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Strictly Primitive Recursive Realizability, II:
Completeness with Respect to

Iterated Reflection and a
Primitive Recursive ω-Rule

ZLATAN DAMNJANOVIC

Abstract The notion of strictly primitive recursive realizability is further
investigated, and the realizable prenex sentences, which coincide with prim-
itive recursive truths of classical arithmetic, are characterized as precisely
those provable in transfinite progressions {PRA(b)|b ∈ O} over a fragment
PR-(�0

1-IR) of intuitionistic arithmetic. The progressions are based on uniform
reflection principles of bounded complexity iterated along initial segments of a
primitive recursively formulated system O of notations for constructive ordi-
nals. A semiformal system closed under a primitive recursively restricted ω-
rule is described and proved equivalent to the transfinite progressions with re-
spect to the prenex sentences.

1 Introduction In Damnjanovic [3] we introduced the notion of strictly primitive
recursive realizability and proved with respect to it the soundness of a Gentzen-style
formulation of the fragment PR-(�0

1-IR) of intuitionistic arithmetic with the induc-
tion rule restricted to �0

1 formulas and with terms and defining axioms for all prim-
itive recursive (p.r.) functions. Like Kleene’s recursive realizability, this notion is
nonclassical in that there are classically true sentences that are neither realizable nor,
in an appropriate sense, falsifiable, and there are realizable sentences that are classi-
cally false. For sentences in prenex normal form, however, our primitive recursive
realizability coincides with primitive recursive truth in the sense of Kleene [8], and
here we investigate this classical part of the realizability notion, seeking to charac-
terize it independently in natural ways. In addition, we hope to develop methods that
would facilitate the task of finding natural characterizations of the nonclassical part.

The methodology employed throughout the paper owes much to the early work
of Feferman, who showed in [5] that transfinite progressions over the classical Peano
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Arithmetic (PA) based on uniform reflection principles iterated along initial segments
of Kleene’s recursively formulated system O of ordinal notations give a complete rep-
resentation of first-order arithmetical truth. (In §1 we describe in detail what distin-
guishes our approach from Feferman’s.) A crucial element in the argument of [5] is
a proof that the progressions are closed under Shoenfield’s recursively restricted ω-
rule, originally introduced in [13]. (The uniform reflection principles around which
the transfinite progressions are built may be seen as attempts at formalization of the
ω-rule.) The resulting characterization of arithmetical truth as “the closure of PA un-
der iterated reflection,” or alternatively and equivalently, as “the closure of PA under
the recursive ω-rule,” may be interpreted as providing a quasi-constructive justifica-
tion of arithmetical truth as determinable from below by constructive processes. Our
main result (Theorem 8.3) shows that these characterizations are analogously pre-
served when PA is replaced by the intuitionistic PR-(�0

1-IR), the transfinite progres-
sions are appropriately defined as in §1, the ω-rule is restricted primitive recursively
in a suitable fashion, and arithmetical truth is replaced by strictly primitive recursive
realizability. This analogy strongly suggests that, from a broadly constructivist point
of view, the concept of realizability explored here, which amounts to primitive re-
cursive truth for prenex sentences, constitutes a natural notion. A parallel analogy
relating transfinite progressions based on the intuitionistic version of PA—the Heyt-
ing Arithmetic (HA)—supplemented with terms for all p.r. functions and appropriate
defining axioms, and Kleene’s recursive realizability, was established in Dragalin [4].
In view of the essential role that notations for constructive ordinals play in these char-
acterizations, and considering that in general the problem of deciding whether or not a
given integer represents such a notation is at least as difficult as that of deciding truth
or realizability, it is doubtful that a reduction to more elementary concepts has been
achieved in the process. Nonetheless, the fact that these relationships hold may be rel-
evant for the philosophical debate about the extent of various constructivist concep-
tions of arithmetic. We do not discuss those issues here. A discussion of the bearing
of restricted ω-rules on the characterization of finitism can be found in Ignjatovic [7].

Transfinite progressions based on iterated reflection, and primitive recursively
restricted ω-rules, have been previously studied for different purposes in López-
Escobar [10], and Schmerl [11] and [12]. In [10], such an ω-rule is added to true
sentences of the form t1 = t2 and t1 �= t2 for any closed terms t1, t2, over intuitionis-
tic logic, and the resulting system is proved equivalent to HA. In [11] a fine structure
generated by reflection principles formulated in terms of partial truth definitions for
arithmetic and iterated over the classical Primitive Recursive Arithmetic (PRA) along
a fixed total p.r. well-ordering of integers is studied and, among other results, the well-
known theorem of Kreisel and Levy to the effect that PA = “PRA+ uniform reflec-
tion schema for PRA” is derived. In [12] primitive recursively restricted ω-rules are
used to study similarly defined transfinite progressions over PA. Our restricted ω-rule
differs from those employed by these authors.

In §1 we define a transfinite progression of Gentzen-style proof systems PRA(b)

obtained by extending PR-(�0
1-IR) by suitably formulated reflection principles iter-

ated along initial segments of a primitive recursively based system O of notations for
constructive ordinals. In §2 we prove the soundness of PRA(b) for b ∈ O with re-
spect to strictly primitive recursive realizability (Theorem 3.3). As a consequence,
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we derive, in Theorem 3.4, that the provably recursive functions of PRA(b) for any
b ∈ O are the same as those of PR-(�0

1-IR), namely, the p.r. functions. In §3 we es-
tablish, along with some other facts, the completeness of the transfinite progressions
{PRA(b)|b ∈ O} with respect to prenex realizable sentences (Theorem 4.10). We de-
velop these techniques further in §4 and proceed to introduce in §5 a semiformal sys-
tem closed under a primitive recursively restricted ω-rule. In §6 we prove, in Theo-
rem 7.1, that the transfinite progressions {PRA(b)|b ∈ O} are closed under the primi-
tive recursive ω-rule under a certain hypothesis, and show that, on the other hand, all
prenex realizable sentences are derivable by means of the ω-rule (Theorem 7.2). In
the process we obtain another proof of the prenex completeness of {PRA(b)|b ∈ O}
with respect to realizability, under the aforementioned hypothesis. This hypothesis is
proved in §8, in Theorem 8.2, and we finally obtain in Theorem 8.3 our main result,
a characterization of the realizable prenex sentences.

2 For present purposes it will be convenient to use a slightly different indexing of
p.r. functions than the one we employed in [3].1 By Kleene’s Normal Form Theorem
for recursive functions (see [8], §58), for each n there is a p.r. predicate T∗

n+1 and a
p.r. function U such that, for any n-place p.r. function ϕ,

ϕ(�xn) = y ⇐⇒ ∃z(T∗
n+1(e, �xn, z) & U(z) = y)

⇐⇒ ∀z(T∗
n+1(e, �xn, z) & U(z) = y

⇐⇒ ϕ(�xn) = U(µyT∗
n+1(e, �xn, y))

holds for some integer e, a Kleene index of ϕ. This allows us to unofficially expand
the language L(PRA) as follows: for any formula ϕ(x, y), we read ‘ϕ(x, [e](y))’ as
an abbreviation for ‘∃z∃u(T∗

2 (e, y, z) & U(z) = u & ϕ(x, u))’.2 The Kleene index-
ing will be an essential element of our definition of transfinite progressions. Follow-
ing Kleene [9], we use it to introduce a system O of notations for ordinals.3

The principal tool in many arguments throughout the paper is the following ana-
logue of Kleene’s Recursion Theorem formulated for p.r. functions.

Theorem 2.1 (Primitive Recursion Theorem) For any p.r. function ϕ(y, �xn) there
is a p.r. function ϕ∗(�xn) with Kleene index b such that

ϕ(b, �xn) = ϕ∗(�xn).

The proof (see [9]) shows how to obtain b primitive recursively from a given Kleene
index of ϕ.

It was Turing who first proposed to counter incompleteness by extending a given
intuitively correct formal system T of arithmetic with the sentence Con(T) that ex-
presses its consistency and imagining that the process continues indefinitely (see Tur-
ing [15]). It is easy to see that the process can be continued into the transfinite by
showing that the finite stages can be described in a uniform primitive recursive way.
However, the attempt to turn this intuitive idea into a formally precise definition en-
counters difficulties.4 Turing was aware of these complications but did not rigorously
work out the details of the technique required for such a construction. This was done
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by Feferman who showed how Gödel’s technique for obtaining self-referential sen-
tences can be applied to the task. We employ this general method and define the par-
ticular progressions we are interested in.

In [5] Feferman focused on the progressions based on the uniform reflection
principle in which at the successor stages α + 1 one adds all instances of the schema

∀x∃yPrf(b, y,�ϕ(ẋ)�) → ∀xϕ(x)

for |b| = α, and the limit stages are simply defined as the unions of the preceding
stages.5 Our procedure differs from Feferman’s in several respects. One superficial
difference is that we primarily work with Gentzen-style systems—such as the sys-
tem PR-(�0

1-IR) studied in [3]—and so instead of the uniformized proof-predicate
Prf(x1, x2, x3), we refer to the relation that holds between an ordinal notation m for
α, a code s for a sequence (s)0, . . . , (s)k of Gödel numbers of sequents and the Gödel
number of a sequent � 
 ϕ just in case s codes a derivation in the corresponding
system with � 
 ϕ as the endsequent. Secondly, the systems we consider, unlike
Feferman’s, are based on intuitionistic logic. Some other important differences are
motivated by our desire to formulate a system of transfinite progressions that can be
proved sound and complete with respect to strictly primitive recursive realizability.
We use only indices of p.r. functions for ordinal notations, whereas Feferman relies on
an indexing of all recursive functions. Furthermore, we do not distinguish between
the successor and the limit stages: at each stage b, b ∈ O, we add (roughly) all in-
stances of the schema

∀x∃y∃z(Prf(z, y,�ϕ(ẋ)�) & z <∗ b) → ∀xϕ(x).

This will enable us to effectively preserve primitive recursive content at limit stages.
Finally, and perhaps most importantly, we formulate the reflection principles requir-
ing a stronger condition to be satisfied for ∀xϕ(x) to be derivable at stage b than
merely that proofs of all instances ϕ(m) exist at stages <0 b and that they be enu-
merable by a function provably recursive at b: it is necessary that the proofs—in our
case derivations—of the instances be all of bounded complexity in a specific sense to
be explained shortly.

Let D be a PR-derivation (see [3], §4) with endsequent � 
 A. Call a term t
operative in a derivation D if t occurs as an instantiating term in a sequent of the
form � 
 B(t) that results by an application of (∀E) in D or serves as the premise
of an application of (∃I) in D. For each subderivation D∗ of D we define order of
D∗ as follows. For any n ≥ 0, D∗ is of order n if it involves no applications of any of
the rules (IND), (→E), (∀E), or (∃I). Assuming subderivations of order n have been
defined, we say that D∗ is of order n + 1 provided:

1. D1 and D2 are of order ≤ n if D∗ is obtained from D1 and D2 by (IND) or by
(→E);

2. D1 is of order ≤ n if D∗ is obtained by (∀E) from D1; and
3. for any term t operative in D∗, λ�yk.t(�yk) ∈ Gn.

(The Grzegorczyk classes Gn were defined in [3]). For all other rules of PR-(�0
1-IR),

D∗ is of order n if all the immediate subderivation(s) of D∗ are of order ≤ n. We write
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D : � 
n A if D is a PR-derivation of order n, and D :
n A if � is empty. Note that if
D is of order n, then D is also of order m for any m ≥ n; but not every PR-derivation
is of arbitrarily low order.

We now define a transfinite progression of Gentzen-style proof systems PR(b)

based on an appropriately formulated uniform reflection principle. The technique is
well known from [5], §3, so we omit the details. The first step is to formalize deriv-
ability in the sequent system PR-(�0

1-IR).6 We let #E be the Gödel number of an
expression ‘E’, and #� the Gödel number of a finite sequence � of expressions. Let
‘x <∗ y’ be a fixed �0

1 formula that defines the preordering <∗. Using Gödel’s Self-
Reference Lemma we obtain a formula Der(x1, x2, x3, x4, x5) expressing a p.r. rela-
tion Der with the following property: Der(b, #D, n, #�, #A) holds if and only if D
is a PR(b)-derivation of order n with endsequent � 
 A, that is, a finite sequence of
sequents such that each sequent in the sequence is either an axiom of PR-(�0

1-IR), or
a sequent of the form

(∗) �,∀x∃y(Dern((y)0, (y)1,��( �̇xk)�,�ϕ(ẋ)�) & (y)0 <∗ b),� 
 ∀xϕ(x)

for some n > 0, �,� and ϕ—which we write REFn(b, �,�, ϕ)—or is derived from
some preceding member(s) of the sequence by a single application of one of the
rules of PR-(�0

1-IR), and � 
 A is the endsequent of D. (We assume that in the
process the definition of order of a derivation is extended to PR(b)-derivations by
stipulating in addition that a derivation that consists of a reflection axiom of the
form REFn(b, �,�, ϕ) for some �,�, ϕ, is of order m for any m ≥ n.7 Also, for
each n, we let Dern(b, y, u, v) ≡ Der(b, y, n, u, v)). We call the resulting system—
which amounts to PR-(�0

1-IR) plus the reflection principles REFn(b, �,�, ϕ) for all
n > 0, �,�, and ϕ—PR(b).8 Sequents of the form REFn(b, �,�, ϕ) are meant to
express the reflection principles of bounded complexity central to our definition of
transfinite progressions.

It is easily shown that, if a <∗ b provably in PR-(�0
1-IR), then any sequent deriv-

able in PR(a) has a PR(b)-derivation; moreover, it can be proved that, for any a, b,
and each k,

PR-(�0
1-IR) 
 Derm(a, x, u, v) & Derk(1, y,�x <∗ a�,�x <∗ b�)

→ ∃zDerm(b, z, u,v)

for all but finitely many m ≥ k. Finally, using a form of Primitive Recursion Theorem
(cf. Lemma 2.3 of Feferman [6]), we may obtain a p.r. function χ such that, for any
a, b

a <0 b =⇒ Der1(1, χ(a, b),�x <∗ a�,�x <∗ b�).

3 Let t and n be integers, and A, B, C, sentences. We inductively define the relation
‘t �n A’:

t �n A ⇐⇒ : t = 0 and A is true, if A is atomic;
t �n (B & C) ⇐⇒ : (t)0 �n B and (t)1 �n C;
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t �n (B ∨ C) ⇐⇒ : (t)0 = 0 and (t)1 �n B, or (t)0 �= 0 and (t)1 �n C;

t �n (B → C) ⇐⇒ : In(n, t) and ∀ j ≥ n In( j, e j+1(t, 〈 j〉) and

∀ j ≥ n ∀b[b � j B =⇒ e j+1(e j+1(t, 〈 j〉), 〈b〉) � j C];
t �n ∃xB(x) ⇐⇒ : for some m, (t)1 �n B(m) and (t)0 = m;
t �n ∀xB(x) ⇐⇒ : In(n, t) and ∀m[en+1(t, 〈m〉) �n B(m)].

Here, In(n, t) holds if t is an n-index and so a Kleene index of a function in the Grze-
gorczyk class Gn, and the functions e j+1 ∈ G j+1 enumerate the classes G j (see §2 of
[3] for details). A is (strictly primitive recursively) realizable if ∃t∃nt �n A. If � is a
sequence of sentences, we write �tm �n � if ti �n Ai for each Ai in �, 1 ≤ i ≤ m.

In preparation for the proof of soundness with respect to strictly primitive re-
cursive realizability of transfinite progressions defined in §1, we state, in a sharpened
form, the principal result of [3], the Soundness Theorem for PR-(�0

1-IR). Detailed
examination of the proof of Theorem 5.1 in [3] reveals the following.9

Theorem 3.1 Let D be a PR-derivation and suppose that D : � 
p A, where
lth(�) = m and all variables free in � or A are among �xk. Then

∀q∃n < q + p + 1∃ f ∈ Gn∀ j > max(q, n)∀�tm∀�nk[�tm �q �(�nk)

=⇒ f (�tm, �nk) � j A(�nk)].

That is, every derivation in PR-(�0
1-IR) is (positively) q-fulfillable for all q in the

sense of [3], §5, and order of the derivation allows us to place a bound on the com-
plexity of an appropriate p.r. function f . Further analysis shows that witnesses to the
q-fulfillability of D—an integer n and an n-index of a function f ∈ Gn—may be ob-
tained from #D and q uniformly by an elementary and an almost elementary function,
respectively.

Theorem 3.2 There is an elementary function 	 and a function 
 ∈ G0 such that,
if D is a PR-derivation and D : � 
p A (where � and A are as in Theorem 3.1), then
∀q	(#D, q) < q + p + 1 and

∀q∀ j ≥ max(q,	(#D, q)) + 1,

∀�tm∀�nk[�tm �q �(�nk) =⇒ e	(#D,q)+1(
(#D, q), 〈�tm, �nk〉) � j A(�nk).
10

We now proceed to prove the soundness of PR(b) for all b ∈ O.

Theorem 3.3 There is an elementary function 	∗ and a function 
∗ ∈ G0 such that
for any b, if D : � 
p A is a PR(b)-derivation and b ∈ O (where � and A are as in
Theorem 3.1), then ∀q	∗(b, #D, q) < q + p + 1 and

∀q∀ j ≥ q + p + 1,

∀�tm∀�nk[�tm �q �(�nk) =⇒ e	∗(b,#D,q)+1(

∗(b, #D, q), 〈�tm, �nk〉) � j A(�nk)].

Proof: The argument is a tricky, self-referential one and so we go into some detail.
We modify and extend the definitions of the functions 	 and 
 from Theorem 3.2 to
obtain definitions of 	∗ and 
∗. We define 	∗(b, #D, q) analogously to 	(#D, q) in
all cases except when D consists of a reflection axiom of the form REFn(b, �,�, ϕ)



RECURSIVE REALIZABILITY 369

for some n, �,�, ϕ, in which case we set 	∗(b, #D, q) =: q + n. As for 
∗, we
first define a function 
+(a, b, #D, q) by course-of-values recursion from elemen-
tary functions on analogy to 
(#D, q) in all cases except when D consists of a re-
flection axiom of the form REFn(b, �,�, ϕ); then we let


+(a, b, #D, q) =: ��xmz�u j �yk.β(a, q, n, z, 〈u j〉),

where m = lth(�), j = lth(�), and all variables free in �,�, or ϕ are among �xk

(see [3], §2 for the ��xm notation); β is the elementary function such that, for any c, if c
is a k-index of some p.r. function λxyv.ψ(x, y, v), then β(c, q, n, z, u) is a max(k, q +
n + 1)-index of the function

λx.eq+n+1(ψ((eq+1(z, 〈x〉))0,0, (eq+1(z, 〈x〉))0,1, q), u)

for any choice of q, n, z, and u. Then 
+ ∈ G0. By the primitive recursion the-
orem, there is an integer a∗ that is a 0-index of the function 
∗ ∈ G0 such that

∗(b, #D, q) = 
+(a∗, b, #D, q). Then, in particular, for each q, n, z, and �u j, we
have that β(a∗, q, n, z, 〈�u j〉) is a q + n + 1-index of the function

λx.eq+n+1(

∗((eq+1(z, 〈x〉))0,0, (eq+1(z, 〈x〉))0,1, q), 〈�u j〉).

We now argue, by transfinite induction on |b| for b ∈ O, that the functions 	∗ and 
∗

have the desired properties. For |b| = 0, the proof is essentially the same as that of
Theorem 3.2. (We slightly modify the argument to obtain the present bound on j).
Assume, as the induction hypothesis, that the theorem holds for all d <0 b for some
fixed b, to show the same for b. We proceed by induction on the length of PR(b)-
derivations. The sole new element is the case when D consists of a reflection axiom
of the form REFn(b, �,�, ϕ). (Hence, D is a PR(b) derivation of order n). Then, for
all q,	∗(b, #D, q) = q + n by definition, so the first part of the theorem holds. Fix
q and assume that �tm �q �(�nk),

t �q ∀x∃y(Dern((y)0, (y)1,��(�nk)��ϕ(ẋ)(�nk�) & (y)0 <∗ b)

and �u j �q �(�nk). Then In(q, t), and for each i,

eq+1(t, 〈i〉) �q ∃y(Dern((y)0, (y)1,��(�nk)�,�ϕ(i)(�nk)�) & (y)0 <∗ b).

For each i, let ri =: eq+1(t, 〈i〉). Then

(ri)1 �q (Dern((ri)0,0, (ri)0,1,��(�nk)�,�ϕ(i)(�nk)�) & (ri)0,0 <∗ b).

The latter is expressible as a �0
1 sentence, hence is true if realizable. Then for each i,

(ri)0,1 is the Gödel number of a derivation Di : �(�nk) 
n ϕ(i)(�nk) in PR(bi), where
(b)i = (ri)0,0 and bi <∗ b. But then for each i, bi ∈ O and |bi| < |b|. From the in-
duction hypothesis and the assumption that �u j �q �(�nk), it follows that, for each i,

∃ fi ∈ G	∗
(bi ,#Di ,q)

� Gq+n+1∀p ≥ q + n + 1

fi(�u j) �p ϕ(i)(�nk) where fi has index 
∗(bi, #Di, q).
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In particular, we have that, for each i,

eq+n+1(

∗(bi, #Di, q), 〈�u j〉) �q+n+1 ϕ(i)(�nk),

that is, for each i,

eq+n+1(

∗((eq+1(t, 〈i〉))0,0, (eq+1(t, 〈i〉))0,1, q), 〈�u j〉) �q+n+1 ϕ(i)(�nk).

But this means that, for each i,

eq+n+2(β(a∗, q, n, t, 〈�u j〉), 〈i〉) �q+n+1 ϕ(i)(�nk),

and therefore,
β(a∗, q, n, t, 〈�u j〉) �q+n+1 ∀xϕ(x)(�nk).

By the definition of 
∗, and given that β ∈ G0, we have that

e1(

∗(b, #D, q), 〈�tm, t, �u j, �nk〉) �q+n+1 ∀xϕ(x)(�nk).

But then, for all j ≥ q + n + 1,

e	∗
(b,#D,q)+1 (


∗(b, #D, q), 〈�tm, t, �u j, �nk〉) � j ∀xϕ(x)(�nk),

as required. �
As a corollary to the soundness theorem, we have the following.

Theorem 3.4 Suppose b ∈ O, and D is a PR(b)-derivation of � 
 A, where � is
empty and A is a sentence of L ′. Then

1. for some a and m, a �m A;
2. if A is of the form ∀x∃yB(x, y), where the formula B(x, y) has x, y, as sole

free variables, then there is a p.r. function such that for all m, B(m, f (m))

is true;
3. if A is a prenex formula of the form ∀x1∃y1, . . . ,∀xn∃yn B(�xn, �yn) with

no two consecutive quantifiers of the same kind and B(�xn, �yn) is a
p.r. predicate, then there are p.r. functions f1, . . . , fn such that for all
�mn, B( �mn, f

1
(m1), . . . , f

n
( �mn)).

This strengthens Theorems 7.1 and 7.2 of [3]. We may conclude that the provably
recursive and the definable functions of PR(b) for all b ∈ O are the same as those of
PR-(�0

1-IR)—which = PR(b) for b = 1—namely, precisely the p.r. functions (cf. [3],
§6).

4 In preparation for the proof of completeness of the transfinite progressions with
respect to strictly primitive recursive realizability, we state some well-known meta-
mathematical facts in a form suitable for our purposes.

Lemma 4.1 Let f be an n-ary primitive function symbol of L ′ representing a
p.r. function f . Then there is a p.r. function ψ depending on f , such that

(i) for some k,

∀ �mn∀m[ f ( �mn) = m =⇒ Derk(1, ψ( �mn), 1,� f ( �mn) = m�)],
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and furthermore,

(ii) for some k, PR-(�0
1-IR) 
 f (�xn) = y → Derk(1, ψ(�xn), 1,� f ( �̇xn) = y�).

Part (ii) can be established by formalizing the proof of (i), which is standard (cf. e.g.,
[14], pp. 23–25); 1 codes the empty sequence. Call the formulas of L ′ with no un-
bounded quantifiers and no occurrences of → or ¬, PR-formulas. From 4.1(ii) it is
possible to prove a form of demonstrable PR-completeness for PR-(�0

1-IR) (see, e.g.,
Chapter 0 of [14]).

Lemma 4.2 Let ϕ(�xn) be a PR-formula. Then, for some k,

PR-(�0
1-IR) 
 ϕ(�xn) → ∃zDerk(1, z, 1,�ϕ( �̇xn)�).

This result extends to �0
1 formulas of L ′, that is, those of the form ∃xϕ(x) where ϕ(x)

is a PR-formula.
Recall from [3], §5, that the derived rule (Cut) of PR-(�0

1-IR) does not result
in an increase of the order of PR-derivations. This fact can be formally proved in
PR-(�0

1-IR). (We omit the proof.)

Lemma 4.3 For each m,

PR-(�0
1-IR) 
 Derm(a, x, 1, u) & Derm(a, y, 〈u〉 ∗ 〈v〉,w) → ∃zDerm(a, z, v,w).

Lemma 4.4 For each b and m > 0, there is a sentence Fm, (b) of L ′ such that

(i) if PR(b) is consistent, then Fm(b) has no PR(b)-derivation of order j ≤ m,
and

(ii) for all but finitely many m, there is a PR(2b)-derivation of Fm(b) derivation of
order m.

Proof: Recall from §1 the PR-formula Der(x1, x2, x3, x4, x5) and for each fixed b
and m consider the formula

∀z ∼Derm(b, z, 1, x1)

with x1 as its sole free variable.11 By Gödel’s Self-Reference Lemma there is a sen-
tence Fm(b) with Gödel number fm(b) such that the sequents

∀z ∼Derm(b, z, 1, fm(b)) 
 Fm(b)

and
Fm(b) 
 ∀z ∼Derm(b, z, 1, fm(b))

are both derivable in PR-(�0
1-IR), as are the sequents

Fm(b) 
 ∼Derm(b, d, 1, fm(b))

for each d. All these PR-derivations are of order k for some fixed k. (Same k works
for all m and d). Let gb

m(d) = #(∼Derm(b, d, 1, fm(b))). Then (i) follows by 4.1(i)
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and the fact that PR-(�0
1-IR) ⊆ PR(b). On the other hand, note that, by 4.2, for each

m,

∼Derm(b, x, 1, f
m
(b)) → ∃zDern(b, z, 1,�∼Derm, (b, ẋ, 1, fm(b))�) (1)

is derivable in PR-(�0
1-IR) for some n independent of the choice of m. Moreover,

there is a p.r. function h such that, for each m,

Derm(b, x, 1, fm(b)) & Derk(b, y, fm(b), gb
m(x)) →

Dermax(m,k)(b, h(x, y), 1,gb
m(x))

is also derivable in PR-(�0
1-IR). But then

Derm(b, x, 1, fm(b)) → ∃zDermax(m,k)(b, z, 1,�∼Derm(b, ẋ, 1, fm(b))�)) (2)

is derivable in PR-(�0
1-IR) for each m. Since

PR-(�0
1-IR) 
 Derm1

(x, z, u, v) → Derm2
(x, z, u, v)

whenever m1 ≤ m2, we have that the variants of (1) and (2) with n and max(m, k)

replaced by max(max(m, k), n) are both derivable in PR-(�0
1-IR), for each m. Now,

for each m,

PR-(�0
1-IR) 
 Derm(b, x, 1, fm(b))∨ ∼Derm(b, x, 1, fm(b))

since Derm(b, x, 1, fm(b)) is a PR-formula. But then

PR-(�0
1-IR) 
 ∃zDermax(max(m,k),n)(b, z, 1,�∼Derm(b, ẋ, 1, fm(b))�),

and finally, for each m,

∃y(Dermax(max(m,k),n)((y)0, (y)1, 1,�∼Derm(b, ẋ, 1, fm(b))�) & (y)0 <∗ 2b

has a PR-derivation of order q. (Again, same q works for all m). For � empty and
ϕm(z) ≡ ∼Derm(b, z, 1, fm(b)), we thus have that, for any �, � 
 ∀zϕm(z) may be
derived in PR-(�0

1-IR)+ REFmax(max(m,k),n)(2b, �,�, ϕm, (z)) by a derivation of or-
der max(q, max(max(m, k), n)). So PR(2b) 
 ∀z ∼Derm(b, z, 1, fm(b)) and it fol-
lows that Fm(b) is derivable in PR(2b) by a derivation of the same order. Hence, for
m ≥ max(k, n, q), there is a PR(2b)-derivation of Fm(b) of order m. �
Next, we modify an argument of Turing in [15] that will be crucial in establishing the
completeness of the hierarchy {PRA(a)|a ∈ O} for true �0

1 statements. Let O(ω) =:
{d ∈ O | |d| = ω}, and let ν(x) be the superexponential function ν(0) =: 1 and ν(m +
1) =: 2ν(m). (Then for each m, ν(m) ∈ O and |ν(m)| = m).

Lemma 4.5 (Turing’s Lemma) There is a p.r. function E such that for any
PR-formula A(x) of L ′,

∀xA(x) is true ⇐⇒ E(#A) ∈ O(ω).
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Proof: Let R(x) be the p.r. predicate expressed by A(x). Define a p.r. function ϕ

such that

ϕ(e, x) =:

{
ν(x) if ∀y ≤ xR(y)

23·5e
if ∃y ≤ x¬R(y)

Applying the primitive recursion theorem we may obtain primitive recursively a
Kleene index e∗ of the p.r. function ϕ∗ such that

PR-(�0
1-IR) 
 ϕ∗(x) = ϕ(e∗, x).

Let d = 3 · 5e∗
. Assume R(m) for all m. Then [e∗](m) = ν(m) for each m, and d ∈ O

with |d| = ω. If, on the other hand, for some m¬R(m), let m∗ be the least such m.
Then

for all k < m∗, [e∗](k) = ν(k), and
for all k ≥ m∗, [e∗](k) = 2d .

But then d �∈ O because ϕ∗ is not increasing in <∗. The proof is complete if we let
E(#A) = 3 · 5e∗

. �

Remark 4.6 Note that the proof actually establishes that

∀xA(x) is true ⇐⇒ E(#A) ∈ O∗(ω)

where O∗(ω) =: {3 · 5e|e is a Kleene index of λx.ν(x)}.
We now proceed to establish completeness for true �0

1 sentences. The essential idea
of the proof is due to Turing, but the considerations about order of derivations and
the fact that the systems PR(b) are based on intuitionistic logic are crucial for our
purposes.

Theorem 4.7 Let A(x) be a PR-formula of L ′. Then

∀xA(x) is true =⇒ ∃d ∈ O[PR(2d ) 
 ∀xA(x) and |d| = ω].

Proof: Let R(x) be the p.r. predicate expressed by A(x). We argue indirectly.
Assume that ¬R(n) for some n. Then d �∈ O, where d = 3 · 5e∗

and e∗ is as in
the proof of Turing’s Lemma. Nonetheless, the p.r. relation Der(d, x, y, u, v) is de-
fined. Since y <∗ [e∗](x) 
 y <∗ 3 · 5e∗

is derivable from the definition of <∗ by
a PR-derivation of order 1, we have that, for each k and any m > 0, �,�, and ϕ,
REFm([e∗](k),�,�, ϕ) has a PR(d)-derivation of order m. By the choice of e∗ it
follows that REFm(2d, �,�, ϕ) is derivable in PR(d) by a derivation of order m, for
all but finitely many m ≥ 1 and any �,�, and ϕ. Then PR(2d ) ⊆ PR(d), and from
Lemma 4.4(ii) we have that

∃n¬R(n) =⇒ for some PR(d)-derivation D, D :
m Fm(d) (3)

for all but finitely many m.

On the other hand, since (∼Derm(d, z, 1, f
m
(d)) → ¬Derm(d, z, 1, f

m
(d))) is

derivable in PR-(�0
1-IR), we have, by the choice of Fm(d), that

PR-(�0
1-IR) 
 Fm(d) → ∀z¬Derm(d, z, 1, f

m
(d))
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for each m, whence

PR-(�0
1-IR) 
 Fm(d) → ¬∃zDerm(d, z, 1, f

m
(d)).

The formalized version of (3) is the L ′ formula

∃x¬A(x) → ∃zDerm(d, z, 1, f
m
(d)). (4)

If (4) is derivable in PR-(�0
1-IR) by a derivation of a fixed order p for all but finitely

many m, then so will be

¬∃zDerm(d, z, 1, f
m
(d)) → ∀xA(x)

since A(x) is a PR-formula. But then there is a PR-derivation of a fixed order q of
the sequent Fm(d) 
 ∀xA(x) for all but finitely many m. From 4.4(ii) it then follows
that

PR(2d ) 
 ∀xA(x)

by a derivation of order m, for all but finitely many m. To complete the proof of the
theorem, it remains to show that there is a PR-derivation of (4) of a fixed order p, for
all but finitely many m. First observe that, from the proof of Turing’s Lemma and the
choice of e∗, we can obtain a PR-derivation of

∃x ∼A(x) 
 ∃x[e∗](x) = 2d . (5)

But then we may obtain a PR-derivation D of the sequent ∃x ∼A(x), y <∗ 2d 
 y <∗

d, and, using 4.1, a PR-derivation of the formula

Derk1
(1,�#D�, 〈�∃x ∼A(x)�〉 ∗ 〈�y <∗ 2d�〉,�y <∗ d�) (6)

for some k1. Secondly, by demonstrable �0
1-completeness of PR-(�0

1-IR), we have
that

PR-(�0
1-IR) 
 ∃x ∼A(x) → ∃zDerk2

(1, z, 1,�∃x ∼A(x)�). (7)

From (6) and (7) and Lemma 4.3 we may then derive

∃x¬A(x) → ∃zDerk(1, z, 1,�y <∗ 2d�,�y <∗ d�)

in PR-(�0
1-IR), for k = max(k1, k2).12 But then

PR-(�0
1-IR) 
 ∃x¬A(x) → (∃yDerm(2d, y, u, v) → ∃zDerm(d, z, u, v))

for all but finitely many m; in particular,

PR-(�0
1-IR) 
 ∃x¬A(x) → (∃yDerm(2d, y, 1, f

m
(d)) → ∃zDerm(d, z, 1, f

m
(d))

From 4.4(ii) and 4.1 we have that PR-(�0
1-IR) 
 ∃yDerm(2d, y, 1, f

m
(d)), whence

finally, PR-(�0
1-IR) 
 ∃x¬A(x) → ∃zDerm(d, z, 1, f

m
(d)) as required. �
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Remark 4.8 Notice that the proof that PRA(2d ) 
 ∀xA(x) does not really depend
on the hypothesis that ∀xA(x) is true. For, if ∃x ¬A(x), then by (4) we have that, for
all but finitely many m, PRA(d) 
 Fm(d) by a derivation of order m, which implies
that PR(d) is inconsistent. Since in general PRA(a) ⊆ PRA(2a), it would follow that
PRA(2d ) is inconsistent and hence, trivially, PRA(2d ) 
 ∀xA(x). The difference is
that if ∀xA(x) is true, we have that 2d ∈ O.

Given the properties of our realizability semantics, completeness for sentences of the
form ∀xA(x) where A(x) is a PR-formula suffices to establish completeness for all
realizable prenex sentences of L ′.

Theorem 4.9 Let A be a �0
n sentence of L ′ for n ≥ 0. Then

∃e∃m e �m A =⇒ ∃b ∈ O, PRA(b) 
 A and |b| = ω + 1.

Proof: We may assume without loss of generality that n = 2(k + 1). Suppose
e �m A. From Theorem 3.2 of [3] we have that A is PR-true, that is, there are p.r. func-
tions f0, . . . , fk such that for any m0, . . . , mk, B(m0, f

0
(m0), m1, f

1
(m0, m1), . . . ,

mk, f
k
(m0, . . . , mk)) holds, where A ≡ ∀x0∃y0, . . . ,∀xk∃yk B(x0, y0, . . . , xk, yk)

and B(x1, . . . , xn) is a PR-formula of L ′. Then we also have that ∀xC(x) where

C(x) ≡ B((x)0, f0((x)0), (x)1, . . . , (x)k, fk((x)0, . . . , (x)k))

is a true �0
1 sentence of L ′. Note that PR-(�0

1-IR) 
 ∀xC(x) → A by logic. By
Theorem 4.7, PRA(b) 
 ∀xC(x) for some b ∈ O such that |b| = ω + 1. But then
PRA(b) 
 A, as required. �
We may then derive the following theorem.

Theorem 4.10 Let A be a prenex sentence of L ′. If A is strictly primitive recur-
sively realizable, then PRA(b) 
 A for some b ∈ O such that |b| = ω + 1.

Remark 4.11 From the proofs of 4.7 and Theorem 3.2 in [3] it can be shown that
b ∈ O is primitive recursively obtainable from #A.

From the soundness and completeness theorems, 3.4.1 and 4.10, we then have

Theorem 4.12 Let A be any prenex sentence of L ′. Then

∃e∃n e �n A ⇐⇒ A is PR-true ⇐⇒ A ∈ ∪b∈O{PRA(b)| |b| ≤ ω + 1}
⇐⇒ A ∈ ∪b∈O{PRA(b)}.

We recall the notion of strictly primitive recursive falsifiability introduced in [3], §3.

Theorem 4.13 Let A be any prenex sentence of L ′. Then ∃e∃n e

�

n =⇒ ∃b ∈
O, PRA(b) 
 ¬A and |b| = ω + 1.

Proof: From Theorems 3.2 and 3.3 of [3] we have that

∃e∃n e

�

n A ⇐⇒ A is PR-false ⇐⇒ ∼A is PR-true ⇐⇒ ∃e∃n e �n∼A.

Then, by 4.10, the hypothesis implies that PRA(b) 
 ∼A for some b ∈ O such that
|b| = ω + 1, whence PRA(b) 
 ¬A. �
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Let SR =: {#A|A is a prenex sentence and ∃e∃n e �n A}, and let SF =: {#A|A is a
prenex sentence and ∃e∃n e

�

n A}. Let ‘≤pr
1 ’ stand for 1–1 reducibility by a p.r. func-

tion, and let ‘A ≡pr
1 B’ abbreviate ‘A ≤pr

1 B and B ≤pr
1 A’. Then we also have

Theorem 4.14

(a) The sets O(ω) and O∗(ω) are �0
1 complete.

(b) O∗(ω) ≤pr
1 SR.

(c) SR ≡pr
1 SF.

(d) The sets SR and SF are both �0
1 complete.

We omit the proof.

5 Here we introduce some auxiliary machinery for use later on. First, observe that
from the definition of the Kleene indexing of p.r. functions, one may easily obtain an
elementary function such that for any a, b, e,

for all n, [θ(a, b, e)](n) = [a](b, [e](n)).

(Cf. [6], p. 105.) In fact, we also have that, for each a, b, and e, PR-(�0
1-IR) 


[a](b, [e](x)) = [θ(a, b, e)](x). From the definition of <∗ one may then derive

PR-(�0
1-IR) 
 ∀x([a](b, [e](x)) <∗ 3 · 5θ(a,b,e) ) (8)

Furthermore, by [9] there is a p.r. function +∗ with Kleene index a∗ such that for any
x, y, e,

x +∗ 1 = x if x �= 0
x +∗ 2y = 2x+∗ y if y �= 0
x +∗ 3 · 5e = 3 · 5θ(a∗,x,e)

We then have, for any a, b, e if a ∈ O and b ∈ O, that

(i) a +∗ b ∈ O,

(ii) |a +∗ b| = |a| + |b|, and
(iii) b �= 1 =⇒ a <0 a +∗ b.

First we establish the following “relativized” version of Turing’s Lemma (4.5).

Lemma 5.1 There is a p.r. function E0 such that for any b ∈ O, and any PR-formula
A(x) of L ′,

(i) ∀xA(x) is true ⇐⇒ E0(b, #A) ∈ O,

(ii) E0(b, #A) ∈ O =⇒ |E0(b, #A)| = |b| + ω.

A form of this result stated in terms of Kleene’s recursively based system of ordinal
notations O was originally proved in [5], p. 288. Our proof is completely analogous
and we omit it. We remark that the argument extends straightforwardly to sentences
of the form ∀x1, . . . ,∀xm A(x1, . . . , xm), where A(x1, . . . , xm) is a PR-formula of L ′

that expresses an m-place p.r. relation R.
The “relativized” Turing’s Lemma allows us to prove a “relativized” version of

Theorem 4.7.13
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Theorem 5.2 There are binary p.r. functions E1, E2 such that for any b and any
PR-formula A(x) of L ′, if ∀xA(x) is true, then

(i) b ∈ O =⇒ E1(b, #A) ∈ O.

(ii) b ∈ O =⇒ b <0 E1(b, #A) and |E1(b, #A)| = |b| + ω + 1,
(iii) PRA(E1(b, #A)) 
 ∀xA(x) by a derivation with Gödel number E2(b, #A).

Proof: We argue indirectly as in the proof of Theorem 4.7. Let R(x) be the p.r. pred-
icate expressed by A(x) and assume that ¬R(m) for some m. Then E0(b, #A) �∈ O
by 5.1. We consider the sequent system PRA(d) for d = E0(b, #A). We then ar-
gue, with the aid of Lemma 5.1, exactly as in the proof of 4.7, that PRA(2d ) 

∀xA(x). A p.r. function E2 that gives the Gödel number of a PRA(2d )-derivation
of ∀xA(x) with the desired property can be obtained from a detailed analysis of that
proof since the formal proof of (4) in PR-(�0

1-IR) is primitive recursively uniform
in b and #A. Now, if ∀xA(x) is true, it follows from 5.1 that provided b ∈ O, d ∈ O
where d = 3 · 5E′(b,#A) = E0(b, #A), and furthermore, |d| = |b| + ω. Thus, if we let
E1(b, #A) =: 2d we have, under the hypothesis that b ∈ O and ∀xA(x) is true, that
E1(b, #A) ∈ O, b <0 E1(b, #A) and |E1(b, #A)| = |b| + ω + 1, which establishes
parts (i) and (ii) of the theorem. �
Theorem 5.2 extends to sentences of the form ∀x1, . . . ,∀xm A(x1, . . . , xm), where
A(x1, . . . , xm) is a PR-formula of L ′ expressing an m-place p.r. relation R.

Let ∀xDn(a, e, m, g, b, x) abbreviate a �0
1 sentence that says that

∀xDern([e](a, [m](x)), [a]([m](x)), #�, #B(x)),

where g = #� and b = #∀xB(x) with x not free in �. Let d(n, a, e, m, g, b) be the
Gödel number of Dn(a, e, m, g, b, x). The following lemma is best understood in the
context of the proof of Theorem 7.1.

Lemma 5.3 There is a p.r. function E3 such that, for g = #� and b = #∀xB(x)

where x is not free in �, if ∀xDn(a, e, m, g, b, x) is true and 3 · 5θ(e,a,m) ∈ O, then for
any t ∈ O, � 
 ∀xB(x) is derivable in PRA(E1(3 · 5θ(e,a,m) , d(n, a, e, m, g, b)) +∗ t)
by a derivation with Gödel number E3(n, a, e, m, g, b, t).

Proof: From the hypothesis we have, by 5.2(iii), that

∀xDern([e](a, [m](x)), [a]([m](x)),���,�B(ẋ)�)

is derivable in PRA(E1(1, d(n, a, e, m, g, b))). Then so is

∀x∃y(Dern((y)0, (y)1,���,�B(ẋ)�) & (y)0 = [e](a, [m](x)))

But then by (8) the same holds of

∀x∃y(Dern((y)0, (y)1,���,�B(ẋ)�) & (y)0 <∗ 3 · 5θ(e,a,m) (9)

Now, since 3 · 5θe,a,m) ∈ O by hypothesis, we have by Theorem 5.2(ii) and �0
1-

completeness of PR-(�0
1-IR) that

PR-(�0
1-IR) 
 3 · 5θ(e,a,m) <∗ E1(3 · 5θ(e,a,m) , d(n, a, e, m, g, b)) +∗ t (10)
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since d(n, a, e, m, g, b) is the Gödel number of a true sentence. From (9) and (10)
and the remarks at the end of §1 it follows that

∀x∃y(Dern((y)0, (y)1,���,�B(ẋ)�) &

(y)0 <∗ E1(3 · 5θ(e,a,m) , d(n, a, e, m, g, b)) +∗ t)

is derivable in PRA(E1(1, d(n, a, e, m, g, b))) , and since by �0
1-completeness of PR-

(�0
1-IR) we have that

PR-(�0
1-IR) 
 E1(1,�A�) <∗ E1(c,�A�) (11)

for any c ∈ O and any true sentence A of the form ∀x1, . . . ,∀xmC(x1, . . . , xm) where
m ≥ 1 and C(x1, . . . , xm) expresses a p.r. predicate, it follows that the above sentence
is derivable in PRA(E1(3 · 5θ(e,a,m) , d(n, a, e, m, g, b)) +∗ t). But then � 
 ∀xB(x)

is derivable in PRA(E1(3 · 5θ(e,a,m) , d(n, a, e, m, g, b)) +∗ t), as required. Since the
derivations in (10) and (11) can be obtained uniformly primitive recursively from
n, a, e, m, g, b, t and A ≡ ∀xDn(a, e, m, g, b, x) and c = 3 · 5θ(e,a,m) +∗ t, we may
obtain a p.r. function E3 depending on n, a, e, m, g, b, and t with the above stated
property. �

6 Here we formulate a primitive recursively restircted ω-rule in the style of Shoen-
field (cf. [13]) and describe a semiformal system of ω-derivations closed under the
rule. Shoenfield’s original recursive ω-rule, added to the deductive apparatus of PA,
suffices to derive all first-order arithmetical truths. An important element in our ver-
sion of the rule is a complexity restriction that mimics the one employed in connection
with the reflection principles REFn(b, �,�, ϕ) and having to do with the rules of PR-
(�0

1-IR) and the rank in the Grzegorczyk hierarchy of the p.r. functions expressed by
instantiating terms.

For the sake of brevity, we forgo giving the actual definition of the set of ω-
derivations in favor of a sketch from which the definition can be easily reconstructed.
We characterize the set of ω-derivations as the smallest set of integers satisfying the
following conditions:14

(i) if � 
 A is the axiom of PR-(�0
1-IR), then for any d, n, 〈1, n, #�, #A, d〉 is an

ω-derivation of � 
 A. Assume d ≥ 1.
(ii) if for some i, j, (d)i and (d) j are ω-derivations of � 
 A and � 
 B, respec-

tively, then 〈2, max((d)i,1), (d) j,1), #�, #(A & B), d, i, j〉 is an ω-derivation
of � 
 A & B;

(iii) if for some i,(d)i is an ω-derivation of � 
 A & B, then 〈3, (d)i,1, #�, #A, d,i〉
is an ω-derivation of � 
 A, and 〈4, (d)i,1, #�, #A, d, i〉 is an ω-derivation of
� 
 B.

We continue in this way and co-opt each one of the rules of PR-(�0
1-IR), introducing

in each case as an ω-derivation of a sequent � 
 A an integer that codes a sequence
(in the case of 2-premise rules) of the form

〈k, n, #�, #A, d, i, j〉,
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where k(2 ≤ k ≤ 16) indicates a particular rule of PR-(�0
1-IR), d codes a finite se-

quence such that (d)i and (d) j are ω-derivations of sequents from which � 
 A fol-
lows by that rule and n depends on (d)i,1 and (d) j,1 in the same way in which order
of a PR-derivation by which � 
 A is derived from the sequents ω-derived by (d)i

and (d) j depends on orders of its immediate subderivations. Thus, for example, we
have:

(ix) if for some i, j, (d)i and (d) j are ω-derivations of� 
 A(0) and �, A(x) 

A(x′), respectively, where A(x) is a�0

1 formula and x is not free in �,
then 〈11, max((d)i,1, (d) j,1) + 1, #�, #A(x), i, j〉 is an ω-derivation of
� 
 A(x).

The one exception to this pattern is this:

(xv) if B(x) if a formula of L ′ and the variable x is not free in �, for each
n, [e](n) is an ω-derivation of � 
 B(n) such that ([e](n))1 ≤ m, then,
for any d ≥ 1,

〈17, m, #�, #∀xB(x), d, e〉

is an ω-derivation of � 
 ∀xB(x).

This completes the description of the inductive definition of the set of ω-derivations.
We write Derω(m, n, #�, #A) just in case m is an ω-derivation of � 
 A and (m)1 = n.
Clearly, derivability in PR-(�0

1-IR) implies ω-derivability: one may define by course-
of-values recursion a p.r. function π where

Dern(1, m, #�, #A) =⇒ Derω(π(m), n, #�, #A)

for any �, A and any m, n.
To establish universal assertions about ω-derivations we need to be able to ar-

gue by induction on the complexity of ω-derivations. As mentioned earlier, one mea-
sure of complexity is explicitly built into the definition of ω-derivations. However, it
essentially ignores the primitive recursive ω-rule. Another complexity measure that
does take into account the ω-rule is the height of ω-derivations which we define so
that, in particular, an application of the primitive recursive ω-rule, as described in (xv)
above, results in an ω-derivation of � 
 ∀xB(x) of a higher degree of complexity than
any of the ω-derivations of � 
 B(n) which serve as the “premises”. For this purpose
we assign an ordinal OD(m) to an ω-derivation m as follows:

OD(m) =




(m)4 if (m)0 = 1
�0≤i≤lth((m)4)OD((m)4,i) + 1 if 1 < (m)0 < 17

limn{OD([(m)5](n))} + ω + 1 + (m)4 if (m)0 = 17

where limn{OD([(m)5)(n))} is the least limit ordinal λ > OD([(m)5](n)) for all n.15

Let c and d be ω-derivations. We say that c is an immediate subderivation of d if
and only if either 1 < (d)0 < 17 and c = (d)4,i where i = (d)k and 5 ≤ k < lth(d), or
(d)0 = 17 and c = [(d)4](n) for some n. (Thus, e.g., referring back to the definition
of ω-derivations, if (d)0 = 2, both (d)4,i and (d)4, j are immediate subderivations of
d and d has no immediate subderivations if (d)0 = 1). Let d be any ω-derivation. We
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define the set SD(d) of subderivations of d to be the transitive closure of {d} with re-
spect to the relation of immediate subderivation. We may then establish, by induction
on the generating relation of SD(d), that for any ω-derivation d,

c ∈ SD(d) and c �= d =⇒ OD(c) < OD(d).

Clearly, if c ∈ SD(d), then SD(c) ⊆ SD(D) The notion of subderivations will help us
define the concept of “proper” ω-derivation which will be instrumental in the proof of
the main theorem. We say that an ω-derivation d is proper if for every subderivation
c of d such that (c)0 = 17 we have that for all n,

OD([(c)5](n)) < OD([(c)5](n + 1).

In other words, an ω-derivation d is proper if for each subderivation c of d that re-
sults from an application of the ω-rule the ordinal height OD(cn) of its immediate
subderivations cn = [(c)5](n) strictly increases with n. Clearly, any subderivation of
a proper ω-derivation is a proper ω-derivation.

We now define a p.r. function Od that will provide a measure of the ordinal
height of ω-derivations but which will be of interest only in connection with proper
ω-derivations. The definition is intimately connected with the proof of Theorem 7.1
and its significance is best understood in the context of that proof. We first define a
3-place p.r. function Od∗ by the following course-of-values recursion.

Od∗(e, a, m) =




ν((m)4) if (m)0 = 1

2σ(Õd∗(e,a,(m)4),lth((m)4) if 1 < (m)0 < 17
E1(3 · 5θ(e,a,(m)5), d((m)1, a, e,

(m)5, (m)2, (m)3)) +∗ ν((m)4) if (m)0 = 17
0 otherwise

where Õd∗(e, a, x) is the course-of-values function �0≤ j<lth(x) p
Od∗(e,a,(x) j)

j (p j the
jth prime), and σ is defined by the primitive recursion

{
σ(y, 0) = 1
σ(y, x + 1) = σ(y, x) +∗ (y)x

.

By the primitive recursion theorem there is a 2-place p.r. function Od with Kleene
index o∗ such that

Od(a, m) = Od∗(o∗, a, m) = [o∗](a, m).

We then have the following lemma.

Lemma 6.1 Suppose d is a proper ω-derivation and e is an integer such that, for
any c ∈ SD(d) with (c)0 = 17 and (c)1 = m, ∀xDm(o∗, e, (c)5, (c)2, (c)3, x) is a
true �0

1 sentence. Then

(a) Od(e, d) ∈ O and |Od(e, d)| = OD(d),

(b) for any b ∈ SD(d), Od(e, b) <0 Od(e, d).
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Proof: (a) We argue by induction on the generating relation of the set of
ω-derivations. We consider here only the case (d)0 = 17. Then A ≡ ∀xB(x) for
some formula B(x) where x is not free in �, and

d = 〈17, m, #�, #∀xB(x), (d)4, b〉
where for each n, [b](n) is a proper ω-derivation of � 
 B(n) such that ([b](n))1 ≤ m.
By the induction hypothesis, for all n,

Od(e, [b], (n)) ∈ O and |Od(e, [b](n))| = OD([b](n)).

Since d is a proper ω-derivation, we have that, for all n,

|Od(e, [b](n))| = OD([b](n)) < OD([b](n + 1)) = |Od(e, [b](n + 1))|.
Given that for all n, Od(e, [b](n)) = [θ(o∗, e, b)](n), this means that θ(o∗, e, b) is a
Kleene index of an increasing function in <0. Hence 3 · 5θ(o∗,e,b) ∈ O, and by Theo-
rem 5.2 and the hypothesis

b∗ = E1(3 · 5θ(o∗,e,b) , d(m, e, o∗, b, #�, #A)) ∈ O and |b∗| = |3 · 5θ(o∗,e,b) | + ω + 1.

But then

|Od(e, d)| = |b∗ +∗ ν((d)4)| = limn{OD([b](n))} + ω + 1 + (d)4 = OD(d)

as required. (b) follows from (a). �

7 We shall now establish the closure of transfinite progressions {PR-(�0
1-IR)|b ∈

O} under the primitive recursive ω-rule, under the hypothesis that the applications of
the ω-rule are restricted solely to proper ω-derivations.

Theorem 7.1 Let d be a proper ω-derivation of � 
 A. Then � 
 A is derivable
in PRA(b) for some b ∈ O.

Proof: We prove the theorem by establishing a somewhat stronger result: there is a
p.r. function ϕ with Kleene index f such that for any d, n ≥ 1, �, A,

Derω(d, n, #�, #A) =⇒ Dern(Od( f, d), ϕ(d), #�, #A).

Toward this, we first define a 2-place p.r. function ϕ+ by course-of-values recursion.
We let ϕ+ satisfy a condition of the following form.

ϕ+(e, x) =




α((x)2, (x)3) if (x)0 = 1
β(x, ϕ+(e, χ(x)4)), Od(e, χ, ((x)4))) if 1 < (x)0 < 17
E3((x)1, e, o∗, (x)5, (x)2, (x)3, ν

∗(x)4)) if (x)0 = 17
0 otherwise

for appropriate p.r. functions α, β, and χ , where o∗ is the Kleene index of the function
Od obtained earlier and E3 is the p.r. function from Lemma 5.3 .16 We then apply the
primitive recursion theorem to obtain a Kleene index f of a p.r. function ϕ such that

ϕ(x) = ϕ+( f, x) and PR-(�0
1-IR) 
 ϕ+( f , x) = [ f ](x),
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and proceed to prove that the function ϕ provides the desired “translation” of any
proper ω-derivation d into a derivation in PRA(b) for an appropriate b ∈ O. The ar-
gument is by induction on the generating relation of the set of ω-derivations. The case
(d)0 = 1 is obvious. For (d)0 �= 1, assume as the induction hypothesis that the claim
holds for all ω-derivations c ∈ SD(d). Since each such c is a proper ω-derivation and
(c)1 ≤ n, this implies, in particular, that for any c ∈ SD(d) such that (c)0 = 17,

∀xDn( f , o∗, (c)5, (c)2, (c)3, x)

is a true �0
1 sentence. Hence, by Lemma 6.1 , we have that

Od( f, c) ∈ O and |Od( f, c)| = OD(c)

for any such c. We proceed by cases depending on (d)0. For 1 < (d)0 < 17, we
consider the case (d)0 = 2 as an illustration of the type of argument that applies
in the other cases as well. If (d)0 = 2 then d = 〈2, (d)1, #�, #(A & B), (d)4, i, j〉,
where (d)1 ≤ n and o ≤ i, j < lth((d)4) and (d)4,i and (d)4, j are ω-derivations of
� 
 A and � 
 B, respectively. Then (d)4,i, (d)4, j ∈ SD(d). From the induction
hypothesis we then have that � 
 A has a PRA(Od( f, (d)4,i))-derivation of order n
with Gödel number ϕ((d)4,i), and � 
 B a PRA(Od( f, (d)4, j))-derivation of order
n with Gödel number ϕ((d)4, j). But Od( f, (d)4,i)) <0 Od( f, d) and Od( f, (d)4, j))

<0 Od( f, d). It follows that � 
 A and � 
 B have PR(Od( f, d))-derivations
of order n, which can be obtained uniformly primitive recursively in ϕ((d(4,i),

Od( f, (d)4,i)) and ϕ((d)4, j), Od( f, (d)4, j)). But then ϕ(d) is the easily obtained,
via β and χ, PR(Od( f, d))-derivation of � 
 A & B. Finally, we consider the case
(d)0 = 17. Then

d = 〈17, n, #�, #∀xB(x), (d)4, (d)5〉
where for each m, [(d)m](m) is an ω-derivation of � 
 B(m) with ([(d)5](m))1 ≤ n.
By the induction hypothesis, for each m, � 
 B(m) has a PRA(Od( f, [(d)5](m)))-
derivation with Gödel number ϕ([(d)5](m)) and of order ≤ n. Recall that ϕ(x) =
[ f ](x). We then have that

∀xDern([o
∗], ( f , [(d)5](x)), [ f ]([(d)5](x)),���,�B(ẋ)�)

can be expressed as a true �0
1 sentence. Therefore, by Theorem 5.2(iii),

PRA(E1(1, d(n, f, o∗, (d)5, (d)2, (d)3))) 
 ∀xDn( f , o∗, (d)5, (d)2, (d)3, x).

Given that d is a proper ω-derivation, we have that

for all m, Od( f, [(d)5](m)) <0 Od( f, [(d)5](m + 1)).

Since also, for all m, Od( f, [(d)5](m)) = [θ(o∗, f, (d)5)](m), this means that
3 · 5θ(o∗, f,(d)5), ∈ O. But then, by Lemma 5.3, � 
 ∀xB(x) is derivable in
PRA(E1(3 · 5θ(o∗, f,(d)5), d(n, f, o∗, (d)5, (d)2, (d)3)) +∗ ν((d)4)) by a derivation
with Gödel number E3(n, f, o∗, (d)5, (d)2, (d)3, ν((d)4)). This is precisely what we
need given the definitions of ϕ(d) and Od( f, d). �
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Next we show that all realizable prenex sentences are ω-derivable. Then (7.1) and
(7.2) will give us another proof of the prenex completeness of the transfinite progres-
sions {PRA(b)|b ∈ O} with respect to strictly primitive recursive realizability.

Theorem 7.2 Let A be a prenex sentence of L ′. Then

∃e∃n e �n A =⇒ ∃d∃nDerω(d, n, 1, #A).

Proof: Without loss of generality we may assume that A ≡ ∀x0∃y0, . . . ,

∀xk∃yk B(x0, y0, . . . , xk, yk) where B(x0, y0, . . . , xk, yk) is a PR-formula. Now A is
PR-true if realizable (by Theorem 3.2 of [3]), so we have that ∀xC(x) is true for some
PR-formula C(x) of L ′, by reasoning as in the proof of 4.9. By PR-completeness of
PR-(�0

1-IR), there is a p.r. function ψ and an integer k, depending on C(x), such that
for any m,

C(m) is true =⇒ Derk(1, ψ(m), 1, #C(m)) =⇒ Derω(π(ψ(m)), k, 1, #C(m)).

Thus the realizability of A implies that 〈17, k, 1, #∀xC(x), 1, b〉 is an ω-derivation
of ∀xC(x), provided [b](m) = π(ψ(m)) for all m. But this ω-derivation need not
be proper. To obtain one that is, we let ⊕ be the p.r. function such that, for any ω-
derivations c, d, c ⊕ d is the ω-derivation that differs from d only in that (c ⊕ d)4 =
(d)4 ∗ 〈c〉. We then define a function π∗ by primitive recursion:{

π∗(0) = π(ψ(0))

π∗(m + 1) = π∗(m) ⊕ π(ψ(m + 1))

Then, it is easily proved by induction on m, that for all m,

Derω(π∗(m), k, 1, #C(m)) and OD(π∗(m)) < OD(π∗(m + 1)).

If [b∗](m) = π∗(ψ(m)) for all m, then 〈17, k, 1, #∀xC(x), 1, b∗〉 is a proper ω-
derivation of ∀xC(x). Since PR-(�0

1-IR) 
 ∀xC(x) → A, we also have that ∃d∃n
Derω(d, n, 1, #(∀xC(x) → A)) without any applications of the ω-rule, and so finally
it follows that there exists a proper ω-derivation of A. �

Corollary 7.3 Let A be a prenex sentence of L ′. Then

∃e∃n e �n A =⇒ ∃b ∈ OPRA(b) 
 A.

8 It is time now to pay the debt incurred in Theorem 7.1 and prove that given any ω-
derivation d of � 
 A, there exists a proper ω-derivation d∗ of � 
 A. The thought is
simple: given a subderivation c of d obtained as a result of an application of the ω-rule
to its immediate subderivations cn = [(c)4](n), we obtain a corresponding subderiva-
tion c∗ of d∗ by applying the ω-rule to derivations c∗

n which are ω-derivations of the
same sequents as cn but whose ordinal height OD(c∗

n) is strictly increasing with n.
The simplest way to achieve this would be to “paste together” cn’s successively so
that c∗

0 = c0, c∗
1 = c0 plus c1, c∗

2 = c∗
1 plus c2, and so on. However, this idea is not

easily implemented primarily because the proof of the theorem requires us to obtain
d∗ uniformly primitive recursively in d.

In a particular case, we have already applied a “pasting together” procedure to
the ω-derivation considered in the proof of 7.2. So we may assert



384 ZLATAN DAMNJANOVIC

Lemma 8.1 Let d be an ω-derivation of � 
 A. For any ω-derivation c there is an
ω-derivation c ⊕ d of � 
 A such that

OD(c) < OD(c ⊕ d)

Moreover, c ⊕ d can be obtained primitive recursively from c and d, and c ⊕ d is
proper if d is.

Theorem 8.2 Let d be an ω-derivation of � 
 A. Then there exists a proper ω-
derivation of � 
 A.

Proof: Let θ be the 2-place variant of the function θ(a, b, e) introduced in §4,
omitting the parameter b. Let θ+(e, d) be a Kleene index of the function λxy.y ⊕
[θ(e, (d)5)](x). We easily obtain an elementary function ξ∗ such that, for each fixed
e, d, ξ∗(e, d) is a Kleene index of the p.r. function ψe,d satisfying the condition

{
ψe,d(0) = 1
ψe,d(x + 1) = ψe,d(x) ⊕ [θ(e, (d)5)](x)

.

The functions ψe,d play a crucial role in pasting together of subderivations cn of d that
appear “in” d as “premises” of an application of the ω-rule. Let ψ∗ be the elementary
function such that for any e, d,

[ψ∗(e, d)](x) = [ξ∗(e, d)](x + 1).

We define a 2-place p.r. function χ+ by the course-of-values recursion:

χ+(e, d) =




d if (d)0 = 1
β(χ+(e, (d)4)) if 1 < (d)0 < 17
〈17, (d)1, (d)2, (d)3, (d)4, ψ

∗(e, d)〉 if (d)0 = 17
0 otherwise

.

for an appropriate p.r. function β. We apply the primitive recursion theorem to obtain
a Kleene index h of a p.r. function χ such that for any d,

χ(d) = χ+(h, d) = [h](d),

and proceed to show that the function χ determines the desired map so that, for any
d, �, A,

Derω(d, n, #�, #A) =⇒ Derω(χ(d), n, #�, #A) and χ(d) is proper.

The argument is by induction on the generating relation of the set of ω-derivations
(or, alternatively, by transfinite induction on OD(d)). The claim holds trivially for
(d)0 = 1. For 1 < (d)0 < 17 we consider the case (d)0 = 2 as an example. Then
d = 〈2, n, #�, #(A & B), (d)4, i, j〉 where 0 ≤ i, j < lth((d)4) and the immediate
subderivations (d)4,i and (d)4, j of d are ω-derivations of � 
 A and � 
 B, re-
spectively. Then, by the induction hypothesis, χ((d)4,i) and χ((d)4, j) are proper ω-
derivations of the same sequents, whence by the choice of the function β, we have
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that χ(d) is a proper ω-derivation of � 
 A & B. The sole interesting case is when
(d)0 = 17. Then

d = 〈17, n, #�, #∀xB(x), (d)4, (d)5〉
where, for each m, [(d)5](m) is an ω-derivation of � 
 B(m) and ([(d)5](m))1 ≤
n. By the induction hypothesis, for each m χ([(d)5](m)) is a proper ω-derivation of
� 
 B(m) and (χ([(d)5](m)))1 ≤ n. Note that χ([(d)5(m)) = [θ(h, (d)5](m)). We
claim that for each m

ψh,d(m + 1) is a proper ω-derivation of � 
 B(m), and (12)

OD(ψh,d(m)) < OD(ψh,d(m + 1)) (13)

It is easily seen that (ψh,d(m + 1))1 ≤ n for all m. Since for all m

ψh,d(m + 1) = [ξ∗(h, d)](m + 1) = [ψ∗(h, d)](m),

(12) and (13) will suffice for our purposes because then

〈17, n, #�, #∀xB(x), (d)4, ψ
∗(h, d)〉,

which = χ(d), will be a proper ω-derivation of � 
 ∀xB(x), as required. Now (13)
follows immediately from 8.1 and the definition of ψh,d. So to complete the proof of
the theorem it remains to prove (12). We argue by induction on m. For m = 0, we
have

ψh,d(1) = ψh,d(0) ⊕ [θ(h, (d)5)](0) = [θ(h, (d)5)](0) = χ[(d)5](0).

Then the case m = 0 follows from the induction hypothesis. For the induction step,
assume that ψh,d(m + 1) is a proper ω-derivation of � 
 B(m). Then ψh,d(m + 2) =
ψh,d(m + 1)⊕ [θ(h, (d)5)](m + 1), whence, by 8.1 and the induction hypothesis, we
have that ψh,d(m + 2) is a proper ω-derivation of � 
 B(m + 1). �
We now derive our main result, characterizing the strictly primitive recursively real-
izable prenex sentences of L ′.

Theorem 8.3 For any prenex sentence A of L ′,

∃e∃m e �m A ⇐⇒ A is PR-true ⇐⇒ ∃d ∈ OPRA(d) 
 A⇐⇒ ∃z∃n Derω(z, 1, #A).

NOTES

1. In particular, we assume that unlimited primitive recursion is accommodated directly
without regard to the complexity considerations related to the Grzegorczyk hierarchy.
(A similar indexing was originally described in [9], and so we call this one the Kleene
indexing.)

2. We are implicitly referring to a recursive enumeration of n-place p.r. functions defined
relative to the Kleene indexing as described in [9], p. 74, where we have the ϕ(�xn) =
[e](�xn) if e is a Kleene index of ϕ.
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3. For definiteness we describe this in some detail. (Cf. also [6]). We first define an
r.e. “pre-ordering” relation <∗ satisfying the condition

x <∗ y ⇐⇒ (x = 1 & y �= 1) ∨ ∃z < y(y = 2z & z �= 0 & (x <∗ z ∨ x = z))∨

∃n∃z < y(y = 3 · 5z & (x <∗ [z](n) ∨ x = [z](n))).

We say that a function f is increasing in <∗ if for all n, f (n) <∗ f (n + 1). Let O be the
smallest set X of integers satisfying the conditions: (1) 1 ∈ X; (2) b ∈ X =⇒ 2b ∈ X; and
(3) if [d](x) = f (x) where f is increasing in <∗ and f (n) ∈ X for all n, then 3 · 5d ∈ X.
We set x <0 y ⇐⇒: x, y ∈ O and x <∗ y. For each b ∈ O there is a 1-1 order-preserving
map from an initial segment of the ordinals onto the ordered set Ob = {x|x ≤0 b}, in
which the successor ordinals are mapped to integers of the form 2c and limit ordinals to
integers of the form 3 · 5d . In fact, in general, if b ∈ O and a <∗ b, then a ∈ O. The theory
of such ordinal notations is similar to that of Kleene’s recursively based O . In [9] it is
shown that the class of ordinals represented in this way remains the same if condition
3 is weakened to allow d to be an index of a (total) recursive function increasing in (an
appropriately defined) <∗.

4. These largely stem from the fact that we are unable to directly refer to ordinals in a purely
arithmetical language, but must avail ourselves of the notations for ordinals such as those
described above. See, e.g., [5], §3.

5. Here Prf(x1, x2, x3) is a formula expressing a p.r. predicate that describes the proof re-
lation of a formal system at the stage α whenever the variable x1 is replaced by the nu-
meral for an ordinal notation for α. The notation �ϕ(ẋ)� denotes the Gödel number of
the formula that results from substituting the numeral for a given integer x for the free
occurrences of the variable x1 in ϕ. (Thus, the variable x occurs free in �ϕ(ẋ)�). The
notation extends naturally to cover simultaneous substitution of several variables.

6. It is convenient to include among the primitives bounded quantifiers ∀x ≤ t,∃x ≤ t,
where t is a term not containing the variable x. We call the resulting language L ′.
PR-(�0

1-IR), called PRA in [3], is formulated in the language L(PRA) described in §3
of [3]).

7. We assume that a Gödel numbering # of terms of L ′ has been set up in such a way that
a Kleene index t of the function λ�yk.t(�yk) expressed by a term t(�xk) is obtainable from
#t(�xk) by an elementary function. Then a Gödel numbering # of PR-derivations can be
set up so that for any PR-derivation D, an integer r such that λ�yk.t(�yk) ∈ Gr for any term
t operative in D can be obtained by an elementary function from #D.

8. When � is a singleton 〈A〉, we write ‘#A’ instead of the code for 〈#A〉.

9. The definition of realizability and the proof are easily amended to reflect the fact that
L ′ includes the bounded quantifiers ∀x ≤ t,∃x ≤ t among its primitives. We do that in
detail, in a different context, in [2]. Our notation differs slightly from that used in [3]:
we write ‘t �n A’ instead of ‘t �n �A�’.

10. In the course of defining 
 we make use of the elementary function ξ, where ξ(n + 1)

is an n + 1-index of the enumeration en+1 of Gn. The function ξ is obtained from the
proofs—given in detail in [1]—of the facts stated in Theorems 1.1(d) and 2.1 of [3].
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11. Here ∼A is the L ′ formula that results when all occurrences of ‘∀x ≤ t’, ‘∃x ≤ t’, ‘∨’,
and ‘&’ in A are replaced by occurrences of ‘∃x ≤ t’, ‘∀x ≤ t’, ‘&’, and ‘∨’, respectively,
and every atomic subformula of A of the form ‘t(�xk) = 0’ where t(�xk) is an L ′ term—all
atomic subformulas may be assumed to be of this form—is replaced by ‘s̄ḡ(t(�xk)) = 0’.
(We shall subsequently extend this notation to all prenex formulas of L ′ by treating the
unbounded quantifiers in the same way.) It is easily seen that s̄ḡ(x) = 0 → (x = 0 → ⊥)

is derivable in PR-(�0
1-IR). That PR-(�0

1-IR)
 ∼ϕ → ¬ϕ holds for all prenex formulas
ϕ is proved by induction on the complexity of prenex formulas. (Classically, ∼A and
¬A are equivalent.)

12. Here k1 depends on the order of the PR-derivation of (5) which may be obtained primi-
tive recursively from e∗, which in turn, depends primitive recursively on #A(x). On the
other hand, k2 depends primitive recursively on #A(x).

13. Again, a form of this result in which primitive recursively based O is replaced by
Kleene’s recursively based O and the starting point of the transfinite progression is the
classical PA instead of our intuitionistic PR-(�0

1-IR)was proved in [5], pp. 287–89.

14. Here �,� denote finite sequences of formulas, and A, B, C formulas of L(PRA).
Throughout we are assuming that lth(d) > 0, and that i, j,< lth(d) where they are men-
tioned.

15. In the case (m)0 = 17 it may seem more natural to let OD(m) = limn{OD([(m)5](n))}.
The extra elements in our definition are needed to give a simpler proof of Theorem 7.1
and in the proof of Theorem 8.2.

16. For the sake of clarity and conciseness we do not explicitly define α, β, χ here. The def-
initions can be easily reconstructed from the sketch of the proof given below: e.g., β

expresses a definition by cases in which the thirteen different types of ω-derivations d
such that 1 < (d)0 < 17 are distinguished.
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