m̄c̄) that tp(c̄/m̄) is algebraic, whence c̄ ∈ N . So c̄ is empty, ā = b̄, and thus

ā′ = b̄′. This contradiction concludes the proof. �

For the proof of the lower bound argument we must again make slight variations

on the proof of the lower bound for infinite rank in [2]. Informally, a primitive

decomposition of a set writes it as an ascending union with each component primitive

over its predecessor; the formal notion and the basic properties are in Section 3 of

[2]. We modify the definitions of ( j,m) types and ‘ample’ for the finite rank case.

Definition 3.3 Fix B ⊆ M, b ∈ M and let ā = icl(b/B). We say tp(b/B) is a

( j,m)∗-type if B ≤ Bā, and for ā = b̄c̄, where c̄ is maximal in ā with δ(c̄/B) = 0,

1. c̄ has a primitive decomposition with m steps,

2. δ(ā/c̄B) = j ,

3. ā is minimal strong over c̄B .

Definition 3.4 We say K 0 (or the theory T of the generic of K 0) is ∗-ample if for

every tp(b/B), if ā = icl(b/B) is minimal strong with δ(ā/B) = j , then for every

m < ω, there are Bm ⊃ B and bm such that bm realizes tp(b/B) and tp(bm/Bm) is a

( j − 1,m)∗-type.
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The key fact in the definition of ∗-ample is that if tp(b/B) is a ( j,m)∗-type then for

any C ⊇ B such that b and C are independent over B , tp(b/C) is also a ( j,m)∗-

type. Thus, tp(bm/Bm) must be a forking extension of tp(b/B) and without loss of

generality, Bm is elementary in the universe.

Theorem 3.5 Suppose K 0 is ∗-ample, n = max{δ(a) : a ∈ N ∈ K 0}, and T is

the theory of the generic model M.

1. Let N ≺ M; if tp(e/N) is a ( j,m)∗-type then U(e/N) = j = RM (e/N).

2. In T , RM (x = x) = k is the maximal U-rank of a one type.

Proof (1) We show by induction that if tp(b/N) is a ( j,m)∗-type then U(tp(b/N))

≥ m. For j = 0 and any m, the result follows directly by Lemma 3.9 of [2].

Now suppose we have the result for j ′ < j and any m. Consider tp(b/N) where

ā = icl(b/N), ā = b̄c̄, c̄ is maximal in ā with δ(c̄/N) = 0, ā is minimal strong

over Nc̄ and δ(ā/Nc̄) = j . Apply the fact that K 0 is ∗-ample to p = tp(b/Nc̄):

for every m < ω, there exist Nm ⊃ Nc̄ and bm such that bm realizes tp(b/Nc̄) and

pm = tp(bm/Nm) is a ( j − 1,m)∗-type. Then pm is a forking extension of p and

by induction U(pm) = j − 1. Thus, U(p) ≥ j . Note U(b/Nc̄) = U(ā/Nc̄).

By Lemma 3.10 of [2], U(b/N)) = U(ā/N) = U(ā/Nc̄) + m ≥ j + m. But by

Lemma 3.2 this is also an upper bound on the Morley rank and, in general, U rank is

at most Morley rank so we finish.

(2) Since an independent white point has type (k, 0), it has U -rank k by part 1; this

is the upper bound by Lemma 3.2. �

Now we can conclude the analysis.

Theorem 3.6 The theory T k,µ is ω-stable with Morley rank k.

Proof By Lemma 2.11 and the comment above it, T k,µ has strong separation of

variables whence the generic model is saturated. It then follows immediately from

Lemma 3.2 that T k,µ is ω-stable and the exact computation of the rank follows from

Lemma 3.5 providing we verify the theory is ∗-ample. This is verified in detail for

k = 3 in the last example of [2] and the other cases are analogous. (Technically the

example showed ample—not ∗-ample. But in fact we showed only the existence of

primitive decompositions of length m for each m. For ample these must be nonalge-

braic and were in [2] since without the µ-function no primitives are algebraic. Here

we need each primitive to be algebraic and that is ensured by the µ-function.) �

This argument for the rank doesn’t give the description of models of the theory as the

algebraic closure of the black points that we provided in [1]. For this, a routine trans-

lation of the argument in Theorem 2.9 of [1] shows that if ā is minimal strong over

b̄ with δ(ā/b̄) = 1 (determined by ρ(ā; b̄)) then, writing x̄ as x x̄ ′, (∃x̄ ′)ρ(x, x̄ ′; b̄)

is strongly minimal. Since all fields of finite Morley rank are almost strongly min-

imal (Proposition 2.12 of Poizat [5]), the universe is in the algebraic closure of any

strongly minimal set and a fixed set of constants. By the proof of this result every

element must be the sum of ℓ elements from (a multiplicative translate of) the set.

Rank computations show that for T k,µ, ℓ = k.
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