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Strictly Primitive Recursive Realizability, II:
Completeness with Respect to

Iterated Reflection and a
Primitive Recursive w-Rule

ZLATAN DAMNJANOVIC

Abstract  The notion of strictly primitive recursive realizability is further
investigated, and the realizable prenex sentences, which coincide with prim-
itive recursive truths of classical arithmetic, are characterized as precisely
those provable in transfinite progressions {PRA(b)|b € O} over a fragment
PR-(29-IR) of intuitionistic arithmetic. The progressions are based on uniform
reflection principles of bounded complexity iterated along initial segments of a
primitive recursively formulated system O of notations for constructive ordi-
nals. A semiformal system closed under a primitive recursively restricted w-
rule is described and proved equivalent to the transfinite progressions with re-
spect to the prenex sentences.

1 Introduction  In Damnjanovic [[3] we introduced the notion of strictly primitive
recursive realizability and proved with respect to it the soundness of a Gentzen-style
formulation of the fragment PR-(E(l)-I R) of intuitionistic arithmetic with the induc-
tion rule restricted to Z‘j formulas and with terms and defining axioms for all prim-
itive recursive (p.r.) functions. Like Kleene's recursive realizability, this notion is
nonclassical in that there are classically true sentences that are neither realizable nor,
in an appropriate sense, falsifiable, and there are realizable sentences that are classi-
cally false. For sentences in prenex normal form, however, our primitive recursive
realizability coincides with primitive recursive truth in the sense of Kleene [ig], and
here we investigate this classical part of the realizability notion, seeking to charac-
terize it independently in natural ways. In addition, we hope to develop methods that
would facilitate the task of finding natural characterizations of the nonclassical part.

The methodology employed throughout the paper owes much to the early work
of Feferman, who showed in [[5] that transfinite progressions over the classical Peano
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Arithmetic (PA) based on uniform reflection principlesiterated along initial segments
of Kleene'srecursively formulated system O of ordinal notations give acompl eterep-
resentation of first-order arithmetical truth. (In 81 we describe in detail what distin-
guishes our approach from Feferman’s.) A crucia element in the argument of [[5] is
aproof that the progressions are closed under Shoenfield’s recursively restricted w-
rule, originally introduced in [[13]. (The uniform reflection principles around which
the transfinite progressions are built may be seen as attempts at formalization of the
w-rule.) Theresulting characterization of arithmetical truth as“the closure of PA un-
der iterated reflection,” or aternatively and equivalently, as “the closure of PA under
the recursive w-rule,” may be interpreted as providing a quasi-constructive justifica-
tion of arithmetical truth as determinable from below by constructive processes. Our
main result (Theorem [B.3) shows that these characterizations are analogously pre-
served when PA is replaced by the intuitionistic PR—(E‘l)—I R), the transfinite progres-
sions are appropriately defined asin 81, the w-ruleis restricted primitive recursively
in asuitable fashion, and arithmetical truth is replaced by strictly primitive recursive
realizability. Thisanalogy strongly suggests that, from abroadly constructivist point
of view, the concept of realizability explored here, which amounts to primitive re-
cursive truth for prenex sentences, constitutes a natural notion. A parallel analogy
relating transfinite progressions based on the intuitionistic version of PA—the Heyt-
ing Arithmetic (HA)—supplemented with termsfor all p.r. functions and appropriate
defining axioms, and K |eene’srecursive realizability, was established in Dragalin [4].
Inview of the essential rolethat notationsfor constructive ordinals play in these char-
acterizations, and considering that in general the problem of deciding whether or not a
given integer represents such anotation is at least as difficult asthat of deciding truth
or realizability, it is doubtful that a reduction to more elementary concepts has been
achievedintheprocess. Nonetheless, thefact that these rel ationships hold may berel-
evant for the philosophical debate about the extent of various constructivist concep-
tions of arithmetic. We do not discuss those issues here. A discussion of the bearing
of restricted w-rules on the characterization of finitism can befound in Ignjatovic [|ﬂ

Transfinite progressions based on iterated reflection, and primitive recursively
restricted w-rules, have been previoudly studied for different purposes in L6pez-
Escobar [[10], and Schmerl [11] and [[12]. In [0], such an w-rule is added to true
sentences of theform t; = t, and t; # t, for any closed termsty, to, over intuitionis-
tic logic, and the resulting system is proved equivalent to HA. In [11] afine structure
generated by reflection principles formulated in terms of partia truth definitions for
arithmetic and iterated over the classical Primitive Recursive Arithmetic (PRA) along
afixedtotal p.r. well-ordering of integersisstudied and, among other results, thewell-
known theorem of Kreisel and Levy to the effect that PA = “PRA+ uniform reflec-
tion schema for PRA” is derived. In [[IZ] primitive recursively restricted w-rules are
used to study similarly defined transfinite progressions over PA. Our restricted w-rule
differs from those employed by these authors.

In 81 we define atransfinite progression of Gentzen-style proof systems PRA (b)
obtained by extending PR-(E(l’-I R) by suitably formulated reflection principles iter-
ated along initial segments of a primitive recursively based system O of notations for
constructive ordinals. In 82 we prove the soundness of PRA (b) for b € O with re-
spect to strictly primitive recursive redizability (Theorem[33). As a consequence,
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we derive, in Theorem[3.4] that the provably recursive functions of PRA (b) for any
b € O are the same as those of PR—(Z?—I R), namely, the p.r. functions. In 83 we es-
tablish, along with some other facts, the completeness of the transfinite progressions
{PRA (b)|b € O} with respect to prenex realizable sentences (Theorem[4.10). We de-
velop these techniques further in 84 and proceed to introduce in 85 asemiformal sys-
tem closed under a primitive recursively restricted w-rule. In 86 we prove, in Theo-
rem[Z1] that the transfinite progressions {PRA (b)|b € O} are closed under the primi-
tive recursive w-rule under a certain hypothesis, and show that, on the other hand, all
prenex realizable sentences are derivable by means of the w-rule (Theorem @ In
the process we obtain another proof of the prenex completeness of {PRA (b)|b € O}
with respect to realizability, under the af orementioned hypothesis. Thishypothesisis
proved in 88]in Theorem[8.2] and we finally obtain in Theorem[8.3lour main result,
a characterization of the realizable prenex sentences.

2 For present purposes it will be convenient to use a slightly different indexing of
p.r. functions than the one we employed in [B].1 By Kleene's Normal Form Theorem
for recursive functions (see [B], §58), for each n thereisap.r. predicate T* ; and a
p.r. function U such that, for any n-place p.r. function ¢,

pXn) =y <— (T} 1(e%,2& U2 =Yy)
= V(T 1(6%,2& U2 =Yy
— (%) =U(uyTy 1(& %, ¥))

holds for some integer e, a Kleene index of ¢. Thisallows usto unofficially expand
the language L(PRA) asfollows: for any formula¢(X, y), weread ‘o(X, [€](y))’ as
an abbreviation for ‘323u(T; (e, y,2) & U(2) = u & ¢(X, u))'.2 The Kleene index-
ing will be an essential element of our definition of transfinite progressions. Follow-
ing Kleene [[9], we use it to introduce a system O of notations for ordinals.®

The principal tool in many arguments throughout the paper isthe following ana-
logue of Kleene's Recursion Theorem formulated for p.r. functions.

Theorem 2.1 (Primitive Recursion Theorem)  For any p.r. function ¢(y, Xn) there
isa p.r. function ¢* (Xn) with Kleene index b such that

Qﬂ(b’ )_{n) = (P*()_{n)-

The proof (see[[9]) shows how to obtain b primitive recursively from agiven Kleene
index of ¢.

It was Turing who first proposed to counter incompl eteness by extending agiven
intuitively correct formal system T of arithmetic with the sentence Con(T) that ex-
presses its consistency and imagining that the process continuesindefinitely (see Tur-
ing [[15]). It is easy to see that the process can be continued into the transfinite by
showing that the finite stages can be described in a uniform primitive recursive way.
However, the attempt to turn thisintuitive ideainto aformally precise definition en-
countersdifficulties.* Turing was aware of these complications but did not rigorously
work out the details of the technique required for such a construction. Thiswas done
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by Feferman who showed how Godel’s technique for obtaining self-referential sen-
tences can be applied to the task. We employ this general method and define the par-
ticular progressions we are interested in.

In [5] Feferman focused on the progressions based on the uniform reflection
principlein which at the successor stages o + 1 one adds all instances of the schema

VxayPrf(b, y, "o(X) ) — YXp(X)

for |b] = «, and the limit stages are simply defined as the unions of the preceding
stages.® Our procedure differs from Feferman’s in several respects. One superficial
difference is that we primarily work with Gentzen-style systems—such as the sys-
tem PR-(Z?-IR) studied in [B]—and so instead of the uniformized proof-predicate
Prf(xq, X0, X3), we refer to the relation that holds between an ordinal notation m for
a, acode sfor asequence (9)g, . . ., (S)k of Godel numbers of sequents and the Godel
number of a sequent A ¢ just in case s codes a derivation in the corresponding
system with A I ¢ as the endsequent. Secondly, the systems we consider, unlike
Feferman’s, are based on intuitionistic logic. Some other important differences are
motivated by our desire to formulate a system of transfinite progressions that can be
proved sound and complete with respect to strictly primitive recursive realizability.
Weuseonly indicesof p.r. functionsfor ordinal notations, whereas Fefermanrelieson
an indexing of all recursive functions. Furthermore, we do not distinguish between
the successor and the limit stages: at each stage b, b € O, we add (roughly) all in-
stances of the schema

vxay3z(Pri(z y, "e(X) ) & z <* b) = ¥xp(X).

Thiswill enable usto effectively preserve primitive recursive content at limit stages.
Finally, and perhaps most importantly, we formulate the reflection principles requir-
ing a stronger condition to be satisfied for Vxg(x) to be derivable at stage b than
merely that proofs of all instances ¢(m) exist at stages < b and that they be enu-
merable by afunction provably recursive at b: it is necessary that the proofs—in our
case derivations—of the instances be all of bounded complexity in a specific senseto
be explained shortly.

Let D be a PR-derivation (see [[3], §4) with endsequent I' - A. Call aterm t
operative in a derivation D if t occurs as an instantiating term in a sequent of the
form ' - B(t) that results by an application of (VE) in D or serves as the premise
of an application of (1) in D. For each subderivation D* of D we define order of
D* asfollows. For any n > 0, D* isof order nif it involves no applications of any of
therules (IND), (—E), (VE), or (31). Assuming subderivations of order n have been
defined, we say that D* is of order n+ 1 provided:

1. D; and D, areof order < nif D* is obtained from D, and D, by (IND) or by
(—BE);

2. Dyisof order < nif D* isobtained by (VE) from D;; and

3. for any term t operativein D*, A Yi.t(Yk) € Gp.

(The Grzegorczyk classes G, weredefined in [[3]). For all other rules of PR-(Z(l)-I R),
D* isof order nif all theimmediate subderivation(s) of D* areof order < n. Wewrite
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D: ', Aif DisaPR-derivation of order n,and D : - Aif I"isempty. Notethat if
D isof order n, then D isaso of order mfor any m > n; but not every PR-derivation
isof arbitrarily low order.

We now define a transfinite progression of Gentzen-style proof systems PR(b)
based on an appropriately formulated uniform reflection principle. The techniqueis
well known from [B], §3, so we omit the details. The first step is to formalize deriv-
ability in the sequent system PR-(29-IR).® We let #E be the Godel number of an
expression ' E’, and #A the Godel number of afinite sequence A of expressions. Let
‘X <*y beafixed 28 formulathat defines the preordering <*. Using Godel's Self-
Reference Lemma we obtain a formula Der (X, X2, X3, X4, X5) €Xpressing ap.r. rela
tion Der with the following property: Der(b, #D, n, #I", #A) holds if and only if D
isaPR(b)-derivation of order n with endsequent I" - A, that is, afinite sequence of
sequents such that each sequent in the sequenceis either an axiom of PR-(E(l’-I R), or
a sequent of the form

(+)  T.¥xay(Der, (Yo (V1. "ARK) . Te(X)7) & (Y)o <* b). A F Vxp(x)

forsomen > 0, ", A and g—which wewrite REF, (b, ", A, ¢)—or is derived from
some preceding member(s) of the sequence by a single application of one of the
rules of PR—(E?—IR), and I" - A is the endsequent of D. (We assume that in the
process the definition of order of a derivation is extended to PR(b)-derivations by
dtipulating in addition that a derivation that consists of a reflection axiom of the
form REF,(b, T, A, ¢) for someT, A, ¢, is of order m for any m > n.” Also, for
each n, we let Der, (b, y, u, v) = Der(b, y, n, u, v)). We cal the resulting system—
which amounts to PR-(E?-I R) plusthereflection principles REF, (b, T", A, ¢) for al
n>0,T, A, and p—PR(b).2 Sequents of the form REF,(b, T, A, ¢) are meant to
express the reflection principles of bounded complexity central to our definition of
transfinite progressions.

Itiseasily shownthat, if a <* bprovablyin PR-(Efl’-I R), then any sequent deriv-
ablein PR(a) has a PR(b)-derivation; moreover, it can be proved that, for any a, b,
and each k,

PR-(2{-IR) - Der (@, x, u, v) & Der (1, y,"x <*a’,"x <* b7)
— 3zDer,(b, z, u,v)

for all but finitely many m > k. Finally, using aform of Primitive Recursion Theorem
(cf. Lemma 2.3 of Feferman [[6]), we may obtain a p.r. function x such that, for any
a,b

a<gb= Deri(1, x(a,b),"™x <*a’,"x <* b").

3 Lettandnbeintegers, and A, B, C, sentences. Weinductively definetherelation
‘g A’

tlIkh A <. t=0and Aistrue, if Aisatomic;
tikFh (B& C) «—=: (t)glkn Band (t)q Ik, C;
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thFh (BVvC) <=: (t)p=0and (t)1 ks B, or (t)g # 0and (1), IF, C;
tlkh (B—>C) <=: In(n,t)andVj>nlin(j, e1(t, (j)) and
Vj>nVb[blrj B= ejii(ej+1(t, (), (b)) IFj C;
tlF, IXB(X) <=: forsomem, (t)1 Ik, B(m) and (t)g = m;
tiFn VXB(X) <= In(n,t) and Vm[en 1(t, (M) IFy B(M)].

Here, In(n, t) holdsif t isan n-index and so aKleeneindex of afunction in the Grze-
gorczyk class Gp, and thefunctionsej .1 € Gj1 enumerate the classes G; (see 82 of
[3] for details). Ais (strictly primitive recursively) realizableif 3tant -, A. If [isa
sequence of sentences, we write Ty, I-n T if tj Iy Aj foreach A inT,1<i<m,

In preparation for the proof of soundness with respect to strictly primitive re-
cursiverealizability of transfinite progressions defined in 81, we state, in asharpened
form, the principal result of [[3], the Soundness Theorem for PR—(E‘l)—IR). Detailed
examination of the proof of Theorem 5.1 in [[2] reveals the following.®

Theorem 3.1 Let D be a PR-derivation and suppose that D : I" -, A, where
[th(I") = mand all variablesfreeinT" or A are among Xx. Then

vaaAn < g+ p+13f € GpVj > max(q, n)VinVi[ tm I-q (1)
= f(tm, i) Ik} A)].

That is, every derivation in PR-(E?-IR) is (positively) g-fulfillable for al q in the
sense of [[3], §5, and order of the derivation allows us to place a bound on the com-
plexity of an appropriate p.r. function f. Further analysis shows that witnesses to the
g-fulfillability of D—an integer n and an n-index of afunction f € G,—may be ob-
tained from #D and g uniformly by an elementary and an almost el ementary function,
respectively.

Theorem 3.2 Thereisan elementary function ¥ and a function ® € G such that,
if DisaPR-derivationand D : T -, A (where " and A are asin Theorem[3.1J, then
vqU(#D,q) < g+ p+land

vavj > max(q, W(#D, q)) + 1,
VEm¥ 1] tm I-q T'(B) = €w@p,q)+1(P#D, ), (I, i) IFj A(f).*°
We now proceed to prove the soundness of PR(b) for al b € O.

Theorem 3.3 Thereisan elementary function * and a function ®* € Gy such that
forany b, if D : T' -, AisaPR(b)-derivation and b € O (whereI" and A areasin
Theorem[3.1), then Vqu* (b, #D, q) < q+ p+ 1 and

vavj > q+ p+1,
VEnVik[ tm IFq T () = €y (b.#D.q+1(P* (0, #D, q), (Tm, fi)) IFj A[T,)]-

Proof: The argument isatricky, self-referential one and so we go into some detail.
We modify and extend the definitions of the functions ¥ and & from TheoremB2lto
obtain definitions of ¥* and ®*. We define W* (b, #D, q) analogously to W(#D, q) in
all cases except when D consists of areflection axiom of theform REF, (b, T, A, ¢)
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for somen, T, A, ¢, in which case we set ¥*(b, #D, q) =: g+ n. Asfor ®*, we
first define a function ®* (a, b, #D, q) by course-of-values recursion from elemen-
tary functions on analogy to @ (#D, q) in all cases except when D consists of are-
flection axiom of the form REF, (b, T, A, ¢); then we let

®"(a, b, #D, q) = AXmzljyk.8(a, g, n, Z, (u;j)),

where m = [th(I"), j = Ith(A), and dl variables free in ", A, or ¢ are among X
(see[l3], 82 for the A Xy, notation); B istheelementary function suchthat, for any ¢, if
isak-index of somep.r. function Axyv.1 (X, Y, v), then g(c, g, n, z, u) isamax(k, g+
n+ 1)-index of the function

AX.€gn+1 (Y ((Eg+1(Z (X)))0,0, (Eg4+1(Z (X)))0,1, A), W)

for any choice of g, n, z, and u. Then ®* € Gy. By the primitive recursion the-
orem, there is an integer a* that is a O-index of the function ®* € Gy such that
®*(b,#D, q) = ®*(a*, b,#D, q). Then, in particular, for each g, n, z, and Uj, we
havethat g(a*, g, n, z, (tj)) isaq+ n+ 1-index of the function

AX.€q4n+1(P* ((€g+1(Z, (X)))0,0, (Eg+1(Z, (X)))o,1, D), (Tj)).

We now argue, by transfinite induction on |b| for b € O, that the functions ¥* and &*
have the desired properties. For |b| = 0O, the proof is essentially the same as that of
Theorem[3.2] (We dlightly modify the argument to obtain the present bound on j).
Assume, as the induction hypothesis, that the theorem holds for all d < b for some
fixed b, to show the same for b. We proceed by induction on the length of PR(b)-
derivations. The sole new element is the case when D consists of areflection axiom
of theform REF, (b, T, A, ¢). (Hence, D isaPR(b) derivation of order n). Then, for
al g, v*(b, #D, ) = q + n by definition, so the first part of the theorem holds. Fix
g and assume that Ty, I-q T'(f3,),

tIq Yx3y(Der, (Yo, ()1, "AM) ") ([0 & (Y)o <* b)
and Uj I-q A(fy). ThenIn(q, t), and for eachii,
q+1(t, (1)) IFq Iy(Der, (Yo, ()1, "A M), "e) (R) ") & (Y)o <* D).
For eachi, letrj =: eq41(t, (i)). Then
(ri)1 IFq (D, ((1)g.05 (Ii)g,1. " A ™, ") (M) ™) & (1) <™ D).

The latter is expressible as a ©2 sentence, henceistrueif realizable. Then for eachi,
(ri)o,.1 isthe Gddel number of aderivation D : A(fy) Fn ¢(i)(f,) in PR(b;), where
(b)i = (ri)o,0 and by <* b. But then for each i, bj € O and |bj| < |b|. From thein-
duction hypothesis and the assumption that Gj I-q A (R, ), it follows that, for eachi,

Ifi e G‘I’*(bi.#Dim G Ggrny1Vpzq+n+1

fi (gj) IFp @(i) (f,) where fi hasindex ®* (b, #D;, q).
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In particular, we have that, for each i,

€q+n+1 (P (01, #Di, ), (Uj)) Ihgeni1 @D ([By),

that is, for eachii,

g1 (P ((Egr1 (L, (1)))g s (Bgra(t, (1)))g 1> D, (U) IFginta (D) (@y)-

But this means that, for eachii,

eq+n+2<18(a*s qa n, ta (L_j]>)7 <I>) “_CH-TH-]. w(l)(ﬁk)s
and therefore,
IB(a*v q’ n’ t’ (l_j]>) H’q+n+1 VXQD(X) (ﬁk)
By the definition of ®*, and given that 8 € Gy, we have that

e1(®* (b, #D, q), (tm, t, Tj, fik)) IFqni1 YXP(X) ().

But then, foral j > q+n+1,

€0 1. (P (0, #D, ), (T, t. Ty, i) I} VX (X) ().

asrequired. O
Asacorollary to the soundness theorem, we have the following.

Theorem 3.4 Supposeb € O, and D isa PR(b)-derivation of ' = A, where T is
empty and A isa sentence of £'. Then

1. for someaand m, alFny A;
2. if Aisof theformVx3yB(x, y), where the formula B(X, y) has x, y, as sole
free variables, then there is a p.r. function such that for all m, B(m, f(m))

istrue;

3. if Ais a prenex formula of the form Vx;3yy, ..., YXa3ynB(Xn, ¥n) With
no two consecutive quantifiers of the same kind and B(Xn, yn) is a
p.r. predicate, then there are p.r. functions fq, ..., f, such that for all
My, B(M,, jl(ml), ---,jn@n))'

This strengthens Theorems [7.1]and [7.2]Jof [B]. We may conclude that the provably
recursive and the definable functions of PR(b) for al b € O are the same as those of
PR-(E?-I R)—which = PR(b) for b = 1—namely, precisely thep.r. functions (cf. [3],
§6).

4 In preparation for the proof of completeness of the transfinite progressions with
respect to strictly primitive recursive realizability, we state some well-known meta-
mathematical factsin aform suitable for our purposes.

Lemma4.l Let f be an n-ary primitive function symbol of L’ representing a
p.r. function f. Then thereisa p.r. function ¢ depending on f, such that

(i) for someKk,

Vr_ﬁnvm[ f (r_hn) =M= Derk(l’ w(mn)a 13 ri(mn) = m_‘)]v
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and furthermore,
(if) for somek, PR-(S%-IR) k- f (%) = y — Derg(L, (%), 1,7 f (%) = y7).

Part (ii) can be established by formalizing the proof of (i), whichis standard (cf. e.g.,
[14], pp. 23-25); 1 codes the empty sequence. Call the formulas of £’ with no un-
bounded quantifiers and no occurrences of — or —, PR-formulas. From[4.1{ii) it is
possibleto prove aform of demonstrable PR-completenessfor PR-(29-IR) (see, e.g.,
Chapter 0 of [[14]).

Lemma4.2 Let ¢(X,) beaPR-formula. Then, for somek,
PR-(Z2-IR) k- (%) — 3zDer (1,2, 1. "p(%n) 7).

Thisresult extendsto Ecl’ formulasof L/, that is, those of theform Ix¢(X) where ¢(x)
isaPR-formula.

Recall from [3], 85, that the derived rule (Cut) of PR-(Z9-IR) does not result
in an increase of the order of PR-derivations. This fact can be formally proved in
PR-(Z$-IR). (We omit the proof.)

Lemma4.3 For eachm,
PR-(29-IR) I Der,,(a, X, 1, u) & Der,,(a, y, (u) * (v), w) — 3zDer,(a, z, v, w).

Lemma4.4 For eachband m > 0, thereisa sentence Fq, (b) of £’ such that

(i) if PR(b) is consistent, then Fy(b) has no PR(b)-derivation of order j < m,
and

(i) for all but finitely many m, thereisa PR(2°)-derivation of Fr(b) derivation of
order m.

Proof: Recall from 81 the PR-formula Der(xy, Xz, X3, X4, X5) and for each fixed b
and m consider the formula

vz ~Der,(b,z 1, x1)

with x; asits sole free variable.!! By Godel’s Self-Reference Lemmathereis a sen-
tence Fry(b) with Godel number fr,(b) such that the sequents

Vz N%m(l_l 2,1, fm(b)) - Fn(b)

and

are both derivablein PR-(Z?-I R), as are the sequents
Fm(D) |_ N%m(g’ g7 1-7 fm(b))

for each d. All these PR-derivations are of order k for some fixed k. (Same k works
for all mand d). Let g°(d) = #(~Der, (b, d, 1, fm(b))). Then (i) follows by ET{i)
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and the fact that PR-(29-IR) C PR(b). On the other hand, note that, by[4.2] for each
m,

~Der,(b,x, 1, f (b)) — 3zDer, (b, z, 1,"~Dery,, (b, %, 1, fm(0)) ) (1)

is derivable in PR—(E(l)—I R) for some n independent of the choice of m. Moreover,
thereisap.r. function h such that, for each m,

Derp(b, x, 1, fm(0)) & Der (b, Y, fm(b), gih(x) —
D (i (B, h(X. ¥), 1,G(X))
isalso derivablein PR-(X9-IR). But then
Derp,(b, %, 1, fm(b)) — 3zZDe€rpm i (B, 2 L, "~Derp (b, X, 1, fm(b)) ™) (2
is derivable in PR-(29-IR) for each m. Since
PR-(X9-IR) - Der,,, (X, Z U, v) — Dery (X, z, U, v)

whenever m; < mp, we have that the variants of (1) and (2) with n and max(m, k)
replaced by max(max(m, k), n) are both derivablein PR-(Z(l’-I R), for each m. Now,
for each m,

PR-(29-IR) F Der(b, X, 1, fm(b))v ~Der(b, X, 1, fm(b))
since Der, (b, X, 1, fm(b)) isaPR-formula. But then
PR-(Z9-IR) F 37D€l, o mexm .y (0. 2 1, "~Dery (b, %, 1, fm(0))7),
and finally, for each m,

EIy(%max(max(m,k),n)((y)O’ (V)1 1, ’_ND_erm(Q7 X, 1, fm(b))—l) & (Yo <* 2b

has a PR-derivation of order q. (Again, same g works for all m). For A empty and
¢m(z) = ~Der (b, z, 1, fm(b)), we thus have that, for any I, I' - Yzpm(z) may be
derived in PR-(2%-1R) + REFmaxmaxm.ky.m (2%, T, A, ¢m, (2)) by aderivation of or-
der max (g, max(max(m, k), n)). So PR(2°) - Vz ~Der,(b, z, 1, fn(b)) and it fol-
lows that Fn(b) is derivablein PR(2P) by aderivation of the same order. Hence, for
m > max(k, n, q), thereis a PR(2P)-derivation of F(b) of order m. O

Next, we modify an argument of Turing in [I5] that will be crucial in establishing the
completeness of the hierarchy {PRA (a)|a € O} for true H(l’ statements. Let O(w) =:
{d € O| |d| = w}, and et v(X) bethe superexponential function v(0) =: Land v(m+
1) =: 2™ _(Then for each m, v(m) € O and [v(M)| = m).

Lemma4.5 (Turing'sLemma) There is a p.r. function E such that for any
PR-formula A(x) of £/,

VXA(X) istrue < E#A) € O(w).
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Proof: Let R(x) be the p.r. predicate expressed by A(x). Define ap.r. function ¢

such that
vy if Yy < xR(y)
vex) = { 235 if 3y < x=R(y)

Applying the primitive recursion theorem we may obtain primitive recursively a
Kleeneindex €* of the p.r. function ¢* such that

PR-(Z9-IR) F ¢* (X) = ¢(€", X).

Letd = 3-5%. Assume R(m) for al m. Then[e*](m) = v(m) foreachm, andd € O
with |d| = w. If, on the other hand, for some m—R(m), let m* be the least such m.
Then

foral k < m*, [e°](K) = v(k), and

for al k > m, [e] (k) = 29.
But then d ¢ O because ¢* isnot increasing in <*. The proof is complete if we let
E#A) = 3-5°. O

Remark 4.6  Note that the proof actually establishes that
VXA(X) istrue <= E#A) € O"(w)

where O* (w) =: {3- 5¢|eisaKleeneindex of Ax.v(X)}.

We now proceed to establish completeness for true 1‘[‘1’ sentences. The essential idea
of the proof is due to Turing, but the considerations about order of derivations and
the fact that the systems PR(b) are based on intuitionistic logic are crucial for our
puUrposes.

Theorem 4.7 Let A(x) bea PR-formula of £'. Then

VXA(X) istrue = 3d € O[PR(2%) - VxA(x) and |d| = «].

Proof: Let R(x) be the p.r. predicate expressed by A(x). We argue indirectly.
Assume that —R(n) for somen. Thend ¢ O, whered = 3.5 and e* is as in
the proof of Turing’'s Lemma. Nonetheless, the p.r. relation Der(d, X, y, u, v) is de-
fined. Since y <* ["](x) - y <* 3-5% is derivable from the definition of <* by
a PR-derivation of order 1, we have that, for each k and any m > 0, I, A, and ¢,
REFn([€](k), T, A, @) has a PR(d)-derivation of order m. By the choice of e* it
follows that REFm(gd, I, A, ) isderivablein PR(d) by aderivation of order m, for
al but finitely many m > 1 and any ", A, and ¢. Then PR(2%) € PR(d), and from
Lemmal4.4lii) we have that

dn—R(n) = for some PR(d)-derivation D, D :+n, Fn(d) 3

for all but finitely many m.
On the other hand, since (~Der,(d. z, 1, f_(d)) — —Der,(d,z 1, f_(d)))is
derivable in PR-(X9-IR), we have, by the choice of Fn(d), that

PR-(29-IR) - Fin(d) — Yz-Der(d. z 1. f_(d))
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for each m, whence
PR-(20-IR) - Fin(d) > —32Der,(d, 2 1, f_(d)).
The formalized version of (3) isthe £’ formula
Ix-AX) — 3zDer,d, 2 1, f_(d)). 4)

If (4) isderivablein PR-(EE-IR) by aderivation of afixed order p for all but finitely
many m, then so will be

ﬁHZ%m(g’ z1, im(g)) — VXA(X)

since A(X) isaPR-formula. But then there is a PR-derivation of a fixed order g of
the sequent Fr(d) - YXA(X) for al but finitely many m. From[4.4{ii) it then follows
that

PR(2%) - VXA(X)

by aderivation of order m, for al but finitely many m. To complete the proof of the
theorem, it remainsto show that thereis a PR-derivation of (4) of afixed order p, for
all but finitely many m. First observethat, from the proof of Turing’'s Lemmaand the
choice of €, we can obtain a PR-derivation of

IX ~A(X) - 3IX[E] (x) = 2. (5)

But then we may obtain a PR-derivation D of the sequent 3x ~A(x), y <* 29 - y <*
d, and, using &-1] a PR-derivation of the formula

Der, (1, 7#D7, (TIX ~AX) )+ (Ty <* 297), Ty <* d7) (6)

for some k;. Secondly, by demonstrable 9-completeness of PR-(x9-IR), we have
that
PR-(E?-IR) F 33X ~A(X) — 3zDery (1, z, 1, "IX ~AX) ). @)

From (6) and (7) and LemmalZ.3we may then derive
IX=AX) — FzDer (1,2, 1,7y <* 297, Ty <* d7)
in PR-(29-IR), for k = max(ky, kz).12 But then
PR-(£%-IR) - 3x—A(x) — (3yDer,,(2%, y, u, v) — 3zDer,,(d, z, u, v))
for al but finitely many m; in particular,
PR-(23-IR) F Ix=A(x) - (AyDer (2%, y. 1, f. () — 3zDer,d, z 1, f_(d)

From[.4{ii) and 2.1]we have that PR-(=9-IR) - 3yDer, (2%, y. 1, f - (d)), whence
finally, PR-(X9-IR) - 3x—A(x) — 3zDer,,(d, z, 1, f_(d)) asrequired. O
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Remark 4.8  Notice that the proof that PRA (29) - YxA(X) does not really depend
on the hypothesisthat VXA(X) istrue. For, if 3x—A(X), then by (4) we have that, for
al but finitely many m, PRA(d) - Fn(d) by aderivation of order m, which implies
that PR(d) isinconsistent. Sincein general PRA (a) € PRA (22), it would follow that
PRA (29) isinconsistent and hence, trivially, PRA (29) - VxA(x). The differenceis
that if VXA(x) istrue, we havethat 29 € O.

Given the properties of our realizability semantics, completeness for sentences of the
form VxA(x) where A(X) is a PR-formula suffices to establish completeness for all
realizable prenex sentences of L'.

Theorem 4.9 Let Abea I'IE]J sentence of £’ for n > 0. Then

JedmelFm A= 3be O, PRA(b) - Aand |b| = w + 1.

Proof: We may assume without loss of generality that n = 2(k + 1). Suppose
elFm A. From Theorem 3.2 of ﬂ wehavethat AisPR-true, that is, thereare p.r. func-

tions fo, ..., fi such that for any mo, ..., my, B(my, f_(mg), my, f. (Mg, my), ...,
m, fk(mo, ...,my)) holds, where A = Vxodyo, ..., YX3YkB(Xo, Yo, - - -, Xk, Yk)

and B(Xq, ..., X,) isaPR-formulaof £’. Then we aso have that YxC(x) where

C(x) = B((X)o, fo((X)0), (X)1, ..., Xk, Fk((X)o, ..., (X)K))

is a true 19 sentence of £'. Note that PR-(29-IR) - ¥xC(x) — A by logic. By
Theorem [.7] PRA (b) - YxC(x) for some b € O such that |b| = o + 1. But then
PRA (b) - A, asrequired. O

We may then derive the following theorem.
Theorem 4.10 Let A be a prenex sentence of L'. If Aisstrictly primitive recur-
sively realizable, then PRA (b) - A for someb € O such that |b| = w + 1.
Remark 4.11  From the proofs of [4.7]land Theorem 3.2 in [3] it can be shown that
b € Oisprimitive recursively obtainable from #A.
From the soundness and compl eteness theorems, [3.4]1 and[Z.10] we then have
Theorem 4.12 Let A beany prenex sentence of L'. Then

Jdedneln A<= AisPR-true <= A € Upo{PRA(D)| |b] < w+ 1}

& A€ Upol{PRA(D))}.

We recall the notion of strictly primitive recursive falsifiability introduced in [3], &3.

Theorem 4.13 Let A be any prenex sentence of L. Then 3edn edl, = 3b €
O,PRA(b) - —=Aand |b| = w + 1.

Proof: From Theorems 3.2 and 3.3 of [3] we have that
dedn edl, A < AisPR-fase <= ~AisPR-true <= Jednel-,~A.

Then, by [4.10] the hypothesis implies that PRA (b) - ~A for some b € O such that
bl = w + 1, whence PRA(b) - —A. O
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Let Sgr =: {#A|Aisaprenex sentence and Jedn el A}, and let Sg =: {#A|Aisa
prenex sentence and 3edn eI, A}. Let ‘<P stand for 1-1 reducibility by ap.r. func-
tion, and let * A= B’ abbreviate' A <} Band B <} A". Then wealso have
Theorem 4.14

(@) Thesets O(w) and O* (w) are Y complete.
(b) O*(w) <" Sr.

(©) Sk Efr Sk.

(d) Thesets Sg and S¢ are both I19 complete.

We omit the proof.

5 Hereweintroduce some auxiliary machinery for use later on. First, observe that
from the definition of the Kleene indexing of p.r. functions, one may easily obtain an
elementary function such that for any a, b, €,

for al n,[0(a, b, e)](n) = [a](b, [e](n)).

(Cf. [6], p. 105.) In fact, we also have that, for each a, b, and e, PR-(2$-IR)
[al (b, [€](x)) =[O(a, b, €)](X). From the definition of <* one may then derive

PR-(S9-IR) - Vx([a] (b, [€] (X)) <* 3. 5ave) (8)

Furthermore, by [9] thereisap.r. function +* with Kleeneindex a* such that for any
X, Y, €
X+*1 = X if x#£0
X+*2Y = 2 if y#0
X4*3. 5 — 3. 56(a*,x,e)
Wethen have, for any a, b, eifae Oand b € O, that
(i) a+*beO,
(i) |a+*b| =|al + |b|, and
(i) b#1=a<ga+*h.
First we establish the following “relativized” version of Turing's Lemma (4.5).

Lemmab.l Thereisap.r.function Eg suchthat for any b € O, and any PR-formula
A(X) of L/,

(i) VXA(X) istrue < Ey(b, #A) € O,
(i) Eg(b,#A) € O = |Eg(b, #A)| = |b| + w.

A form of thisresult stated in terms of Kleene's recursively based system of ordinal
notations O was originally proved in [[5], p. 288. Our proof is completely analogous
and we omit it. We remark that the argument extends straightforwardly to sentences
of theformVxy, ..., YXmA(X1, ..., Xm), where A(Xq, ..., Xm) isaPR-formulaof £/
that expresses an m-place p.r. relation R.

The “relativized” Turing’s Lemmaallows usto prove a“relativized” version of
Theorem[A.7]*3
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Theorem 5.2  There are binary p.r. functions E;, E; such that for any b and any
PR-formula A(x) of £/, if YXA(X) istrue, then

(i) be O= Ej(b,#A) € O.
(i) be O== b <g E1(b,#A) and |E1(b, #A)| = |b| + @ + 1,
(iii) PRA(E1(b, #A)) - VXA(X) by a derivation with Godel number E(b, #A).

Proof: Weargueindirectly asinthe proof of Theorem[4.7] Let R(x) bethep.r. pred-
icate expressed by A(x) and assume that —R(m) for some m. Then Eg(b, #A) ¢ O
by [5.1] We consider the sequent system PRA(d) for d = Eq(b, #A). We then ar-
gue, with the aid of Lemma[5.1] exactly as in the proof of [4.7] that PRA (29)
VXA(X). A p.r. function E, that gives the Gbdel number of a PRA (29)-derivation
of YXA(x) with the desired property can be obtained from a detailed analysis of that
proof since the formal proof of (4) in PR-(EE-IR) is primitive recursively uniform
in b and #A. Now, if YXA(X) istrue, it follows from[5.1}hat provided b € O,d € O
whered = 3. 55’ ®#A) — E (b, #A), and furthermore, |d| = |b| 4+ . Thus, if welet
E1(b, #A) =: 29 we have, under the hypothesis that b € O and YxA(X) is true, that
Ei(b,#A) € O,b <o E1(b, #A) and |E1 (b, #A)| = |b| + @ + 1, which establishes

parts (i) and (ii) of the theorem. O
Theorem [5.2]extends to sentences of the form Vxq, . .., ¥XmA(X4, . . ., Xm), Where
A(Xq, ..., Xm) isaPR-formulaof L’ expressing an m-place p.r. relation R.

Let VXDn(a,e,m, g, b, x) abbreviate a 1‘[2 sentence that says that
vxDern([€] (a, [m](x)), [a] ([m] (X)), #I", #B(X)),

where g = #I" and b = #vxB(x) with x not freeinI". Let d(n, a, e, m, g, b) be the
Godel number of Dy (a, e, m, g, b, x). Thefollowing lemmais best understood in the
context of the proof of Theorem [Z.1]

Lemmab.3 Thereisap.l. function Ez such that, for g = #I" and b = #vYXB(X)
where x isnot freein T, if ¥xDn(a, €, m, g, b, X) istrueand 3- 5%eam ¢ O, then for
anyt e O, T - VxB(x) isderivablein PRA(E{(3-5cam d(n,a, e, m, g, b)) +*1t)
by a derivation with Godel nhumber Ez(n, a, e, m, g, b, t).

Proof: From the hypothesis we have, by @i ii), that
vxDer, ([e](a, [m](x)), [a] ([m](x)), "T, "B(X) ")
isderivablein PRA(E1(1,d(n,a,e,m, g,b))). Thensois
Vxay(Der, (Yo, ()1, T, "BX)™) & (Y)o = [€](a, [m](X)))
But then by (8) the same holds of
¥x3y(Der, (Yo, (Y)1. TT7BO) ) & (y)o <* 3- 5leam ©)

Now, since 3 - 5%am e O by hypothesis, we have by Theorem E2{ii) and %9-
completeness of PR-(X9-IR) that

PR-(X9-IR) - 3 5%eam <* E;(3.5%am d(n,a,e,m g.b)) +*t (10)
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since d(n, a, e, m, g, b) is the Gédel number of a true sentence. From (9} and (10)
and the remarks at the end of 81 it follows that

vx3y(Der,((Y)o, ()1, ' T, "B(X) ) &
(Y)O <* E1(3 : 59@’?_1@) s d(nv a,em, 9’ Q)) +* L)

isderivablein PRA(E1(1, d(n, a, e, m, g, b))), and sinceby Eg—compl eteness of PR-
(=9-IR) we have that

PR-(39-IR) - Ey(1,"AT) <* Ey(c,"A7) (12)
for any c € O and any true sentence A of theformVvxgy, ..., VXmC(Xq, ..., Xm) Where
m> land C(Xq, ..., Xm) expressesap.r. predicate, it followsthat the above sentence

is derivable in PRA(E(3- 5%am d(n, a, e, m, g, b)) +*t). But then ' - YXB(X)
is derivable in PRA(E1(3- 5%cam d(n, a, e m, g, b)) +* t), as required. Since the
derivations in (I0) and (1I) can be obtained uniformly primitive recursively from
n,a,e,m,g,b,taxd A= VxDh(@emg,b, x)adc=3:5eam 1*t we may
obtain a p.r. function E3 depending on n, a, e, m, g, b, and t with the above stated
property. O

6 Hereweformulate aprimitive recursively restircted w-rulein the style of Shoen-
field (cf. [[13]) and describe a semiformal system of w-derivations closed under the
rule. Shoenfield’'s original recursive w-rule, added to the deductive apparatus of PA,
suffices to derive all first-order arithmetical truths. An important element in our ver-
sion of theruleisacomplexity restriction that mimicsthe one employedin connection
with thereflection principlesREF, (b, T', A, ¢) and having to do with the rules of PR-
(E‘l’-l R) and the rank in the Grzegorczyk hierarchy of the p.r. functions expressed by
instantiating terms.

For the sake of brevity, we forgo giving the actual definition of the set of w-
derivationsin favor of asketch from which the definition can be easily reconstructed.
We characterize the set of w-derivations as the smallest set of integers satisfying the
following conditions:*

(i) if I' = Alisthe axiom of PR-(EE-IR), then for any d, n, (1, n, #", #A, d) isan

w-derivation of I' = A. Assumed > 1.

(ii) if for somei, j, (d); and (d); are w-derivationsof I' - Aand I" - B, respec-
tively, then (2, max((d); 1), (d)j 1), #I", #(A& B), d, |, j) is an w-derivation
of ' A& B;

(iii) if for somei,(d); isan w-derivation of I' = A & B, then (3, (d); 1, #I", #A, d,i)
isan w-derivation of I' = A, and (4, (d); 1, #I", #A, d, i) is an w-derivation of
'+ B.

We continue in this way and co-opt each one of the rules of PR-(E?-I R), introducing
in each case as an w-derivation of asequent I' = A an integer that codes a sequence
(in the case of 2-premise rules) of the form

(k, n, #I', #A, d, i, |),
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where k(2 < k < 16) indicates a particular rule of PR-(Z(lJ-IR), d codes afinite se-
quence such that (d); and (d); are w-derivations of sequents from which I" - A fol-
lows by that rule and n depends on (d); 1 and (d); 1 in the same way in which order
of a PR-derivation by which I = A is derived from the sequents w-derived by (d);
and (d)j depends on orders of its immediate subderivations. Thus, for example, we
have:

(ix) if for somei, j, (d); and (d); are w-derivationsof I' = A(0) and I", A(X) -
A(X), respectively, where A(X) is azg formula and x is not freein I,
then (11, max((d)j 1, (d)j 1) + 1, #I', #A(X), i, j) IS an w-derivation of
'~ AX).

The one exception to this pattern is this:

(xv) if B(x) if aformula of £' and the variable x is not free in T, for each
n, [€] (n) is an w-derivation of " = B(n) such that ([e](n)); < m, then,
foranyd > 1,

(17, m, #I", #YXB(X), d, €)

isan w-derivation of I' = YXB(X).

This compl etes the description of the inductive definition of the set of w-derivations.
WewriteDer®(m, n, #I", #A) just in case misan w-derivationof I' = Aand (m); = n.
Clearly, derivability in PR-(Z?-I R) implies w-derivability: one may define by course-
of-values recursion a p.r. function = where

Dern(1, m, #I", #A) = Der® (z(m), n, #°, #A)

forany I', Aand any m, n.

To establish universal assertions about w-derivations we need to be able to ar-
gue by induction on the complexity of w-derivations. Asmentioned earlier, one mea-
sure of complexity isexplicitly built into the definition of w-derivations. However, it
essentially ignores the primitive recursive w-rule. Another complexity measure that
does take into account the w-rule is the height of w-derivations which we define so
that, in particular, an application of the primitiverecursive w-rule, asdescribed in (xv)
above, resultsin an w-derivation of I' - YXxB(x) of ahigher degree of complexity than
any of the w-derivationsof I" = B(n) which serve asthe* premises’. For this purpose
we assign an ordinal OD(m) to an w-derivation m as follows:

(M)4 if (m)o=1
OD(M) = { Zo<i<ith(m),OD((M)4;i) +1 if 1 < (m)g <17
lima{OD([(M)s](N)} + @ + 1+ (M)4 if (M)g =17

where lim,{OD([(m)s)(n))} istheleast limit ordinal A > OD([(m)s](n)) for al n.1®

Let cand d be w-derivations. We say that cisan immediate subderivation of d if
andonly if either 1 < (d)o < 17and ¢ = (d)4,; wherei = (d)x and 5 < k < Ith(d), or
(d)g =17 and c = [(d)4] (n) for somen. (Thus, e.g., referring back to the definition
of w-derivations, if (d)g = 2, both (d)4; and (d)4,; are immediate subderivations of
d and d has no immediate subderivationsif (d)o = 1). Let d beany w-derivation. We
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definethe set SD(d) of subderivations of d to be the transitive closure of {d} with re-
spect to therelation of immediate subderivation. We may then establish, by induction
on the generating relation of SD(d), that for any w-derivation d,

ceSD(d) and c#d=— OD(c) < OD(d).

Clearly, if c € SD(d), then SD(c) € SD(D) Thenotion of subderivationswill help us
definethe concept of “ proper” w-derivation which will beinstrumental in the proof of
the main theorem. We say that an w-derivation d is proper if for every subderivation
c of d such that (¢)g = 17 we have that for all n,

OD([(©)s] (M) < OD([(©)s] (N + 1).

In other words, an w-derivation d is proper if for each subderivation c of d that re-
sults from an application of the w-rule the ordinal height OD(cy,) of its immediate
subderivations c, = [(C)s5] (n) strictly increases with n. Clearly, any subderivation of
aproper w-derivation is a proper w-derivation.

We now define a p.r. function Od that will provide a measure of the ordinal
height of w-derivations but which will be of interest only in connection with proper
w-derivations. The definition isintimately connected with the proof of Theorem[Z.1]
and its significance is best understood in the context of that proof. We first define a
3-place p.r. function Od* by the following course-of-values recursion.

v((mM)g) if (Mo=1
20(0d*(e.a. (M)4).Ith((M)4) if 1 < (m)y < 17
Od*(e,a,m) = 1 E;(3-5%@aMs) d((m),a, e,
(M)s, (M)2, (M)3)) +* v((M)4) if (M)g =17
0 otherwise

where Od* (e, a, x) is the course-of-val ues function Mo -jthex) p?d (@2,00;)

jth prime), and o is defined by the primitive recursion

{ o(y,00=1
oy, X+1) =0y, ) +* (Y)x

(p; the

By the primitive recursion theorem there is a 2-place p.r. function Od with Kleene
index 0* such that

Od(a, m) = Od*(0*, a, m) = [0*] (a, m).

We then have the following lemma.
Lemma6.l Supposed isa proper w-derivation and e is an integer such that, for
any ¢ € SD(d) with (c)o = 17 and (c)1 = m, ¥XDm(0", &, (C)s, (C)2, (C)3, X) isa
true I9 sentence. Then

(@) Od(e,d) €O and |Od(e d)|=0D(d),

(b) for any b € SD(d), Od(e, b) <o Od(e, d).
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Proof: (a) We argue by induction on the generating relation of the set of
w-derivations. We consider here only the case (d)g = 17. Then A = VxB(x) for
some formula B(x) where xisnot freeinT", and

d = (17, m, #T, #xB(X), (d)4, b)

wherefor each n, [b] (n) isaproper w-derivationof I' = B(n) suchthat ([b] (n))1 < m.
By the induction hypothesis, for al n,

Od(e, [b], (n)) € O and |Od(e, [b] (n))| = OD([b](N)).
Since d is a proper w-derivation, we have that, for al n,
|Od(e, [b] (n)| = OD([b](n)) < OD([b](n+ 1)) = |Od(e, [b](n+ 1))].

Given that for al n, Od(e, [b](n)) = [0(0*, e, b)](n), this means that 6(0*, e, b) isa
Kleene index of an increasing function in <g. Hence 3 - 5%¢*.eb ¢ O, and by Theo-
remB.2land the hypothesis

b* = E1(3-5%c*eb d(m, e, 0, b, #", #A)) € O and |b*| = |3- 5/ et | 4+ 0 + 1.
But then
|Od(e, d)| = [b* +* v((d)4)] = limp{OD([b] ()} + @ + 1 + (d)4 = OD(d)

asrequired. (b) follows from (a). O

7 We shall now establish the closure of transfinite progressions {PR-(Z?-I R)|b e
O} under the primitive recursive w-rule, under the hypothesis that the applications of
the w-rule are restricted solely to proper w-derivations.

Theorem 7.1 Let d be a proper w-derivationof I' = A. ThenI" - A isderivable
in PRA (b) for someb € O.

Proof: We prove the theorem by establishing a somewhat stronger result: thereisa
p.r. function ¢ with Kleeneindex f suchthatforanyd,n> 1, T, A,

Der®(d, n, #T", #A) = Der,(Od( f, d), o(d), #I", #A).

Toward this, we first define a 2-place p.r. function ¢ by course-of-values recursion.
We let ¢ satisfy acondition of the following form.

a((X)2, (X)3) if (X)o=1

B(X, ¢t (e, x(X)a)),Od(e, x, (X)4))  ifl< (X)o<17
E3((X)1, € 0%, (X)5, (X)2, (X)3, v*(X)4)) if (X)g =17

0 otherwise

pt(ex) =

for appropriate p.r. functions«, 8, and x , where 0* isthe Kleeneindex of thefunction
Od obtained earlier and E; isthe p.r. function from Lemmal5.31.16 We then apply the
primitive recursion theorem to obtain aKleeneindex f of ap.r. function ¢ such that

9(x) = ¢* (f,%) and PR-(Z3-IR) F ¢ (£, %) =[] (%),
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and proceed to prove that the function ¢ provides the desired “translation” of any
proper w-derivation d into a derivation in PRA (b) for an appropriate b € O. The ar-
gument is by induction on the generating rel ation of the set of w-derivations. Thecase
(d)o = lisobvious. For (d)g # 1, assume as the induction hypothesis that the claim
holdsfor al w-derivationsc € SD(d). Since each such cisaproper w-derivation and
(©)1 < n, thisimplies, in particular, that for any ¢ € SD(d) such that (¢)o = 17,

VXDn(f, 0%, (©)s, (©)2, (©)3, X)
isatrue MY sentence. Hence, by LemmalG.1], we have that
Od(f,c) e O and |Od(f,c)| =0D(c)

for any such c. We proceed by cases depending on (d)g. For 1 < (d)g < 17, we
consider the case (d)g = 2 as an illustration of the type of argument that applies
in the other cases aswell. If (d)g = 2thend = (2, (d)1, #T", #(A & B), (d)4,1, j),
where (d); <nando <, j < Ith((d)4) and (d)4; and (d)4, j are w-derivations of
I' = AandI" = B, respectively. Then (d)4, (d)4,j € SD(d). From the induction
hypothesis we then have that " = A has a PRA (Od( f, (d)4,i))-derivation of order n
with Godel number ¢((d)4;), and I' = BaPRA(Od(f, (d)4,j))-derivation of order
nwith Godel number ¢((d)4,j). But Od(f, (d)4)) <o Od(f, d) and Od(f, (d)4;))
<g Od(f,d). It followsthat ' = A and I' = B have PR(Od( f, d))-derivations
of order n, which can be obtained uniformly primitive recursively in ¢((d(s;),
Od(f, (d)4;)) and ¢((d)4,j), Od(f, (d)4,;)). But then ¢(d) is the easily obtained,
via 8 and x, PR(Od( f, d))-derivation of I" = A & B. Finally, we consider the case
(d)o=17. Then
d = (17, n, #I", #YXB(X), (d)4, (d)5)

wherefor each m, [(d)] (M) isan w-derivation of I' = B(m) with ([(d)s] (mM))1 < n.
By the induction hypothesis, for each m, I' = B(m) has a PRA(Od( f, [ (d)5](M)))-
derivation with Godel number ¢ ([(d)s] (m)) and of order < n. Recall that ¢(x) =
[ f1(x). We then have that

vxDer, ([0"], (f, [(d)s] (X)), [F1([(d)s](x)), T, "B(x)™)

can be expressed as atrue I sentence. Therefore, by TheoremB2Jiii),
PRA(E1(1, d(n, f, 0%, (d)s, (d)2, (d)3))) = YXDn(f, 0%, (d)s, (d)2, (d)3, X).
Given that d is a proper w-derivation, we have that
for al m, Od(f, [(d)s](m)) <g Od(f,[(d)s](Mm+1)).

Since dso, for all m, Od(f,[(d)s](m)) = [6(0%, f, (d)5)](M), this means that
3. 5.1 s) ¢ O. But then, by LemmaE3) I' - VxB(x) is derivable in
PRA(E1(3 - 570" 1 (s) d(n, f, 0%, (d)s, (d)2, (d)3)) +* v((d)4)) by a derivation

with Godel number Es(n, f, 0%, (d)s, (d)2, (d)3, v((d)4)). Thisisprecisely what we
need given the definitions of ¢(d) and Od( f, d). O
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Next we show that all realizable prenex sentences are w-derivable. Then (Z.1) and
will give us another proof of the prenex compl eteness of the transfinite progres-
sions {PRA (b)|b € O} with respect to strictly primitive recursive realizability.

Theorem 7.2  Let A bea prenex sentence of £'. Then

dednelbn A= 3d3anDer®(d, n, 1, #A).

Proof: Without loss of generality we may assume that A = Vxgdyo,...,
VXY B(Xo, Yo, - - ., Xk, Yk) where B(Xp, Yo, . .., Xk, Yx) isaPR-formula. Now Ais
PR-trueif realizable (by Theorem 3.2 of [3]), so we have that YxC(x) istruefor some
PR-formula C(x) of £, by reasoning asin the proof of By PR-compl eteness of
PR-(E(l’-I R), thereisap.r. function ¥ and an integer k, depending on C(x), such that
for any m,

C(m) istrue = Derg(1, ¥(m), 1, #C(m)) = Der®(w(y(m)), k, 1, #C(m)).

Thus the realizability of A impliesthat (17, k, 1, #VXC(x), 1, b) is an w-derivation
of YxC(x), provided [b] (m) = s (y»(m)) for all m. But this w-derivation need not
be proper. To obtain one that is, we let & be the p.r. function such that, for any w-
derivations ¢, d, c ® d isthe w-derivation that differsfrom d only inthat (c® d)4 =
(d)4 * {(c). We then define a function =z* by primitive recursion:

7*(0) = 7(¥(0))
m*(m+1) =7*(m) & r(y(Mm+ 1))

Then, it is easily proved by induction on m, that for all m,
Der® (*(m), k, 1, #C(m)) and OD(7r*(m)) < OD(7*(m+ 1)).

If [b*](m) = =*(y¥(m)) for al m, then (17, Kk, 1, #YxC(x), 1, b*) is a proper w-
derivation of YXC(x). Since PR-(Z?-IR) F VXC(X) — A, we aso have that 3d3n
Der“(d, n, 1, #(YxC(x) — A)) without any applications of the w-rule, and so finally
it follows that there exists a proper w-derivation of A. O

Corollary 7.3  Let A bea prenex sentence of L. Then

Jdednelrn A= 3b e OPRA(b) - A.

8 Itistimenow to pay thedebtincurredin Theorem[Z_1]and provethat given any w-
derivationd of I" = A, there exists a proper w-derivation d* of I' = A. Thethought is
simple: given asubderivation c of d obtained asaresult of an application of the w-rule
toitsimmediate subderivationsc, = [(C)4] (n), we obtain acorresponding subderiva-
tion c* of d* by applying the w-rule to derivations c;, which are w-derivations of the
same sequents as ¢, but whose ordinal height OD(c},) is strictly increasing with n.
The simplest way to achieve this would be to “paste together” c,’s successively so
that ¢ = Co, €] = Co plus ¢y, ¢ = c7 plus cp, and so on. However, thisideais not
easily implemented primarily because the proof of the theorem requires us to obtain
d* uniformly primitive recursively in d.

In aparticular case, we have already applied a “ pasting together” procedure to
the w-derivation considered in the proof of [Z2] So we may assert
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Lemma8.1 Letdbeanw-derivationof I' - A. For any w-derivation c thereisan
w-derivationcé d of ' - A such that

OD(c) < OD(cd d)

Moreover, ¢ @ d can be obtained primitive recursively fromcandd, andc @ d is
proper ifdis.

Theorem 8.2 Let d be an w-derivation of T" = A. Then there exists a proper w-
derivation of ' - A.

Proof: Let 6 be the 2-place variant of the function 6(a, b, ) introduced in &4,
omitting the parameter b. Let 6T (e, d) be a Kleene index of the function Axy.y &
[6(e, (d)5)](X). We easily obtain an elementary function £* such that, for each fixed
e d, & (e d) isaKleeneindex of the p.r. function v 4 Satisfying the condition

{ Ved(0) =1
Ved(X+1) = vYea(X) ®[0(e ()s)](X)

Thefunctions ¢ 4 play acrucial rolein pasting together of subderivationscy, of d that
appear “in” d as* premises’ of an application of the w-rule. Let ¢* be the elementary
function such that for any e, d,

[v* (e, d)](X) =[£"(e, d)](x+ D).

We define a 2-place p.r. function x™ by the course-of-val ues recursion:

d if (=1
X+(e d) — ﬁ(X+(e’ (d)4)) |f 1< (d)O <17
’ (17, (d)1, (d)2, (d)3, (d)4, ¥*(e,d)) if (d)o=17
0 otherwise

for an appropriate p.r. function 8. We apply the primitive recursion theorem to obtain
aKleeneindex h of ap.r. function x such that for any d,

x(d) = x"(h,d) = [h](d),

and proceed to show that the function x determines the desired map so that, for any
d,r,A,

Der®(d, n, #T", #A) = Der®(x(d), n, #I", #A) and x(d) is proper.

The argument is by induction on the generating relation of the set of w-derivations
(or, dternatively, by transfinite induction on OD(d)). The claim holds trivialy for
(d)g = 1. For 1 < (d)g < 17 we consider the case (d)g = 2 as an example. Then
d=(2,n#,#(A& B), (d)4,i, j) where 0 < i, ] < Ith((d)4) and the immediate
subderivations (d)4; and (d)4 j of d are w-derivationsof I' - Aand I" - B, re-
spectively. Then, by the induction hypothesis, x((d)4,i) and x((d)4,j) are proper -
derivations of the same sequents, whence by the choice of the function g8, we have
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that x(d) isaproper w-derivation of I' = A & B. The sole interesting case is when
(d)o = 17. Then
d = (17, n, #T", #YXB(X), (d)4, (d)s)

where, for each m, [(d)s](m) is an w-derivation of I' = B(m) and ([(d)5](mM))1 <
n. By the induction hypothesis, for each m x([(d)s] (m)) is a proper w-derivation of
I' = B(m) and (x([(d)s](m)))1 < n. Notethat x([(d)s(m)) = [6(h, (d)s](m)). We
claim that for each m

Yh.a(m+ 1) isaproper w-derivation of I' = B(m), and (12

OD (Yh,a(m)) < OD(yrp g(M+ 1)) (13)

Itiseasily seenthat (¥ g(m+ 1))1 < nfor all m. Sincefor al m
Yha(M+ 1) = [£°(h, )] (Mm+ 1) = [¢*(h, d)](m),
(12) and (@3] will suffice for our purposes becauise then
(17, n, #T", #YXB(X), (d)4, ¥*(h, d)),

which = x(d), will be aproper w-derivation of I' - YxB(X), as required. Now
followsimmediately from[8.1}and the definition of ¥, 4. So to complete the proof of
the theorem it remains to prove [I2). We argue by induction on m. For m = 0, we
have

¥h,d(D) = ¥na(0) @ [6(h, (d)5)](0) = [6(h, (d)5)](0) = x[(d)s](0).

Then the case m = 0 follows from the induction hypothesis. For the induction step,
assumethat Y, g(M+ 1) isaproper w-derivation of I' = B(m). Then Y, (M4 2) =
Yha(Mm+1) & [6(h, (d)s)](m+ 1), whence, by[8.1]and theinduction hypothesis, we
have that ¥y, o(m+ 2) isaproper w-derivation of I' = B(m+ 1). O

We now derive our main result, characterizing the strictly primitive recursively real-
izable prenex sentences of L.

Theorem 8.3  For any prenex sentence A of £/,

dedmellbm A< AisPR-true <= 3d € OPRA(d) - A<= 3AnDer“(z, 1, #A).

NOTES

1. In particular, we assume that unlimited primitive recursion is accommodated directly
without regard to the complexity considerations related to the Grzegorczyk hierarchy.
(A similar indexing was originally described in [E], and so we call this one the Kleene
indexing.)

2. Weareimplicitly referring to a recursive enumeration of n-place p.r. functions defined
relative to the Kleene indexing as described in [], p. 74, where we have the ¢(X,) =
[€](Xn) if eisaKleeneindex of ¢.
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For definiteness we describe this in some detail. (Cf. also [[6]). We first define an
r.e. “pre-ordering” relation <* satisfying the condition

X<'ye= x=1&Yy#1D)VvIzZ<y(y=2°&2#0& (Xx<*zvXx=12)V

Indz < y(y=3-5°& (X <*[Z(n) vx=[Z(n)).

We say that afunction f isincreasingin <* if foral n, f(n) <* f(n+1). Let O bethe
smallest set X of integers satisfying the conditions: (1) 1€ X; (2)be X = 2° ¢ X; and
(@) if [d](x) = f(x) where f isincreasingin <* and f(n) € X forall n,then3-5% € X.
Weset X <oy <=: X, ye Oand x <* y. For each b € Othereisal-1 order-preserving
map from an initial segment of the ordinals onto the ordered set O, = {x|x <o b}, in
which the successor ordinals are mapped to integers of the form 2¢ and limit ordinalsto
integersof theform 3. 59. Infact, ingeneral, if b € Oanda <* b, thena € O. Thetheory
of such ordinal notations is similar to that of Kleene's recursively based 0. In[9] it is
shown that the class of ordinals represented in this way remains the same if condition
3isweakened to allow d to be an index of a (total) recursive function increasing in (an
appropriately defined) <*.

Theselargely stem from thefact that we are unableto directly refer to ordinalsin apurely
arithmetical language, but must avail ourselves of the notationsfor ordinal s such asthose
described above. See, e.g., [[5], 83.

Here Prf(x1, X2, X3) is aformula expressing a p.r. predicate that describes the proof re-
lation of aformal system at the stage o whenever the variable x; is replaced by the nu-
meral for an ordinal notation for «. The notation "¢ (X) " denotes the Godel number of
the formula that results from substituting the numeral for a given integer x for the free
occurrences of the variable x; in ¢. (Thus, the variable x occurs freein "¢(x) ™). The
notation extends naturally to cover simultaneous substitution of several variables.

It is convenient to include among the primitives bounded quantifiers Yx < t, 3x < t,
where t is a term not containing the variable x. We call the resulting language L.
PR-(2%-IR), called PRA in [3], is formulated in the language L(PRA) described in §3

of [B]).

We assume that a Godel numbering # of terms of £’ has been set up in such away that
aKleeneindex t of the function A yi.t(Vk) expressed by aterm t(Xy) is obtainable from
#(X¢) by an elementary function. Then a Godel numbering # of PR-derivations can be
set up so that for any PR-derivation D, aninteger r such that A yi.t(V«) € G; for any term
t operativein D can be obtained by an elementary function from #D.

When I" isasingleton (A), we write ‘#A’ instead of the code for (#A).

The definition of realizability and the proof are easily amended to reflect the fact that
L' includes the bounded quantifiers Vx < t, 3x < t among its primitives. We do that in
detail, in a different context, in [2]. Our notation differs slightly from that used in [3]:
wewrite‘t I, A’ instead of ‘t IF, " A™.

In the course of defining ® we make use of the elementary function &, where £(n+ 1)
isan n + 1-index of the enumeration e,,1 of G,. The function & is obtained from the
proofs—given in detail in [Lj—of the facts stated in Theorems 1.1(d) and 2.1 of [[3].
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Here ~Aisthe £’ formulathat results when all occurrencesof ‘vx < t’, ‘Ix < t’, V',
and‘&’ in Aarereplaced by occurrencesof ‘Ix <t','vx <t’,'&’,and‘Vv’, respectively,
and every atomic subformulaof A of theform ‘t(Xc) = 0’ wheret(Xy) isan £’ term—all
atomic subformulas may be assumed to be of thisform—isreplaced by ‘S§(t(Xc)) =0'.
(We shall subsequently extend this notation to all prenex formulas of £’ by treating the
unbounded quantifiersinthesameway.) Itiseasily seenthat S§(x) =0— (x=0— 1)
isderivablein PR-(22-IR). That PR-(Z9-IR)~¢ — —¢ holdsfor all prenex formulas
¢ is proved by induction on the complexity of prenex formulas. (Classicaly, ~A and
—Aareequivaent.)

Here k; depends on the order of the PR-derivation of (5) which may be obtained primi-
tiverecursively from e*, which in turn, depends primitive recursively on #A(x). On the
other hand, k, depends primitive recursively on #A(X).

Again, a form of this result in which primitive recursively based O is replaced by
Kleene's recursively based O and the starting point of the transfinite progression is the
classical PA instead of our intuitionistic PR-(29-1R)was proved in [Ell, pp. 287-89.

Here ', A denote finite sequences of formulas, and A, B, C formulas of L(PRA).
Throughout we are assuming that Ith(d) > 0, andthat i, j, < Ith(d) wherethey are men-
tioned.

In the case (M)g = 17 it may seem more natura to let OD(m) = lim,{OD([(m)s] (n))}.
The extra elements in our definition are needed to give a simpler proof of Theorem
and in the proof of Theorem[8.2]

For the sake of clarity and conciseness we do not explicitly define o, 8, x here. The def-
initions can be easily reconstructed from the sketch of the proof given below: e.g., 8
expresses a definition by cases in which the thirteen different types of w-derivations d
suchthat 1 < (d)q < 17 are distinguished.
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