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Abstract  In “Intuitionistic validity in T-normal Kripke structures,” Buss
asked whether every intuitionistic theory is, for some classical th€gtiyat of
all T-normal Kripke structuregf (T) for which he gave an r.e. axiomatization.
In the language of arithmetifop and Lop denote PA plus Open Induction
or Open LNPiop andlop are their intuitionistic deductive closures. We show
H (Iop) = lop is recursively axiomatizable aridp i .= iop, while iV1 E lop.

If iT proves PEMomic but not totality of a classically provably total Diophan-
tine function of T, then# (T) ¢ iT and soiT ¢ rangé€ ). A result due to
Wehmeier then impliedT; ¢ rangeg# ). We prove Iop is notV,-conservative
overivy. If Jop € T C 1Yy, theniT is not closed under Mien 0r Friedman’s
translation, soT ¢ range (). Both Iop and|V; are closed under the negative
translation.

1 JTop-normal Kripkestructuresvs. modelsof iop or lop Webegin with aversion

of the Kripke semantics for (arithmetic in) intuitionistic predicate logic. The language
L=1{+, -, <,0,1}is fixed throughout the paper unless otherwise is mentioned. Let
us consider Kripke structures far to be of the formX = (K, <; (M, )qck). The
frame (K, <) of X is a rooted poset whose elements are called nod&s dfhe at-
tached worldM,, at a nodex is a classical structure (interpretirg) for £L whose
universe is denotel,. In each such world the interpretation of the equality sym-
bol contains, perhaps strictly, the true equality but is stilllanongruence relation.
For alla, B € K with o < B (in which caseg is said to be accessible froa), M,

is a weak substructure of (or homomorphically embeddediip) This means that

M, € Mg and the truth iV, of atomic sentences with parameters frivy is pre-
served inM;, although tuples of elements M, may acquire new atomic properties
(e.g., equality) inMg. The forcing relatiori- between nodes and atomic sentences
coincides with classical trutp= in the corresponding attached worlds. In particular
no node forced.. The inductive definitions fov, A, 3 are as their classical counter-
parts while the ones for- andV (through the latter forcing of a formula defined as
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forcing of its universal closure) are stronger and require the corresponding classical
defining clause to hold at all accessible nodes, (see Troelstra and van[QJalérof
exampleg I- —¢(X) (Where—¢ is ¢ — 1) meansvVp > «, Vb Mg, Bl —¢(b),

that is,V8 > a,Vb € Mg, Vy > B,y I ¢(b). Thereforea If —¢ if and only if

38> a,3be Mg, Iy > B, y I ¢(b). Itisquite possible that for some sugtandb,

¢(b) is forced at some > g but not atg; in that casex |f* ¢ v —¢. At anodea of a
Kripke structure a formula(X) is said to be decidable if forcesvX(¢(X) v —¢ (X))

(the instance oi of the Principle of the Excluded Middle, PEM). For any formula
Y, alF ¢ ifand only if VB > «, B IF 4. In particular if¢ is decidable at a node,

then it is decidable at any node accessible fioalso. A formula is decidable in a
Kripke structure if it is decidable at its root (equivalently at all its nodes). An intu-
itionistic theory which prove¥X(¢(X) v —¢(X)) is said to decide. By soundness
and completeness of the Kripke semantics (Eethis is equivalent to decidability

of ¢ in any Kripke model of (i.e., one forcing all formulas in) the intuitionistic theory
at hand. Some consequences of decidability of atomic formulas,BEMwhich

can be considered at a node or in a theory) are presented in Liénimelow which

is essentially due to Markovigl]. We state it in a somewhat more general form on a
node-by-node basis rather than for (Kripke models of) an intuitionistic theory decid-
ing all atomic formulas. One refers to quantifier-free (respectively prenex existential
or universal) formulas as open (respectivéiyor V1). A Vo-formula is one of the
form Vyg (X, ) whereg € 3;. Decidability of open, respectiveB-free, formulas is
denoted by PEMpen respectively PEM. free.

Lemmall

(i) For anode« of aKripkestructure, o I-F PEMatomicimpliesa I PEMgpen If (the
frame of) the structureislinear and « IF PEMatomic thenindeed o IF PEMy_gree.
(i) If o IF PEMatomic @(X) € 31, anda € M, then o IF ¢(a) iff M, = ¢(3@).
(iii) Ifeisasin(ii)and ¢ € Vo, thena I- ¢ iff VB > o, My = .

Proof: (i) If for some 8 > & andb € Mg, B1ff ¢(b) — ¥ (b) (the cases of andv
being more trivial), thedy > B with y I- ¢(b) buty I ¥ (b). Assuming decidability
of g andyr ata, this impliesg I ¢(b) A =y (b) and sovy’ > B, V' Iff ¢(b) — ¥ (b).To
show decidability ofvyp(y, X) at « assuming that op and linearity of the frame,
suppose for somg > o, b € Mg andy > B, y IF Vye(y, b). For anyy’ > g and
ceM,,y <y vy >yimpliesy I —¢(c,b) and soy’ IF ¢(c, b).

(ii) Induction on formulas is straightforward again. In fact theart for— in
the induction step is the only place where PEMic and the formula being prenex
J; (not justV-free) are used. Note that if an atomic formiRéa) with a € M,, is
not decidable at, then, = —R(a) buta If =R(a). Also PEMyomictogether with
M, = —3Ix R(x) (RbeingV-free or even atomic) does not implyi- —=3xR(x). Ob-
serve that thenly if part for the case of in the induction step works too. So, as
remarked by Markovic, a prenex formula which is forcedas classically true in
M,.

(iii) This is an immediate consequence of part (ii). O

Here are some sets of axioms which will be used in this paper. We conceive asPA
the usual set of axioms for nonnegative parts of discrete strictly ordered commutative
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rings with 1, (see Kaydd]). This contains the set
SLO={¥X=X < X,VXyZ(X < YAY < Z) —> X< 2),YXYy(X< YVX=YVY<X)}

of axioms for strict linear orders. Given a formuyléx, y), let ¢ denote the instance

of induction scheme with respect xoon the formulap(X, y), that is, the sentence
VY[@(0,¥) AVX(p(X,Y) = o(X+1,Y)) = Vxe(x,y)]. Let 134, respectivelyl V4,
respectivelylop, denote the union of PAwith the set of all instances of induction
with respect to any free variable on prenex existential, respectively prenex universal,
respectively open formulas. For a ebdf sentences in the languageleti T denote

the intuitionistic theory axiomatized by, that isiT = {¢ : T I ¢}. Note thatiT
containsT (but not its classical deductive closure unless itincludes all formulas of the
form ——¢ — ¢). We abbreviatélop asiop. Similarly i3; = i13; andivy = ilV;.

Recall from [ that for a classical theory, # (T) denotes the intuitionistic theory

of the class of (i.e. formulas forced in all}normal Kripke structures fot (those
whose worlds are classical modelsTf The third part of Propositida.2below is
Buss’s Theorem 7 ill]], where PA (Peano Arithmetic, that is P4plus all instances

of induction) is weakened in its statement to just SLO plus the appropriate instance
of 3;-induction. It has a similar spirit as tliepart of LemmdL 1{jii).

Proposition 1.2

(i) H (SLO) - PEMgtomic 1 iSLO.
(ii) For SLOC T C PA™, aKripke structure for £ forcesiT iff it is T-normal.
Therefore SLOC T € PA™ implies H (T) =
(iii) For any SLO-normal Kripke model and 3;-formula ¢(X, V), if M, = Ixe for
al a, then o I Ixp for all a. Therefore PA~ € T C 13, impliesiT € H (T).
In particular # (Iop) i iop.

Proof: (i) These are immediate from the axioms in SLO (indeed by (ii) which uses
both provabilities herel{ (SLO) = iSLO).

(i) The axioms in SLO arev; so V.. Also note that replacing the axiom
VXy(X <y — 3z(x+ z=y)) by its intuitionistically equivalent (preneX)-formula
Vxydz(x < y — X+ z=Yy), PA™ is V,-axiomatized too. Now use Lemriaiiii)
and (i) above to get the equivalence. The latter statement is then a consequence of
soundness and completeness of Kripke semantics.

(iii) Let ¢(x, y) be the formul&zy (X, ¥, Z), wherey isopen. Lef > « be an ar-
bitrary node and Mg. We reed to shows I- 3z (O, b,2) AVX(3zy (X, b, Z) —
Jzy (x + 1,b,2)) — VYx3zy(x,b,2). Let y > B,y I+ 32y (0,b,2), and
y IF ¥x(3zy(x,b,2) — Iz (x + 1,b,2)). By Lemmaﬂm) and (i) above it is
enough to show for any > y, we haveM = Vx3zy (x, b, 2). Sincen > y, we have
n |- 3zy(0, b, 2) andn IF Yx(3zy (X, b, Z) — Iz (x+ 1, b, 2)). So by LemmdLii)
and (i) againM, = 3zy/(0, b, 2) and M, = VYx(Jzy(x, b, 2) — Fz¢(x+ 1, b, 2)).
Then byM, |= Ixp, wewill have M, = Vx3zy(x, b, 2). The relation T < # (T) for
PA~ C T C 131 is now a consequence of soundness of the Kripke semantic§l

Remark 1.3  For formulasy andy,, Friedman’s translation af by v denotedy?
is obtained by simultaneously replacing each atomic subforRuwé ¢ by P v v,



INTUITIONISTIC OPEN INDUCTION 215

renaming any bound variables gfwhich are free iny. As Friedman observed in
Friedman[P], v i ¢¥ and if T - ¢, thenTY ; @Y. Buss axiomatized the intu-
itionistic theoryH (T) by formulas of the form(—¢)¥, whereg is a semipositive
formula (i.e., each subformula @f of the formg; — ¢, hasg, atomic) such that

T ¢ —~¢ andy is arbitrary. It is immediate from the Buss soundness and complete-
ness theorems iffi] that for any set of axiom3, iT € # (T) if and only if (if by
completenessnlyif by soundness) eveily-normal Kripke structure forcad. Fur-
thermore using the Buss soundness theorem, it is clear that if every Kripke model of
iT is T-normal, then* (T) € iT. For a recursively enumerable sBtof axioms,

the Buss axiomatization fat/ (T) is recursively enumerable. Given a formuéla

the problem of whether it has the fortrg)? for a semipositive formulg is de-
cidable, whereas the problem of whetlerclassically proves-¢ has only a par-

tial decision procedure which may well not haltTift/c —¢. In TheoreniL.4]be-

low we give a recursive axiomatization &f (Iop). For a formulap(x,y), the in-
stance of the Least Number Principle, LNP, @nvith respect tox is the sentence
Lxg : VY(@Xp(X, YY) — IX(¢(X,¥) AVZ < X—¢(Z,Y))). Let Lop denote the union of
PA~ with the set of sentencésp (X, ¥) for open formulag andlop abbreviateLop.

Theorem 1.4  H (lop) = lop.

Proof: It suffices to show that a Kripke structure féris lop-normal if and only if

itis Lop-normal if and only if it forcedop. Asfor the former equivalence here, first
note that clearlLx—¢ ¢ Ixp for anye and saoLop ¢ Iop. This is indeed true intu-
itionistically as one can see easily by a direct method or by combining this theorem
with Propositiodd.2iii).

The argument foffop ¢ Lop (which will be shown in the next section to fail
intuitionistically) is deeper and is based on an important theorem due to Shepherd-
son [B]. He characterized the rings generated by model®pfas integer parts of
real closed fields, that is, discrete subrings which have elements within 1 (equiva-
lently within a finite distance) of every element in the field. Take &hy= Ilop and
open formulap. Theng is a Boolean combination of polynomial inequalities (with
coefficients inN). So it defines, after fixing the parametershih afinite union of
(closed, some of the bounded ones may be single points) intervals in the real closure
RC(M) of (the fraction field, ordered in the obvious way, of the ring generated by)
M. By Shepherdson’s theorem, the initial point of the left-most interval intersecting
M has an integer part iN. Either this integer part or its successoih(depending
on whether it belongs t¥ or not) is the least element of the set definedphig M.

Turning to the second equivalence, we know from Proposiiidiii) that a
Kripke structure forL forcesiPA™ if and only if it is PA~-normal. So it suffices to
show that for any Kripke model ®PA™ all instances of open LNP are classically true
in each world if and only if they are forced at every node of the structure.

if:  Using LemmdL.1{ii), this is easily verified on an instance-by-instance and
node-by-node basis.

onlyif: Let K be anLop-normal Kripke structurey anode ofX, andg (X, ¥) an
open formula. To prove I+ Vy(3xp(X, Y) = XX Y) AVZ<X—9(Z,))), Ietﬁ_z
a, b e Mg, y > Bsuch that I- Ixg(x, b). Consider the sdize M, : M, = ¢(z, b)}
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which by LemmdL.1{ii) and y I 3x¢(x, b) is nonempty and so b4, = Lop has a
least elementn. By Lemmé&L (i) again it is enough to show I Yz < m—¢(z, b).
If that were not the case, then for soihe y andd € Ms, we would haves |- d <
mA ¢(d, b). Weclaimd e M,, contradicting the definition arn.

To prove this claim note that(x, b) is a Boolean combination of polynomial
inequalities with respect towith coefficients inM,.. Sod € RC(M,)). By Lop + Iop
and Shepherdson’s theorem there exists M,, which is strictly within 1 ofd. But
thend, d’ € M; are strictly within 1 of each other. b=d’ € M, O

2 Examplesfor someobstaclestoiT € rangg# ) For a formulap, (a dight vari-

ant of) the (®del-Gentzen) negative translation@flenotedy is the formula ob-
tained fromyp by replacing any subformula gfof the formy v n, respectivel\@xyr,

by —(=y A —1), respectively-vVx—yr and inserting-— before each atomic subfor-
mula ofp exceptL (seell]). We say that a set of axion¥sis closed under the nega-
tive translation ifT™c C i T, that s, for any formula, T k. ¢ impliesT - g. We say
that a classical theorSis V,-conservative over an intuitionistic thedry if S;ZC cCiT,
that is, wheneveBt. VX3 yp(X, y) for an open formula, thenT ; VX3 Vo (X, V).
The notion offI,-conservativity is similar by requiring the above for all bounded for-
mulase. Anintuitionistic theoryi T is said to be closed under Friedman'’s translation
if whenever it proves a formulg, then it provesy? (see Remari_3) for all . We
abbreviate this asw(iT)W CiT. ltissaid to be closed under Markov’s Rule if when-
ever it proves-—3yyp(X, y) for a formulag decidable in that theory, then it proves
Aye(X,y). We denote the restricted corresponding rule wheis assumed open by
MRopen By (iTﬁﬁgl)dne C iT we mean thatT is closed under MRy, Friedman
observed (sed]) that closure of T under Friedman'’s translation implies its closure
under Markov's Rule for atomic formulas. In the case of the extended langiiage
which has an additional symbol for each primitive recursive function, this means clo-
sure under MR for primitive recursive predicates denoted-MRt the time it was
already known that closure under MRin conjunction with decidability of atomic
formulas and closure under the negative translation impligsonservativity. These
were actually stated foF = PA, in which case T = HA (Heyting Arithmetic), con-
sidered in the languagépr. For the language, we will see in Theoren?. Tlbelow

an L-version of these implications interpolated by a couple of properties in terms of
AH.

Theorem 2.1  For any set of axioms T in £,
(i) 1f (iT--3,)""®U PEMatomicU TFe i T, then T ¢ CiT.

(i) If (iTo-3)"® ZiT, then T,° Z iT. If PEMaomic € iT and T,° & iT, then
H(T)ZiT.

(iii) 1f Tre CiT but #(T) €T, then U, (iT)¢ ZiT.

(iv) fU,(iTYPUH(T) ZiT, theniT ¢ ranggH).

Proof: (i) Suppose thal classically but not intuitionistically prove&3ye(X, y),
for an open formulap. From closure under the negative translation we Get;
VX=VYy—p(X,y) and thereforel - ——3y ¥(X, y¥). Now since atomic formulas are
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decidable iniT, by LemmalL.1{ii) and +; ¢ < @ for any openg we haveT H;
¢ <— @. ThereforeT F; —=—3y ¢(X, y) which contradicts closure aflf under
MRopen-

(ii) Note that if for some open formulé (X, y), iT = —=—3yy¥ (X, y) butiT t/
dyy, then T classically but not intuitionistically proves thé,-sentenceg :
vX3ayy(X,y). From this together with decidability of atomic formulasiihand by
LemmélL_1iii), one getsp € # (T) while by assumptiop &iT.

(iii) We give the following argument due to Buss, which he used to conclude
H (PA) C HA from the facts that HA is closed under both Friedman'’s and the nega-
tive translations. First note that for any semipositive formyla H; @. This can be
proved by induction on the complexity @f using——g; — @5 in the induction step
© = p1 — @2 (Whereg; is atomic by semipositivity of). If ¢ is not semipositive,
the conclusion may fail, as it can be seen, for examplepfer I, (2y < X) in The-
oremZ.3Jbelow. Fix anyT which is closed under the negative translation. Then for
any formulap, T ¢ —¢ impliesT i (g —_L). So if g is semipositive and ¢ —¢,
thenT ;i (¢ — _L). Assume on the contrary thiaf is closed under Friedman'’s trans-
lation. Then for any semipositivewith T ¢ —¢ and formuled, T ;i (¢ — 1), that
is, T i ¢’ — 0. This means thafl proves all of Buss’s axioms foH (T), so we get
the contradictior (T) CiT.

(iv) Assume first that# (T) € iT. By the soundness theorem [i]] for ev-
ery classical theons, # (S) C S (consider one-node structures and use classical
completeness, hergis closed undek). If H(S) =iT, theniT < S. Now since
T CiT, wewould haveT C S, andtherefore# (T) C # (S), proving the contradic-
tion H (T) CiT.

Next assume), (iT)?  iT and# (S) =T, for a classical theor. We prove
the contradiction that (the set of Buss’s axioms &) S) is closed under Friedman'’s
translation. The argument goes as follows. For a semipositive forprauid arbitrary
formulasy and6, from the factd - ¥ mentioned in Remairk.3land by induction
on ¢ we havep) =; (¢¥)¢ and thereforé—g) V") i ((—g)¥)°. O

Example2.2 It is immediate from (i) and (iv) of Theoref.1Jthat if a classical
fragmentT of PA extending PA has a Diophantine- (i.e4;) definable provably total
function which is not provably total ifiT (see 2] and B]), theniT ¢ range# . We
bring here an example of this suggested by one of the referees. Recall that the class
I14, respectivelyX, isthe closure of the st of bounded formulas under blocks of
V's, respectiveh\d’s, andIT1, is PA~ together with all instances of induction dh -
formulas. It is well known that (se&]) the exponential function is a Diophantine-
definable provably total function dff1;. On the other hand, Wehmeier proved in
[9] that any provably total function af1; which has ax;-definition, is majorized
in N by some polynomial. Henddl1; ¢ range(# ). The reason for bringing in the
Diophantine-definability issue is as follows. By Lemifnaiii) if all atomic formulas
are decidable imT, thenT is V,-conservative ovef{ (T). HoweverT need not be
I1,-conservative (in fact not even,-conservative) ovet! (T). Wegive an example
for this in Theoren2.3fiv). On the other hand, for the languader if all atomic
formulas are decidable iT, thenT is I1,-conservative ove#{ (T).

To establishiIT; does not prove totality of exponentiation, Wehmeier prove@]n [
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that a two-node Kripke model of1; is obtained if one puts a classical model df;
above aAp- elementary submodel of it which is a modellaty. We put a classi-
cal nonstandard model of TN) over the semi-ring generated by an infinitely large
element in Theorerg.3lbelow to get a model of (e.giV; whose lower node does
not decide &,-sentence classically provable overPBy a single instance of open
induction. Ourvz-sentence is the statement that the functidhis total, that is, the
sentenc&x3y(x = 2y v x = 2y + 1) which we denote by AEO. We will use the first
pruning lemma from van Dalen et &B][ It says that ifp andy are formulas with
possible parameters from the wold, at some noder of a Kripke structure such
thata If# ¢, thena IF oY if and only if a IFY ¢, wherel-Y is forcing in the Kripke
structure obtained from the original one by pruning nodes for¢ing

Theorem 2.3

(i) i ="PA" + 1y(2y < X) k5 VX==3Ay(X =2y V X =2y + 1).
(II) To = PA™ 4+ Tha_fee(N) + =—Th(N) +
H (Ths,uv, (N)) i (ly(2y < x)AEO v Ly(x < 2y).
(iii) f TLC T C Ty, then (iT-—3)Z iTand Uy (iT)¥ ZiT.
(iv) H (PA~ +3IxXVYy < X(2y < X — 2y + 2 < X)) I IxVy <
X2y < X— 2y + 2 < X).

Proof: (i) We havely(2y < X) =jpa- YX(VY(2y < X — 2y +2 < X) — Vy2y <
X) Fi VX(2VY2y < X = —VYy(2y < X = 2¥Y + 2 < X)) =jpa- VX VYy(2y < X —
2Yy+2 < X) Fipa- YX—VYy—=(X=2yVv X=2y+ 1) i VXx——3y(Xx=2yVv x=2y+1).

(i) Consider the two-node Kripke modé&{ based on the framg@ < 1}, where
Mo = Z[t]Z° (polynomials int overZ with nonnegative leading coefficient) equipped
with the usuah-, - , and the compatible order determined by makipgsitive and in-
finitely large (for more information seB]) and 4/ is a nonstandard model of TH).
Note that, up to an isomorphism d@fstructures which sendgo a nonstandard el-
ement,Z[t]=° is an initial segment of any nonstandard model of PSo we may
assume thaflf is a substructure oM. Certainly Z[t]=° S My, since for instance
Mo = AEO (the element is neither even nor odd iA[t]=°).

The node 1 is terminal, hence classical (i.e., all formulas are decidable at 1).
So as remarked irg], 1 IF Th(N). On the other hand by Lemnia1{i) the lower
node, 0O, forces everg-free formula forced at the upper one. This shows that O
forces Th_gee(N). Also any PA -normal Kripke structure forcei®’A™ regardless
of whether it is linear or not. For an arbitratye Th(N), 1 If —t, and therefore
0k =—=t. Asmentioned in, PA~™ ¢ Thy, (N) andZ[t]Z° = Thy,uv, (N). SOK
is Thy,uv, (N)-normal. SoX I iTo.

Note that the AEO-pruning ak results in the single-node classical mofid]
and My = 1y(2y < x) (e.g., sinceMp = PA™ but not AEO). Besides telling us
that X is not T,-normal, this shows @“AE° 1,(2y < x) and so by the first prun-
ing lemma, (the lower node of) does not forcely(2y < x))AEO_ Also observe
that Mo = Ly(x < 2y) either as the se2t — 2n : n € N} has no minimum in
Z[t]Z°. So by (f) inthe proof of Theoreffi4] (the node 0 offX’ does not force
Ly(x < y). Now by soundness of Kripke semantics for intuitionistic predicate logic,
we getT, 4 (1y(2y < x)AEO v Ly(x < 2y). In particularT, % lop.
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(iii) By (ii), T (Iy(2y < x))*E© and thereford # AEO (since as mentioned
in RemarKL3] AEO ; ¢"EC for any ¢). Combining the latter with (i) we see that
iT is not closed under Mien (S0 by Theoren2.1land LemmdL1] T is not V,-
conservative oveiT and# (T) € iT & rangé€#)). On the other hand, since
includesly(2y < x), we get from the former thaiT is not closed under Friedman’s
translation (even in the cases whEtis not closed under the negative translation).

(iv) Consider the two-node Kripke model obtained by puttﬁ’:p&]zo over
Z[t]Z° (using soundness of the Kripke semantics again). Therefoié ffagts of the
¥1-version of Lemm@&_1fii) and of thell,-version of Lemm&_Tiii) fail. O

Example2.4 There is no classical theor$ such that# (S) = iop or H(S) =
iV1. The theoryiop is not complete with respect tlvp-normal Kripke structures
(it is sound though, as we saw in Section 1) avidt# lop. The function|3] is a
Diophantine-definable provably total function of (PA- 1y (2y < X))"¢ but not ofiv;.
The theoriesop andiVv; also satisfy the other four negative statements in Thelrén
as they are not closed under MR, Let us mention in passing, however, thap
andiVv; (as any other fragment of HA of the forifi, that is, the intuitionistic theory
axiomatized by PA plus instances of induction on formulaslih have the Disjunc-
tion Property and Explicit Definability (see Smorynd&l)[and are therefore closed
under Markov’s Rule (for decidable, in particular open, formulas) withfree vari-
able. We finally note that botfop and 1V, are closed under the negative translation.
For any set of axiom3 and formulap we haveT ¢ ¢ = T +; @, (seell]). So

it is enough to show thabp andiV, prove the negative translations of their axioms.
Note that for any instance of open, respectiwgly, induction, its negative translation
is again such an instanck = Ixg, 1,YX¢(X, Y, 2) = |,¥Xp(X, y, z) andg is open if
@is). As for the axioms in PA, one may treat them one by one or note that they have
intuitionistically equivalent form¥x(P(X) A Q(X) — IYR(X, y)), whereP, Q, and
Rare atomic and us&x(P(X) A Q(X) — AYR(X, y)) ki YX(=—=P(X) A =—Q(X) —
—Vy—=R(X, ¥)).
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