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Arithmetically Saturated Models of Arithmetic

ROMAN KOSSAK and JAMES H. SCHMERL

Abstract  The paper presents an outline of the general theory of countable
arithmetically saturated models of PA and some of its applications. We con-
sider questions concerning the automorphism group of a countable recursively
saturated model of PA. We prove new results concerning fixed point sets, open
subgroups, and the cofinality of the automorphism group. We aso prove that
the standard system of a countable arithmetically saturated model of PA is de-
termined by the lattice of its elementary substructures.

1 Introduction  Recent work on automorphisms of countable recursively saturated
models of PA hasreveal ed the importance of those modelsin which the standard nat-
ural numbers form a strong cut. In Kossak and Schmerl [[9] we called such models
arithmetically saturated, and Proposition[Z.4below explains why.

The aim of this paper is to outline the basic theory of arithmetically saturated
models of PA and to present new results illustrating the special character of these
structures. The special character of arithmetically saturated models was first noted
in Kossak [[6]. It was shown there that arithmetic saturation for models of PA can
be characterized in terms of the existence of elementary initial segments with some
special properties. Later in Kaye, Kossak, and Kotlarski [[3] it was proved that if M
is a countable recursively saturated model of PA then M is arithmetically saturated
iff there exists an automorphism of M that moves all nondefinable elements. Other
results where the assumption of arithmetic saturation, instead recursive saturation, is
needed can be found in Kossak, Kotlarski, and Schmerl [B].

One of the important, and somewhat surprising, results is the theorem of Las-
car [[11], saying that countable arithmetically saturated models PA have the small in-
dex property.

In the next three sections of this paper we consider automorphisms and auto-
morphism groups of recursively saturated models of PA. The last section is devoted
to lattices of elementary substructures of arithmetically saturated models of PA.

In Section 3 we prove that, if M is a countable recursively saturated model of
PA, then M is arithmetically saturated if and only if Aut(M) is finitely generated
over each of its open subgroups. Then, as a corollary of the results from Hodges et



532 ROMAN KOSSAK and JAMES H. SCHMERL

al. [[1J and [[11], we show that the cofinality of the automorphism group of a recur-
sively saturated model of PA isuncountableiff the model isarithmetically saturated.
It isan interesting open problem whether recursively saturated models of PA that are
not arithmetically saturated have the small index property. The above result seemsto
suggest that they might not.

In Section 4 we consider automorphisms moving all nondefinable elements. We
show that if M is countable and arithmetically saturated model of PA, then thereis
an automorphism f of M suchthat f(x) > x, for every x greater than all definable
elements of M. Thisis a strengthening of previously known results, and it leads to
some interesting open questions.

Kotlarski has asked in [[IQ] if either the automorphism group or the elementary
substructure lattice of a countable recursively saturated model of PA determines the
model. We have shown in[[9] that thisisthe casefor the automorphism group of arith-
metically saturated models for any fixed complete extension of PA. More precisely,
if M and N\ are countable arithmetically saturated models of PA, then Aut(M) =
Aut(N) implies SSy(M') = SSy(AN). Inthe last section we will prove that the same
istruefor lattices: the standard system of an arithmetically saturated model of PA (of
arbitrary cardinality) is determined by the lattice of elementary substructures of the
model.

2 Preliminaries Let usfix some notation and terminology. The set of standard nat-
ural numberswill be denoted by w, N = (w, +, -, 0, 1) isthe standard model, and TA
isTh(N). Thestandard systemof amodel M, SSy(M), isthefamily of those X € M
for which thereis an Y definable in M with parameters, suchthat X = w NY. Lpa
will denote the language of PA.

We will say that atype p(v, ) invariablesv = vy, ..., vy, and parametersa =
a, ..., ame M isrecursive, arithmetic, etc., if the set of Godel numbers of formulas
¢(v, w) € p(v, w), wherew = wy, ..., wm, iISrecursive, arithmetic, etc. Inthe same

sense we will speak of types as being subsets of w.

Thenotion of A4-saturation wasintroduced by Wilmersin m Let 4 beafamily
of subsetsof . Wesay that amodel M is A-saturated if thefollowing two conditions
are satisfied: (i) for every & € [M] =2, the type of &, tp(d), isin A; (ii) for every
type p(v, ) in 4, if p(v, @) isrealized in some elementary extension of M, then it
isrealizedin M.

A Scott set is an w-model of WKLg. The standard system of a model of PA is
a Scott set; moreover, every countable Scott set is the standard system of a model of
PA. If T isacompletion of PA, X isa countable Scott set and T € X, then thereisa
recursively saturated countable model M = T such that SSy(M) = X. Proofsof the
above statements can be found in Kaye [2].

The next proposition shows that a recursively saturated model of PA is much
more than just recursively saturated.

Proposition 2.1 (Smoryfski [[15]) Amodel M = PA isrecursively saturated iff M
is SSy (M )-saturated.

We will use afixed arithmetical coding of finite sequences. If M isamodel of PA
and a, i € M, then (a); denotes thei-th term of the sequence coded by a, and lena is
the length of the sequence coded by a.
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The standard cut w is strong in M if for every ain M thereisc > » such that
foreveryi € w, (a)j € w < (a)j <C.

Strong cuts were introduced and studied by Kirby in [E]. In particular Kirby
proved the following (see the the first section of [|5] for a discussion and references).

Proposition 2.2  Thestandard cutisstronginamodel M = PA iff (w, SSy(M)) =
ACA,.

Definition 2.3 ([@]) For an arbitrary structure M in a recursive language £, we
say that M is arithmetically saturated if whenever (v, Up, ..., Un) is aset of L-
formulas which is arithmetic in the type of (ag, ...a,) and ay, ..., a, € M are such
that (v, ) isrealized in some elementary extension of A, then (v, @) isreaized
in M.

Our main characterization of arithmetic saturation follows directly from Proposi-

tionsR.1]and B.2]
Proposition 2.4  If M isamodel of PA, then the following are equivalent:

1. M isarithmetically saturated,
2. M isrecursively saturated and w is strong in M;
3. M isrecursively saturated and (w, SSy(M)) = ACA,.

From the definition of arithmetic saturation it follows easily that for every model M
thereisan arithmetically saturated model A suchthat M < A\ and cardM = card\.
Also from remarks preceding Proposition 2.1]and from Proposition[24Jwe have the
following corollary.

Corollary 25 If (w, X) isacountable model of ACAp,and T € X isacompletion
of PA, then there is a countable arithmetically saturated model M = T such that

SSy(M) = X

Corollary[2.5]and well-known facts concerning w-models of ACAq imply that every
completion of PA has continuum many nonisomorphic countable arithmetically sat-
urated models.

There are many differences between the class of arithmetically saturated mod-
els and the class of recursively saturated models. Now let us just note the following
two observations. Itiseasy to seethat every countable arithmetically saturated model
of PA has a countable cofinal extension that is not arithmetically saturated; thus, the
Smoryhski-Stavi theorem on cofinal extensions does not hold when recursive satu-
ration is replaced by arithmetical saturation. If 4/ is a cofinal extension of an arith-
metically saturated model, then M realizes all arithmetic pure types consistent with
Th(M) (in fact al consistent with Th(M) types with parametersin M). This, to-
gether with the previous remark shows that in Definition[2.3] we need to assume that
(U, Ug, ..., Uy) isarithmetic in atype of atuple of elements of A, rather than just
arithmetic; compare this statement with Proposition[2.1] These deficiencies are com-
pensated for by many structural properties enjoyed only by arithmetically saturated
models. Theorem[2.6lbelow presents alist of such properties.

If M isamodel of PA and a e [M]=¢, then K(M; &) isthe Skolem closure of
ain M. In particular, K(9; 0) is the set of definable elements of M. M (&) will
denote the smallest initial segment of M containing K (M; &).
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Aut(M) is the automorphism group of A, and for an automorphism f, fix( f)
isthe set of fixed points of f.

A submodel K < M = PA issmall (cf. [L1]) if, for somea e M, K = {(a)n :
n € w}. A straightforward argument shows that if M |= PA isrecursively saturated
then, for every a € [M] =, K(M; &) is asmall submodel of M. One can also show
that every such M has small submodels that are not finitely generated.

A subgroup H of the automorphism group of amodel M is called basic open if
it is a pointwise stabilizer of afinite subset of M, and H isopenif it contains abasic
open subgroup.

For every f e Aut(M), (fix(f), +, -, 0, 1) isan elementary substructure of M.
In the next theorem and in the following discussion we will identify fix(f), with
(fix(f),+,-,0,1).

Theorem 2.6  Let M beacountablerecursively saturated model of PA, andlet G =
Aut(M). Then the following are equivalent:

1. M isarithmetically saturated;

Thereis f € G such that fix(f) = K(M; 0);

Thereare f € G and asmall K < M such that fix(f) = K;

For every small K < MM thereis f e G such that fix(f) = K;

Thereis f € G suchthat fix( f) isnot isomorphic to M;

Thereare f, g € G such that fix( f) is not isomorphic to fix(g);

Thereif f € G such that fix(f) € M (0);

There exist g € G and an open subgroup H < G such that for every f € G,
f~1gf ¢ H.

Proofs of (1) <> (4) and (1) <> (8) are given in [B] (see Corollary 5.4. and Theorem
5.7. there). Obvioudly (2) implies (5). All other implications follow from the next
proposition. Therole of equivalence (1) <> (8) will be discussed in the next section.

Proposition 2.7 ([B])  If M is countable recursively saturated model of PA and M

is not arithmetically saturated, then, for every f e Aut(M), fix(f) isisomorphic to
M.

Proposition[2.Zlwas not stated explicitly in [[3], but from a slight modification of the
proof of Proposition 5.2 (ii) of [[3] it follows that, under the assumptions of Propo-
sition2.7] fix( f) is recursively saturated and SSy(fix( f)) = SSy(M), proving that
fix(f) isisomorphicto M.

In Sections 3 and 4 we will add further propertiesto the list in Theorem[2.6]

Theorem[2.6buggeststhe following question: For M = PA countable and arith-
metically saturated, what is the set 1(M) of isomorphism types of structures of the
formfix(f), f € Aut(M)? Weknow that if M isrecursively saturated but not arith-
metically saturated than (M) consists of one element: the isomorphism type of M.

Problem 2.8 Let M be acountable arithmetically saturated model of PA. What is
the cardinality of I(M)?

Let us note that, under the assumptions of the problem, not every A\l < M is of the
form fix( f). Since every countable model has only countably many small substruc-
tures, the result will follow from the next two propositions.

O N~ WD
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Proposition 2.9 If M = PA isrecursively saturated and A’ < M issmall in M,
then, for every f e Aut(M), fix(f) N A issmall.

Proof: Let Al ={(c);:i € w}, forsomece M. Let f € Aut(‘M) be given and let
¢’ = f(c). Consider thetype

{(v)i =(c)i: i ewand (c)j = (c)}U{(v)i=0:i€wand(c) # ()}

Thetypeisfinitely realizablein M, anditisrecursiveintp(c, ¢’). Hence, itisrealized
in M. If bredizesthetypein M, thenfix(f) N N = {(b)i : i € w}; hence, fix(f) N
N issmall in M. O

Proposition 2.10 If M = PA is recursively saturated, then there exists a small
N < M suchthat {K : K < A} isuncountable.

Proof (Sketch):  Without loss of generality we can assumethat M is countable. Let
She apartia inductive satisfaction classfor M suchthat (M, S) isrecursively satu-
rated. Let A\’ consists of the points definablein (M, S). Then A\ issmall in M, and
A isrecursively saturated; hence 9\ has 2% elementary submodels. O

A major result concerning arithmetically saturated models of PA is dueto Lascar:

Theorem 2.11 ({11]) If M isacountablearithmetically saturated model of PA and
G = Aut(M), then, for every H < G, theindex of H in G is countable iff H is open.

The property stated in Theorem[Z.11] known as the small index property, can be used
to reduce problems concerning the automorphism group of amodel to apriori easier
problems concerning automorphism groups equipped with the topology whose basic
open subgroups are the stabilizers of finite subsets of the model. Lascar’s theorem
was used in [[9] in proving that the isomorphism type of a countable arithmetically
saturated model of PA is determined uniquely by its complete theory and its auto-
morphism group.

The “arithmetical” part Lascar’s proof of Theorem[2.11]s Lemma[.13]oelow.
We will give a short proof of the lemma to illustrate the power of the concept of
arithmetic saturation. Our proof, athough essentially the same as Lascar’s, is much
shorter, aswe are using arithmetic saturation directly rather than various coding tech-
niques based on part (2) of Proposition[2.4] We need one more definition.

Definition 212 ([I1]) If K < M = PA and f € Aut(K), then f is existentially
closed if f =g | K for some g € Aut(M) and for every formula ¢(x, y) with pa-
rameters in K and for every h € Aut(M), if h extends f and, for some x € M,
M = o(x, h(x)), then, for somex € K, M = ¢(X, f(X)).

Lemma2.13([II]) Let M be a countable arithmetically saturated model of PA.
Supposec, d € M are such that tp(c) = tp(d). Thenthereisasmall K < M and an
f € Aut(K) suchthat: f(c)=d,c,de K, and f isan existentially closed automor-
phism of K.

Proof: Our task isto find a, b € M coding sequences of nonstandard length, and
such that the following conditions are satisfied:

1. (@o=¢, (b)o=d, andtp(a) = tp(b);
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2. {(@j:iew}={(b):icw};
3. K={@j:iew}<M,and f, defined by f((a)i) = (b)j, isan existentialy
closed automorphism of K.

Notice that conditions (1) and (2) imply that f, as defined in (3), can be extended to
an automorphism of M.

Wewill complete our task by first defining asequence of finite approximations of
f, foc fy C fo...suchthat f, = ((@)o, ..., (@n) — ((b)o, ..., (b)n), andthen by
observing that the approximationsyield the required a and b by arithmetic saturation.
The details will be left to the reader. In the descripition of the f, we have to require
that: tp((a)o, ..., (@)n) =tp((b)g, ..., (b)y) and that for some recursive increasing
sequence n — k, we have

{(@i 1 < kn}={(b)i 1§ < kn}.

This will guarantee (1) and (2). To guarantee (3) we need a sequence of formulas
on(w, X, y) in which every formula of Lpa occursinfinitely often and such that for
some increasing sequence n — |, if thereare x, y € M such that

tp(@o. - - (@)1,, X) = tp((D)o. - ..., ()1, y)
and M '= @n((a)Os R (a)|n7 X, y) then

M = ¢n(@o, - - -, (@)1, (@141, (D)1,42)-

L et usnow consider thetype X (v, w, ¢, d) expressing that themap (v); — (w); :
i < nhasthe properiesof f,, described above. The definition of thistype depends on
the sequence I, : n € w. Now to finish the proof we must select a sequence I, that
will guarantee (3) and the consistency of (v, w, ¢, d). But since these conditions
are arithmetic in the type of ¢ and d, the sequence |, can be chosen to be arithmetic
intp(c, d) and the result follows. O

3 Open subgroups of the automorphism group  Equivalence (1) <> (8) of Theo-
rem[2.6]characterizes arithmetic saturation in terms of open subgroups of the auto-
morphism group of the model, and it was used in [[3] to prove that there is no bicon-
tinuousisomorphism between the automorphism groups of two countablerecursively
saturated models of PA of which only oneis arithmetically saturated. Then, by Las-
car’s theorem, it follows that these groups cannot be isomorphic as abstract groups
(see[[I]). In this section we will exhibit another characterization of arithmetic satu-
ration in terms of open subgroups. Roughly speaking it saysthat M is arithmetically
saturated iff every open subgroup of Aut(M) is“large” in the sensethat it generates
the whol e group together with just one additional automorphism.

For therest of thissectionlet G = Aut(M). Forae M, G, ={f € G: f(a) =
a} isthe stabilizer of a.

Definition 3.1  Let aand b beelementsof M = PA. Wewill say that x(a, b) holds
in M if for every formula(Xx, y) of Lpa if M = ¢(a, b) then M |= ¢(a, c) for some
ce K(M;0).
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In the standard model theoretic terminology = (a, b) meansthat tp(a, b) isan heir of
tp(a) over K(M; 0).
The next lemmais due to Lascar (personal communication); the proof is ours.

Lemma3.2 If M = PA isarithmetically saturated, then for all a, b € M thereis
b’ € M suchthat tp(b') = tp(b) and x(a, b’).

Proof: Let p(v) = tp(b). Consider thetype Z(a, v):
p(v) U {p(a,v) : Vk e K(M;0) M = ¢(a k)}.

Clearly, ¥ (a, v) isarithmetic in p(v) and is consistent. It is easy to verify that if b’
redizes X (a, v) in M then x(a, b). O

Lemma3.3 If M = PA iscountable and recursively saturated and a, b € M sat-
isfy x(a, b), then G5y U Gy generates G.

Proof: Consider some f € G and supposethat f(a) = c. Consider therecursive set
of formulasT (a, b, ¢, y) expressing that the pairs (a, b), (a, y), and (c, y) each real-
izethesametype. Toseethat I'(a, b, ¢, y) isconsistent, consider the sentence ¢(a, b)
for which M = ¢(a, b). Since x(a, b) holds, there is a constant term d such that
M = ¢(a, d). But since a and c realize the same type, it follows that M = ¢(c, d).
This proves consistency of I'(a, b, ¢, y).

Now let d € M redizeT'(a, b, c,y). Let o € G be such that «(b) = d, and
let h € Gq) besuchthat h(a) = c. Then atha € Gy, so that h = afa~! for some
B € Gp). Thenh™1 f € G, sothat f = hy = apaty forsomey € G,. Therefore,
f isin the group generated by Ga) U G(p. O

Lemma3.4 Let M bearecursively saturated model of PA. Then for everya e M
and every f € G thereisnonstandard d e M such that for all i € w if (a); < d, then

f((@i) = (a)i.
Proof: Leta’ = f(a). Foreveryn< w

M Vi <n @) # (@) — (@) > n.
Hence for some nonstandard d,
M E=Vi<d @) # (@i — (a) > d,
and the result follows. O

Theorem 3.5 Let M = PA be countable and recursively saturated with automor-
phismgroup G = Aut(M). Then M isarithmetically saturated iff whenever H < G
is open, then thereis g € G such that H U {g} generates G.

Proof: Assume M isarithmetically saturated, and let H < G be open. Without loss
of generality we can assumethat H = G, for somea e M. Letb € M be such that
tp(a) = tp(b) and x(a, b). Let g € G be such that g(b) = a, and therefore g~*Hg =
G(p), and therefore G is generated by H U {g} by Lemmal33]
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Next, suppose that M is not arithmetically saturated. Let a € M be a witness
to the failure of the standard cut being strong; that is thereisno d € M such that for
i €w, ()i € w< (a)j <d.

Let (bj : ] € ) bearecursivelist of al constant terms. By recursive saturation
thereisb € M suchthat (b)j = bj whenever j < . Wenow claimthat we canimpose
an additional requirement uponaa: if (a); = (b)j andi, j < o, then (b); < . If adoes
not already have this property, then replace a with an element satisfying the recursive
and consistent set of formulas, the i-th formula of which asserts the following: (v);
isthe least element not inthe set {(b); : | < (a)i}.

We can set H = G,y and consider arbitrary g € G, intending to show that H U
{g} doesnot generate G. Letd > w besuchthatforali < wif (a); < dtheng((a)j) =
(a)i (Lemmaf3.4).

Leti < wbesuchthat w < (a)j < d, andlet c = (a);. Thusg(c) = c. By the
additional requirement imposed on a, ¢ ¢ {(b); : j < w}, SO ¢ realizes anonprincipal
type; therefore G, < G. But on the other hand, H = G(5) < G(¢) and g € G(¢) SO
that H U {g} does not generate G. O

Incidentally, Theorem[3:5impliesthe following converseto Lemmal3.2] if M = PA
isrecursively saturated and if for al a, bin A suchthat tp(a) = tp(b) thereisb’ such
that tp(b') = tp(b) and x(a, b), then M is arithmetically saturated.

As acorollary of Theorem[B.5lwe have asimple proof of the following.

Corollary 3.6 ([11]) If M; and M, are countable recursively saturated models of
PA and only one of the models is arithmetically saturated, then G; = Aut(M;) and
G, = Aut(M>) are nonisomor phic.

Proof: Suppose F : G; — G isan isomorphism and assume that 44, is arithmeti-
cally saturated. Wewill show that M, isarithmetically saturated aswell. Let H < G,
be open, and let Hy = F~Y[H]. Then[G, : H] < Rg, and therefore [G; : H1] < Rq.
Now since, by Lascar’stheorem, Hy isopenin G, by Theorem[35]thereis g1€ G
suchthat H U {g1} generates G;. Letting g, = F[g1], we seethat H U {g,} generates
Go. Since H was an arbitrarily chosen open subgroup of G, it follows from Theo-
remB.Skhat M is arithmetically saturated. O

Theorem[3.5lhas also the following corollary.

Corollary 3.7 If M = PA iscountablearithmetically saturated and Aut(M) isthe
union of a chain of proper subgroups, then none of the subgroupsin the chainis open.

For an arbitrary group H which is not finitely generated, the cofinality of H, written
c(H), istheleast cardinal A suchthat H can be expressed asthe union of achain of A
proper subgroups (cf. MacPherson and Neuman [[12])). Equipped with Corollary B.7]
and the results of [[L1], one can repeat the proof of Theorem 6.1 of [[1] to show that,
for every countable arithmetically saturated model M of PA, c(Aut(M)) > Rq. Here
we will show the converse.

Theorem 3.8  If M |= PA iscountable recursively saturated but not arithmetically
saturated, then Aut(M) is the union of a countable chain of proper basic open sub-
groups.



ARITHMETICALLY SATURATED MODELS 539

Proof: Leta e M be the witness to the failure of the standard cut being strong in
M, suchthat for every f € Aut(M) thereisi < o for which (a); is nondefinable and
f((a)i) = (a)i. We have defined such an a the proof of Theorem[3.5]

Let usdefine (cj : ] < w) asfollows:

len(cj) = card{(a)k : (@)k < (@)j},

where card X, for X coded in M isthe cardinality of X inthe sense of M, and, for all
I < len(cj)
(e = { (@) if @) < (@)
0 otherwise.
Thus (c; : | € w) isacoded sequence, and, for al i < , ¢ < @ < (a)i < w. Also,
fori, j <w,ifc; > wanda < ajthen, forall < card{(a)k: (cj)k < (¢j)i} =len(c)),
we have
() = { () if (e = (c))i
0 otherwise.
Hence ¢; is definable from c;.
It follows that, if (a)y, > (@), > ... isadecreasing sequence of terms of the
sequence coded by a, where all ki’s are standard, then G, ) < G, ) < ----
Itiseasy to seethat (Cj: | € w) is awitness to the failure of the standard cut
being strongin M, having the property of the sequence coded by a mentioned above.
Hence, if infi-, () = o, then for every f € Aut(‘M) thereisi < w such that f
G, ), and the result follows. O

Corollary 3.9 If M |= PA iscountable and recursively saturated, then M isarith-
metically saturated iff c(Aut()) is uncountable.

L et us note that Corollary B.6lis an immediate consequence of Corollary B9]
We finish this section with another characterization of arithemetic saturation that
is an immediate corollary of TheoremsB5landB.2]

Corollary 3.10 If M = PA is countable and recursively saturated, then M is
arithmetically saturated iff Aut(M) is finitely generated over each of its open sub-
groups.

4 Moving all nondefinable elements  The equivalence (1) <> (2) of Theorem 2.6l
was proved in [[B] by aback-and-forth argument that |eft open the following question:

if M is acountable arithmetically saturated model of TA, istherean f € Aut(M)

such that, for every nonstandard x € M, f(x) < x? The answer is affirmative, and

thissectionisdevoted to the proof of it. Wewill formulate our resultinamore general

form; apreliminary version of it has been published in Kossak [[Z], where it was mo-

tivated by an attempt to classify some conjugacy classesin Aut(M). Here we want

to add another equivalence to the list in Theorem[2.6]

We will need a strengthening of the condition “w is strongin M.

Proposition 4.1  Let M be a recursively saturated model of PA, and let | =
sup{(a), : n e )} for somea e M beacut of M. Then M is arithmetically sat-
urated iff for every b € M thereisd € M suchthat for all i € w (b); € | < (b); < d.
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Proof: Assume M isarithmetically saturated. For | = sup,,.,,(a)n, andb € M con-
sider thetype I'(v, a, b)

{(@n < v; Nnew}U{v < (b)n; Vi € oM = (@)i < (b)n).

I'(v, a, b) isarithmeticintp(a, b), anditisfinitely realizablein M. If d € M realizes
(v, a, b), then, fordl i € w, (b); € wiff (b); < d.

To prove the converse, observe that without loss of generality we can assume
that, for all n € w, (a)n < (@8)nr1. Then it is easy to see that the condition in the
lemmaimpliesthat w is strongin M. O

The reader might find it helpful to know that the names of elements in the next two
lemmas are chosen with aback-and-forth construction in mind. Wewill be construct-
ing partial finite automorphisms a — b.

If M isamodel of PA and a € [M]=®, then K*(M; &) = K(M; a) \ M (0).
Recall that M (0) = supK (M; 0).

Lemma4.2 Let M bearecursively saturated model of PA, &, b € [M]<®, tp(a) =

tp(b), and d € M be such that M (0) < d < K*(M; &). Then for every o > M (0)
thereisd’ € M suchthat d’ < « and tp(a, d) = tp(b, d).

Proof: Consider thetype A(v, &, b, d, «):
{p@, d) < ¢b,v):¢peclm}Ufv<al.

If A(v,a,b,d,a) vyereinconsistent,_then for some ® (w, v), suchthat M = ®(a, d),
we would have p(b) = min{v : ®(b, v)} > a > M (0), hence M (0) < u(d) <d, a
contradiction. O

Lemma43 If M is a recursively saturated model of PA &, b € [M]<®, tp(a) =
tp(b), and ¢/, d, d’ are such that

MO) <d <K (M;a) and M) <d < K*(M:b,c),

then thereisc € M such that tp(a, c) = tp(b, ¢’) and d < K*(M; &, c).

Proof: By LemmalZ.2]vecan assumethat tp(a, d) = tp(b, d’). Then noticethat any
ce M suchthattp(a, ¢, d) =tp(b, ¢, d') satisfiestherequirementsof thelemma. [

Now everything is prepared for the main theorem of this section.

Theorem 4.4 A countable recursively saturated model M (= PA isarithmetically
saturated iff there is an automorphism f of A such that, for every x e M \ M (0),
f(x) < x

Proof: If there is such an f then M must be arithmetically saturated by Theo-
rem To prove the converse, let us assume that M is arithmetically saturated
and let us fix an enumeration of M \ M (0). Also, let (an: N e w) be a decreas-
ing sequence of elements of M such that inf,c, an = M (0). At the n-th stage of
the construction of f wewill haved = (ay, ..., ams1), b= (b, ..., bxy1), d=
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(do, ..., dy), dt = (di, ..., dn1) such that the following inductive assumptions
hold:

tp@a, d) = tp(b,d");
M@O) <dnp1 < K*(M; & d);
Oy < anja

Assumethat wehaved, b, d, dy.1 asabove. Let a= ag. bethefirst element inthe
enumeration of 3 \ M (0) not in &, d. Using Lemmal4.2lve can find dy;» such that
M(O) < dn+2 < K*(M, é., a, d, dn_;,_l), dn+2 < On42 and

tp(&, d, dnyr) = tp(b, d*¥, dns2).
Now, let b = by,,» € M be such that
tp(a, a’ d_7 dn+1) = tp(E)’ b’ d_+’ dn+2)-

Thisfinishesthe “forth” step.

Todothe“back” stepfirst take b’ = bon 3 to bethefirst element in the enumera
tion of M \ M (0) not among b, d*, d,;», and then use Lemmal4.3tofind @’ = as3
such that

tp(aa aa a/v d_7 dn+1) = tp(t_)a ba b’v d_+7 dn+2)’
dn+2 < K*(Ma é’ a, a/’ d_a dn+1)-

To initiate the construction start with an arbitrary nonstandard dy < « and d; such
that M (0) < d; < K*(M; dp) and d; < «1. Notice that we are using arithmetic sat-
uration, as we need Lemmal.1] where | = M (0), and b codes K (M; &), to make
sure that the assumptions of Lemmas[4.2]and [2.3]are satisfied at every stage of the
construction.

Now we can define f by letting f(a) = b; and f(di) = d;, 1, fori € w. Then,
f determines an automorphism of A and, for every x < dp, such that M (0) <
X, f(X) < x. Tocompletethe proof noticethat we must also have f (x) < x for every
xsuchthat M (0) < x < f~"(dg) : n € w. ButsinceK(M; dy) < f~1(dp), themodel
K = sup,, f"(do) isrecursively saturated and it is elementary in M. Hence, it is
isomorphic to M and the result follows. O

Regarding Theorem[Z.4]let us note the following. If M = PA isamodel with non-
standard definable elements, then for every f e Aut(M), such that, for some x; <
aeK(M;0), f(x1) <xq, wehave: for xo =a—xq, f(X) =a— f(x;) > X. But
still a problem remains open. For amodel M |= PA define the equivalence relation
Rby: R(x, y) iff thereareno definable zsuchthat x < z< yory < z < x. Let Q(x)
be the equivalence class of x.

Problem 45 Suppose that M = PA is countable and arithmetically saturated. Is
there an f € Aut(M) such that for every a e M\K(M; 0) either, for every x e
Qa), f(x) < xorforevery xe Q(a) f(x) > x?

The following generalization of Theorem[4.4lwas proved in[7]. If | isan elementary
initial segment of acountable recursively saturated model M = PA, thenthereis f ¢
Aut(M) suchthat fix(f) = I, and forall x > I, f(x) < xiff l isstrongin M. The
proof is aslightly more elaborate version of the proof of Theorem[ZZlhere.
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5 Latticesof elementary submodels For amodel M = PA let Lt(“M) bethelattice
of elementary substructures. Kotlarski [[I0] asksif Lt(M) determines M when M is
countable and recursively saturated. The following theorem gives a partial answer to
thisin the case of arithmetically saturated models.

Theorem 5.1 If M, N\ are arithmetically saturated models of PA and Lt(M) =
Lt(A)), then SSy(M) = SSy(N\)).

The theorem will follow from a series of lemmas. For each X C » we are going to
define a countably infinite, distributive lattice D(X) = (D(X), A, V). First we will
show in Lemmal[5.2]that if an arithmetically saturated model M of PA has an ele-
ment b such that Lt(K (M; b)) isisomorphic to D(X), then X € SSy(M). The proof
of this seemsto require the full strength of arithmetic saturation and we do not now
whether theresult istruefor arbitrary recursively saturated models. We will givethis
proof in detail. The rest of the paper is devoted to an outline of the proof showing
that if M = PA isrecursively saturated and X € SSy(M), then thereisb € M such
that D(X) ZLt(K(M; b)). The proof is based on techniques of constructing mod-
els of PA with prescribed elementary substructure lattices, that were developed in
Schmer! [[13],]Z]. Our task will be to show that for given X C w the type of the
element b above can be constructed effectively in X. Our arguments in this part of
the proof will be more sketchy, and the reader is adviced to consult [[13] or [[14] first.

Wewill arrangefor D(X) = w U {oo}. Thelatticewill have minimum and maxi-
mum elements 0 and 1 respectively. Wefirst define somefinitelattices. If Y C n < w,
we define a finite distributive lattice D(Y, n) = (D(Y,n), A, V) so that D(Y, n) =
2+ m-+ Y|, and 0 and 1 are the minimum and maximum element respectively. We
will use < to denote the partial order of alattice: x Iy <> xvy=y.

The following is the definition, by recursion, of D(Y, n) forY C n < w.

e lfn=0andY =g,then D(=,0) ={0,1} and 0« 1.

e Supposené¢ Y C n+ 1 Thenlet D(Y,n+ 1) = (D(Y,n+ 1), A, V) be such
that D(Y,n) € D(Y,n+ 1), andif m= D(Y,n),then D(Y,n+1) =m+1
and x<m< 1 whenever 1 # X < m.

e SupposeneY Cn+ 1. Thenlet D(Y,n+ 1) = (D(Y,n+ 1), A, V) besuch
that D(YNn,n) CDY,n+1),andif m=D(YNn,n),then D(Y,n+1) =
m+3,andXx<m<am+2<land x<m+ 1<m+ 2whenever 1 # X < m, and
mv (m+1)=m+ 2

ForY C n < w, let D'(Y,n) = (D'(Y,n), A, v) be the lattice where D’(Y, n) =
DY, n) U {oc}, D(Y,n) C D'(Y,n) and x< oo <1 whenever 1 # x € D(Y, n). For
illustrative purposes lattices D(Y, n) and D' (Y, n), for Y = {2,4,5} andn = 7, are
presented in Figure 1.

Clearly, if X C wthen D(XN0,0) C D(XN1 1) CD(XN22) C...ad
D'(XNO,0) CD'(XN1L 1D (XN22)C....

Let D(X) = Uy, D' (XN N, N).

Lemmab5.2 Suppose M |= PA isarithmetically saturated and Lt(M) hasanideal
isomorphic to D(X). Then X € SSy(M).

Proof: Noticethat, since D(X) isisomorphictoanideal of Lt(M), D(X) =Lt(N),
for some A\ < M. Now, because D(X) \ {1} has a maximum element oo, A| must
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1
1 o0
14 14
13 13
1 12 11 12
10 10
8 9 8 9
7 7
6 6
4 5 4 5
3 3
2
0 0
D({2,4,5},7) D' ({2,4,5},7)

Figurel: D and O’

befinitely generated. Let b € M be such that A\ =K (M; b). Since M isrecursively
saturated, thetype p(x) of bisin SSy(M). Wewill show that X isarithmeticin p(x),
thereby showing that X € SSy(M). Thedefinitionof X isinductive. Supposethat we
already know X Nn. Thenn e Xiff thelattice D((XNn) U {n}, n+ 1) isisomorphic
to the corresponding initial sublattice of Lt(K(M; b)). Formally: n € X iff there are
termsti(x), i e mwherem= D((XNn)U{n}, n+ 1) such that:

1. i < jiff thereisaterm t(x) such that the formulat(tj(x)) = tj(X) isin p(x);

2. for any term t(x) thereisi such that 1 # i < mand there are terms t’(x) and
t”(x) such that the formulast’ (t(t—1(X))) = tj(X) and t” (tj (X)) = t(ty-1(X))
arein p(x). O

Lemma5.3 Suppose M = PA isrecursively saturated and X € SSy(M). Then
Lt(M) has an ideal isomorphic to D(X).

Lemma[53]follows from the lemmas below. It suffices to show that there is a set
2 (x) of formulas consistent with each completion of PA, such that X (x) is recur-
sivein X and whenever A\ = PA is generated by an element realizing X (x), then
Lt(A) = D(X). For any set A, let TI(A) be the lattice of partitions of A, where
w1 < o whenever m; refines 1. Let 14 be the partition into singletons and O =
{{A}}. Then 0 < 7w <14 forany € TI(A).

See [[13] and [[14] for more on the relationship between IT(A) and Lt(N\).

Definition 5.4 If Y € n < w, then an embedding « : D(Y, n) — TI(A) will be
called a standard representation of D(Y, n) if the following three conditions hold.

1 ifx,ye D(Y,n)and x<y, andif E € a(x), thenthereareinfinitely many F <
a(y) for which F C E;
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2. ifx,ye D(Y,n)andxAy<Xx, yaxvyandif E€c a(XxAY), E; € x(X), Ep €
a(y)and E1, Eo C E, then E; N Ey # &
3. a(0) =0pand a(1l) = 1.

Noticethat (1) impliesthat if o : D(Y, n) — I1(A) isastandard representation, then
Aisinfinite. We observethat if Aand B arecountableand « : D(Y, n) — T1(A) and
B:D(Y,n) — I1(B) are standard representations, then « and 8 are isomorphic (that
is, thereisabijection y : A — B such that whenever x € D(Y,n) anda, b € A, then
{a, b} € a(x) iff {y(a), y(b)} € B(X)).

The following lemmais not difficult to prove by induction on n, using several
applications of Ramsey’s Theorem. The proof of Lemmal5.6lis easy.

Lemmab.b SupposethatY Cn < w,thata: D(Y,n) — I1(A) isastandard rep-
resentation, and that = € TTI(A). Thenthereis B C Asuchthat o | B: D(Y,n) —
I1(B) isa standard representation and (« | B)(xX) = 7 | B for some x € D(Y, n).

Lemmab.6 SupposethatY Cn+1<wandthato: D(YNn,n)— II(A)isa
standard representation. Then thereis a standard representation g : D(Y,n+1) —
IT(A) which extends «.

Both of these lemmas have appropriate formalized versions which are provable in
PA. Supposem= D(Y, n) and (i (X, y) : i < m)isan m-tuple of formulas with free
variables x and y. Then we say that PA proves that (¢ (X, y) : i < m) is a standard
representation of D(Y, n) if m= D(Y, n) and, letting 6(X) = (X, X), then PA proves
each of the following.

1. each ¢j (X, y) isan equivalence relation on the set 6(x);

2. if i <« ] < m, then each equivlence class of ¢j (X, y) contains unboundedly many
equivalence classes of (X, y);

3. ifi,j<mandinj<i,j<ivVv ] thengij(X,y) < ¢i(X,y) Apj(xy) and
Yinj (X, Y) < JZ(¢i (X, 2) A @j(Z,Y)).

4. @o(X,y) < 0(X) AO(y) and p1(X, Y) <> O(X) AX=Y.

LemmasEZlandE8kre the formalizationsin PA of LemmasE.SbndEElrespectively.
It isthese lemmas that we actually use.

Lemmab.7 Supposethat Y C n < w andthat PA provesthat (¢j(X,y) :i < m)is
a standard representation of D(Y, n). Suppose that ¥ (X, y) isa formula. Then there
isaformula 6(x) such that PA provesthat (¢; (X, y) A 8(X) AO(Y) ;i < m) isastan-
dard representation of D(Y, n), and PA also proves: if y(X, y) definesan equivalence
relation on the universe, then for somei < m,

VYXVY[O(X) A O(Y) A po(X, Y) = (T (X, Y) < ¢i(X, Y))].
Moreover 0(x) can be effectively obtained from Y, nand {gi (X, y) : i < m).

Lemmab.8 SupposethatY € n+ 1 < wandthat PA proves(gi(X,y) :i < m)isa
standard representation of D(Y Nn, n). Thenthereare gj (X, y) for m<i < k (where
k=m+3ifneY,andk=m+ 1if n ¢ Y) such that PA proves (¢ (X, y) : i < k)
isa standard representation of D(Y, n+ 1). Moreover om(X, Y), ..., gk—1(X, ¥) can
be effectively obtained from Y, n+ 1 and (¢; (X, y) : i < m).
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Now, given X C w, weconstruct theset 3 (x) of formulas. Let (i (X, y) : i < w) bea
recursivelist of al formulasin the language of PA. We construct, recursively in X, a
doubly indexed sequence (¢in(X, y) : i € D(XNn,n), n < w) of formulassuch that,
for each n < w, PA provesthat (gin(X,y) :i € D(XNn,n))isastandard represen-
tation of D(XNn, n). Let pgo(X, ¥) betheformulax = x Ay =y and ¢19(X, y) be
the formula x = y. Then PA proves that (¢go(X, ¥), ¢10(X, ¥)) is a standard repre-
sentation of D(&, 0). At stage n we will have (¢in(X, ¥) : i < m), which PA proves
is a standard representation of D(X N n,n). By LemmalG.7]let 6(x) be such that
{gin(X, ¥) AB(X) AB(Y) . i < m) isproved by PA to be a standard representation of
D(X Nn,n) and such that for somei < m

PA = VYXYY[O(X) A O(Y) A @on(X, Y) = (@in(X, Y) <> ¥n(X, Y))].

Then by Lemmal=.8] let (¢in.1(X, Y) 1 i < k) besuch that PA provesthat it isastan-
dard representation of D(X N (n+ 1), n+ 1) and that ¢j nr1(X, Y) = @in(X, Y) A
0(xX) AO(y) fori < m.

Now let Z(X) = {gon(X, X) : N < w}. Itiseasily seenthat Th(M) U Z(x) gen-
erates a unique type p(x) and thereisb € M realizing p(x). It isalso easily shown
that Lt(K(M; b)) = D(X). This completes the proof of Lemmal5.3lnd finishes the
proof of Theorem
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