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Syntax and Semantics of the Logic Lλ
ωω

CARSTEN BUTZ

Abstract In this paper we study the logic Lλ
ωω, which is first-order logic ex-

tended by quantification over functions (but not over relations). We give the
syntax of the logic as well as the semantics in Heyting categories with exponen-
tials. Embedding the generic model of a theory into a Grothendieck topos yields
completeness of Lλ

ωω with respect to models in Grothendieck toposes, which can
be sharpened to completeness with respect to Heyting-valued models. The logic
Lλ

ωω is the strongest for which Heyting-valued completeness is known. Finally,
we relate the logic to locally connected geometric morphisms between toposes.

1 Introduction In this paper we study aspects of completeness of the logic Lλ
ωω,

which is intuitionistic first-order logic extended by quantification over functions.
This logic may be seen as well as λ-calculus enriched with first-order logic. The de-
tails of the syntax are given in Section 2.

The logic Lλ
ωω is of interest for many reasons: it is reasonably powerful and

(therefore) incomplete with respect to models in Sets. But the logic Lλ
ωω is com-

plete with respect to Heyting-valued models. In fact, the infinitary variants Lλ
κω

are the strongest logics we know that are complete with respect to Heyting-valued
models. Secondly, the logic Lλ

ωω characterizes a class of geometric morphisms be-
tween Grothendieck toposes which are almost locally connected: we show that if
the inverse image f ∗ of a geometric morphism f : F −→ E between Grothendieck
toposes preserves the internal Lλ

ωω-logic of the topos E , then it is open and each
( f/E )∗:E/E −→ F / f ∗ E has an E-indexed left adjoint.

The first two sections discuss the syntax and semantics of the logic Lλ
ωω. Models

of Lλ
ωω-theories naturally live in Heyting categories with exponentials (that is, carte-

sian closed Heyting categories). After relating the logic to locally connected geomet-
ric morphisms we present some completeness results in Section 5: Lλ

ωω is complete
with respect to models in Grothendieck toposes, therefore as well complete with re-
spect to models in cartesian closed Heyting categories. A recent covering theorem
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for Grothendieck toposes implies that it is enough to look at Heyting-valued mod-
els to get completeness. The last section contains some remarks about the infinitary
variants Lλ

κω.
We assume familiarity with basic notions of categorical logic, see, for exam-

ple, Lambek and Scott [14] or Freyd and Scedrov [9]. The results presented here are
closely related to those found in Awodey and Butz [2]. In fact, they give a detailed
exposition of one of the completeness results presented there. In case of pure typed
λ-calculus, a more detailed exposition can be found in Awodey [1].

Our overall presentation is in the line of categorical model theory, as was done
for geometric logic in Makkaki and Reyes [15] and for first-order logic in Butz and
Johnstone [6]. One of the more prominent theories which can be formulated in the
logic Lλ

ωω is SDG, synthetic differential geometry (see Kock [13]). In contrast to this
we do not intend to do proof theory here, as was one of the items in [14].

2 Syntax We begin by describing the syntax of the logic Lλ
ωω. Given a set type

of basic sorts A, B, . . . , the set type∗ of derived types is the closure of type under
products and exponentials:

type∗ : := A | Y × Z | ZY .

Thus, the only difference to full higher-order logic is the absence of the type of propo-
sitions �.

Definition 2.1 A λ-signature S consists of a list type
S

of basic types and sets
const S, funct S, and rel S of constants, functions, and relation symbols, where each
of these symbols is typed over type∗.

Since type∗ has built-in product types, we can assume that all functions and relations
are unary. As usual, we write expressions like c: A, f : Z −→ Y , or R ⊂ Y to indicate
the typing.

Next we define the sets term(Y ) of terms of type Y , which depend on a given
λ-signature S.

1. Each set term(Y ) contains countably many variables of type Y , and expressions
like y: Y have their obvious meanings.

2. If c is a constant of type Y , it is a term of type Y . If t is a term of type Y , and
f : Y −→ Z is a function symbol, then f (t) is in term(Z).

3. If t1 ∈ term(Y1) and t2 ∈ term(Y2), then 〈t1, t2〉 is a term of type Y1 × Y2. Con-
versely, if t is in term(Y1 × Y2), then π1t is a term of type Y1, and π2t is a term
of type Y2.

4. If t is a term of type Y and α ∈ term(ZY ), then α(t) is a term of type Z. If t is
a term of type Z (possibly containing the free variable y: Y), then λy.t(y) is a
term of type ZY .

The formulas are generated by the following rules.

1. If t1 and t2 are terms of the same type, then t1 = t2 is a formula.
2. If R ⊂ Y is a relation symbol and t is a term of type Y , then R(t) is a formula.
3. The logical constants ⊥ and � are formulas. If ϕ and ψ are formulas, so are

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ −→ ψ.
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4. If ϕ(y) is a formula (possibly containing the free variable y: Y), then ∀y: Yϕ(y)

and ∃y: Yϕ(y) are formulas.

If we type the formulas by the (imaginary) type �, these term and formula forming
operations can be summarized in the familiar way:

Y Y1 × Y2 Y1 Z ZY �

c 〈t1, t2〉 π1 t̄ α(t) λy.t(y) t = t′

f (t) R(t)
⊥,�

ϕ ∧ ψ,ϕ ∨ ψ

¬ϕ, ϕ −→ ψ

∀yϕ(y),∃yϕ(y)

where c: Y , f : Z −→ Y , R ⊂ Z, and the subterms are of type

Z Y1 Y2 Y1 × Y2 ZY �

t, t′ t1 t2 t̄ α ϕ,ψ

t(y) ϕ(y)

For each finite set X of variables we define a deduction relation �X between formulas.
If we write an expression p �X q it is always assumed that the free variables occurring
on both sides are contained in the set X. Below, �X p abbreviates � �X p, and p � q
stands for p �∅ q. As in [14] we group the rules into different classes.

Structural rules

1.1 p �X p.
1.2 p �X q and q �X r implies p �X r.
1.3 p �X q implies p �X∪{y} q.
1.4 ϕ(y) �X ψ(y) implies ϕ(b) �X\{y} ψ(b),

provided that y is a variable of type Y and b is a term of type Y with
no free occurrence of variables other than those in X \ {y}. It is being
assumed that b is substitutable for y in both sides, that is, no free variable
in b becomes bound after substitution.

Logical rules

2.1 p �X �; ⊥ �X p.
2.2 r �X p ∧ q iff r �X p and r �X q; p ∨ q �X r iff p �X r and q �X r.
2.3 p �X q −→ r iff p ∧ q �X r.
2.4 p �X ∀yψ(y) iff p �X∪{y} ψ(y); ∃yψ(y) �X p iff ψ(y) �X∪{y} p.

Extralogical axioms

3.1 � ∀z: Y1 × Y2 (z = 〈π1z, π2z〉).
3.2 � ∀z: Y1 × Y2∀z′: Y1 × Y2 (z = z′ −→ (π1z = π1z′ ∧ π2z = π2z′)).
3.3 � ∀y1: Y1∀y2: Y2 (π1〈y1, y2〉 = y1 ∧ π2〈y1, y2〉 = y2).
3.4 (Comprehension) � ∀y: Y[λy′.t(y′)](y) = t(y).
3.5 (Extensionality) ∀ f : ZY∀g: ZY ((∀y: Y f (y) = g(y)) −→ f = g).
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Axioms for equality

4.1 �{y} y = y; y = y′ �{y,y′} y′ = y;
y1 = y2 ∧ y2 = y3 �{y1,y2,y3} y1 = y3.

4.2 y = y′ �{y,y′} f (y) = f (y′), for each functions symbol f : Y −→ Z;
y = y′ �{y,y′} R(y) ←→ R(y′), for each relation symbol R ⊂ Y .

The calculus defined so far is intuitionistic. The deduction relations �c
X are defined

by adding the logical rule
� �X p ∨ ¬p.

In general, we write T � p (or T �X p) for derivability in the calculus with added
axioms � τ for τ in T . In case T consists of just one formula, the two notions {τ} � p
and τ �p coincide, so that T � p just extends our definition of �. Similar calculi as
above for full second-order logic can be found in Boileau and Joyal [4] and in [14].

3 Semantics It should be clear from the syntax that the right categories hosting
models of Lλ

ωω-theories are (ω-) Heyting categories with exponentials (i.e., cartesian
closed Heyting categories or logoi with exponentials in the language of [9]). Recall
that a Heyting category is a regular category C that has, in addition to finite intersec-
tions of subobjects, unions of finite families of subobjects. Moreover, pulling back
subobjects along a fixed morphism has a right adjoint. (It follows that the lattice of
subobjects of each object in C is a Heyting algebra, and this Heyting algebra structure
is preserved under pullbacks.) The most prominent examples of Heyting categories
with exponentials are elementary toposes, in particular, Grothendieck toposes.

Let C be a Heyting category with exponentials. An interpretation M of a λ-
signature S in C assigns first of all to each basic sort A ∈ type S an object A(M).
This assignment extends naturally to all types, by (Y × Z)(M) = Y (M) × Z(M) and

(ZY )(M) = Z(M)Y (M)

. Furthermore, the interpretation M assigns a global element
c(M): 1 −→ Y (M) for each constant c: Y in const S, a function f (M): Y (M) −→ Z(M)

for each function symbol f : Y −→ Z in funct S, and a subobject R(M) � Y (M) for
each relation symbol R ⊂ Y in rel S. Using the structure of the category C , we ex-
tend this interpretation to arbitrary terms and formulas. In particular, for a formula
ψ(y: Y ) (y = (y1, . . . , yn) of type Y = Y1, . . . , Yn) we get a subobject

{y | ψ(y)}(M) � Y
(M) = Y (M)

1 × · · · × Y (M)
n .

As usual, we say that M is a model of a closed formula τ (M |= τ) if {· | τ}(M) �
∅(M) = 1C is the top element in the Heyting algebra of subobjects of 1C . This way
we get a sound notion of models.

Proposition 3.1 (Soundness) The deduction relation � is sound for the notion of
models just defined, that is, for any set of Lλ

ωω-formulas T and any λ-formula τ, T � τ

implies T |= τ.

One of our main goals will be to prove the converse of Proposition 3.1, that is, com-
pleteness. Next we turn the class of models of a theory in a fixed Heyting category
C with exponentials into a category. A morphism h between S-interpretations M and
M ′ is a family of maps {hY : Y (M) −→ Y (M ′)}Y∈type∗

S

, satisfying the following three
conditions:



378 CARSTEN BUTZ

1. hY1×Y2 = 〈hY1 , hY2〉: Y (M)
1 × Y (M)

2 −→ Y (M ′)
1 × Y (M ′)

2

for all types Y1, Y2 ∈ type∗
S
.

2. For all Y and Z in type∗
S

the following two diagrams commute:

Y (M) × (ZY )(M)
〈hY ,hZY 〉

��

ε

��

Y (M ′) × (ZY )(M ′)

ε

��

Z(M)
hZ ��

ĉonst
��

Z(M ′)

ĉonst
��

Z(M)
hZ

�� Z(M ′) (ZY )(M)
hZY

�� (ZY )(M ′)

where ĉonst is the transposed of the projection map π2: Z(−) × Y (−) −→ Z(−).

3. The maps {hY}Y∈type∗
S

preserve the interpretation of constants, function and re-
lation symbols. For example, for a constant c: Y this means that

Y (M)
hY �� Y (M ′)

1

c(M)

��

c(M′ )

�����������

commutes.

For the following definition we remind the reader of the forcing relation � in C
(usually only defined if C is a topos): For a λ-formula ψ(y: Y ), for U in E , and
for generalized elements αi: U −→ Y (M)

i we write U � ψ(α1, . . . , αn) if the map

〈α1, . . . , αn〉: U −→ Y
(M)

factors through {y | ψ(y)}(M) ↪→ Y
(M)

.

Definition 3.2 Let M and M ′ be two S-interpretations in C . A morphism of S-
structures h: M −→ M ′ is called an Lλ

ωω-homomorphism if for each Lλ
ωω-formula

ψ(y: Y ) and generalized elements αi: U −→ Y (M)
i

U � ψ(α1, . . . , αn) implies U � ψ(hY1 ◦ α1, . . . , hYn ◦ αn).

We denote by Modλ(T,C ) the category of models of T in C , with morphisms the Lλ
ωω-

homomorphisms. Note that the condition of the definition is equivalent to the follow-
ing: h: M −→ M ′ is a Lλ

ωω-homomorphism if and only if for each formula ψ(y: Y ) the

composite hY ◦ i: {y | ψ(y)}(M) ↪→ Y
(M) −→ Y

(M ′)
factors through {y | ψ(y)}(M ′),

viz.

Y
(M) ��

Y
(M ′)

{y | ψ(y)}(M)
��

��

����� {y | ψ(y)}(M ′).
��

��

4 A topos theoretical characterization of Lλ
ωω Recall that a geometric morphism

f : F −→ E between Grothendieck toposes is called locally connected (or molecular
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in Barr and Paré [3]) if the inverse image f ∗ commutes with
∏

-functors. Equiva-
lently, f is locally connected if and only if for all E in E the inverse image of the
induced geometric morphism f/E in

F / f ∗ E ��

f/E
��

F

f

��
E/E �� E

preserves exponentials. Locally connected geometric morphisms are open (see John-
stone [11]) and hence preserve the internal first-order logic. We sum this up in the
following lemma.

Lemma 4.1 The inverse image of a locally connected geometric morphism f : F
−→ E induces a functor

f ∗: Modλ(T,E ) −→ Modλ(T, F ),

for any Lλ
ωω-theory T.

The next natural question is whether this property characterizes locally connected ge-
ometric morphisms. The following proposition shows that the logic Lλ

ωω captures a
class of morphisms which is slightly larger than that of locally connected geometric
morphisms.

Proposition 4.2 Let f : F −→ E be a geometric morphism between Grothendieck
toposes.

1. If f ∗ preserves internal products, that is, reindexing of the form
∏

E−→1 for
E ∈ E , then f ∗ preserves exponentials.

2. If f is open and f ∗ preserves exponentials, then f ∗ preserves internal products.

Proof: The first claim holds since for A and E in E the exponential AE equals∏
E−→1(A × E −→ E). For the second claim note that internal products can be ex-

pressed using exponentials and the internal first-order logic.

∏

E−→1

(α: A −→ E) = {γ ∈ AE | ∀e ∈ E.α(γ(e)) = e}.

If f is open it preserves the internal first-order logic ([11], Theorem 3.2), so f ∗ pre-
serves internal products if f ∗ preserves in addition exponentials. �

Finally we show that in case that f ∗ preserves the internal Lλ
ωω-logic of E , each slice

map ( f/E )∗ has an E-internal left adjoint.

Proposition 4.3 Suppose that the inverse image of f : F −→ E preserves the in-
ternal Lλ

ωω-logic of the topos E . Then for each E in E , the inverse image ( f/E )∗ of
the geometric morphism f/E: F / f ∗ E −→ E/E has an E-indexed left adjoint.
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Proof: Following [3], Theorem 4, it is enough to show that ( f/E )∗ preserves expo-
nentials of the form αX for α: A −→ E in E/E , X in E , and  the pullback functor
E −→ E/E . But αX = (C −→ E) for

C =
∑

e∈E

AB
e = {γ ∈ AB | ∀b1, b2 ∈ B.α(γ(b1)) = α(γ(b2))},

which is preserved by assumption. �

5 Completeness Here we construct minimal models of Lλ
ωω-theories in a similar

way as was done in [6] or Palmgren [16]. Let T ⊂ Lλ
ωω(S) be a set of axioms. We

define a syntactic site Syn(T ) as follows.

1. Objects are pairs ([ϕ(x), X) where X is a (derived) type, x is a variable of
type X, and [ϕ(x)] is an equivalence class of Lλ

ωω-formulas. Two formulas
ϕ1(x1) and ϕ2(x2) are equivalent if

T � ∀x(ϕ1(x) ←→ ϕ2(x)),

where x is a new variable.
2. Arrows from ([ϕ(x), X) to ([ψ(y)], Y ) are triples ([σ(x, y)], X, Y ) such that

[σ(x, y)] is an equivalence class of Lλ
ωω-formulas and, moreover, σ is provably

functional:
T � ∀x∀y(σ(x, y) −→ ϕ(x) ∧ ψ(y)),

T � ∀x(ϕ(x) −→ ∃yσ(x, y)),

T � ∀x∀y∀z(σ(x, y) ∧ σ(x, z) −→ y = z).

Here we used the same names for the variables occurring in ϕ, ψ, and σ, indi-
cating that we do not care about possibly renaming the variables.

3. We say that a finite family of arrows ([σi(xi, y)], Xi, Y ): ([ϕi(xi)], Xi) −→
([ψ(y)], Y ) is a cover if

T � ∀y(ψ(y) −→
∨

I
∃xiσi(xi, y)).

It is easy to show that Syn(T ) has all finite limits and some exponentials (namely,
those of the form ([z = z], Z)([y=y],Y ) = ([w = w], ZY )), and the topology is sub-
canonical. But the category Syn(T ) fails to be cartesian closed. Still, there is a canon-
ical interpretation of our language in this category, and this interpretation yields a con-
servative model of T in Syn(T ).

Write Bλ(T ) for the topos of sheaves on Syn(T ), equipped with the finite cover
topology. The Yoneda embedding y: Syn(T ) −→ Bλ(T ) provides an interpretation
U of the underlying language as follows:

A(U) = y([x = x], A),

for each basic sort A. The above-mentioned properties of Syn(T ) and the fact that y
preserves exponentials imply that

Y (U) ∼= y([y = y], Y )
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for any derived type Y . Constants and relations are interpreted as follows:

c(U): 1 −→ Y (U) := y([c = y],∅, Y ): y([�],∅) −→ y([y = y], Y )

f (U): Y (U) −→ Z(U) := y([ f (y) = z], Y, Z): y([y = y], Y ) −→ y([z = z], Z)

R(U) � Y (U) := y([R(y)], Y ) � y([y = y], Y ).

The core of this section is the following proposition.

Proposition 5.1 For each Lλ
ωω(S)-formula ψ(y: Y ) there is a canonical isomor-

phism y([ψ(y)], Y ) ∼= {y | ψ(y)}(U).

Proof: This is a long induction over the complexity of ψ. Roughly speaking,
Syn(T ) is a Heyting category, and the Yoneda embedding preserves the first-order
structure (see [6] for details). Moreover, since the topology is subcanonical, y pre-
serves exponentials which happen to exist. �
As a corollary we derive the major result, namely, completeness with respect to mod-
els in Grothendieck toposes.

Theorem 5.2 U is a conservative model of T. For a closed formula τ we have
U |= τ if and only if T � τ. In particular, Lλ

ωω is complete with respect to models
in Grothendieck toposes (and therefore complete with respect to Heyting categories
with exponentials).

Proof: The first part is immediate from Proposition 5.1, the rest is trivial. �
Using a recent covering theorem for toposes with enough points, we can strengthen
the theorem the following way.

Corollary 5.3 For each consistent set of axioms T ⊂ Lλ
ωω(S) there exists a topo-

logical space X and an O X-valued model M of T (a Heyting-valued model of T which
takes its truth values in the complete Heyting algebra O X of open sets of X) such that
M |= τ if and only if T � τ for each closed formula τ.

Proof: Given T the site Syn(T ) is coherent and therefore Bλ(T ) has enough points.
By Theorem 13.5 of Butz [5] (see as well Butz and Moerdijk [7]) there exists a con-
nected, locally connected geometric morphism

m: Sh(X) −→ B
λ(T )

for X a topological space. By Lemma 4.1, M = m∗U is a model of T in Sh(X), which
is conservative since m is a surjective geometric morphism. The corollary follows
since models in Sh(X) correspond to O X-valued models (see Fourman and Scott [8]
for details). �
What are the points of the topological space X? Classical second-order logic is
complete with respect to models which are called nowadays Henkin models, see
Henkin [10]. Combining Henkin’s proof and the standard proof of Heyting-valued
completeness for first-order intuitionistic logic, one shows that our logic Lλ

ωω (but in
fact, full intuitionistic second-order logic) is complete with respect to Heyting-valued
Henkin models. Fixing a set of enough Heyting-valued Henkin models ST , points of
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X are pairs (M, α) where M is in ST and α is an enumeration of M, similar as in [2],
Appendix. The enumerations are used to define the topology.

Before we end this section let us mention that the model U in Bλ(T ) is minimal
in the following sense.

Proposition 5.4 For any model M of T in a Grothendieck topos F there is a unique
(up to isomorphism) geometric morphism χM: F −→ Bλ(T ) such that for each
Lλ

ωω(S)-formula ψ(y: Y )

{y | ψ(y)}(M) ∼= χ∗
M{y | ψ(y)}(U). (1)

Thereby, we get a fully faithful functor

χ: Modλ(T, F ) −→ Hom(F ,Bλ(T )),

natural in locally connected geometric morphisms F ′ −→ F .

Proof: Soundness of � implies that HM: Syn(T ) −→ F , defined on objects by

([ψ(y)], Y ) �→ {y | ψ(y)}(M)

is a well-defined functor. This functor preserves finite limits and covers, therefore
induces by Diaconescu’s theorem a geometric morphism χM: F −→ Bλ(T ) satisfy-
ing (1).

By the remark following definition 3.2, Lλ
ωω-homomorphisms h: M −→ M ′ cor-

respond exactly to natural transformations HM −→ HM ′ , which shows that χ(−) ex-
tends to a fully faithful functor Modλ(T, F ) −→ Hom(F ,Bλ(T )), which is clearly
natural in locally connected geometric morphisms. �
As a final remark we mention that given M in F , the geometric morphism χM is, in
general, not open, hence, in general, not locally connected.

6 Concluding remarks Our main goal was to study the logic Lλ
ωω, but there are as

well the infinitary variants Lλ
κω, where one allows disjunctions and conjunctions over

sets of formulas of cardinality less than or equal to κ. In that case one has to use carte-
sian closed κ-Heyting categories as the natural categories where models live. The cal-
culus of Section 2 extends immediately to these infinitary logics, and the complete-
ness results of Section 5 remain true, although the complete Heyting algebra of Corol-
lary 5.3 does not have to come from a topological space: given a theory T ⊂ Lλ

κω(S),
the site Synκ(T ), defined similarly as above using formulas from Lλ

κω, is not coher-
ent and Theorem 13.5 of [5] does not apply. Instead, one has to appeal to the cov-
ering theorem of Joyal and Moerdijk [12]. As noted in the introduction, the logics
Lλ

κω are the strongest logics we know for which a Heyting-valued completeness the-
orem holds. Such a statement for full (intuitionistic) second-order logic is certainly
wrong: second-order logic is even not complete with respect to models in arbitrary
Grothendieck toposes.

Finally we should admit that there is something wrong with the syntax of our
logic: we should not just extend first-order logic by quantification over function types,
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but by quantification over definable function types, that is, we should allow expres-
sions such as

∀ f : {x | ϕ(x)}{y|ψ(y)}( · · · )

where (recursively) ϕ and ψ are formulas of our language. Write Lλ+
κω for this logic.

Given a theory T ⊂ Lλ+
κω (S) we can construct as before a syntactic site Syn+

κ (T ),
which will now be a cartesian-closed κ-Heyting category. In fact, it has the obvi-
ous universal property in the category of all cartesian-closed κ-Heyting categories.
Therefore, a presentation using Lλ+

κω would parallel [6] much more. But there are
good reasons why we did not choose this way: even though we know intuitively very
well how to handle the syntax of Lλ+

κω , the formal presentation is clumsy. Any formula
defines a type, so that there is no distinction between formulas and types, in particular,
there are many identifications and subtypes.
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