
CHAPTER 3

Non-Triviality of the Godbillon–Vey Class

The aim of this chapter is to show the following Theorem A in Introduction.

Theorem A.

1) For each q, there are transversely holomorphic foliations of complex co-

dimension q of which the Godbillon–Vey classes are non-trivial.

2) If q is odd and q ≥ 3, then there are at least two transversely holomorphic fo-

liations of complex codimension q which are non-cobordant as real foliations

of codimension 2q. If q = 5, then there are at least three transversely holo-

morphic foliations such that none of them are cobordant as real foliations

of real codimension 10.

Moreover, these foliations can be realized as locally homogeneous foliations.

For this purpose, we will first introduce locally homogeneous foliations and then

explain how their complex secondary classes are computed. We will show Theorem A

in Section 3.3 by constructing examples. Similar examples in the real category are

studied by several authors. See for example Baker [12] and the references therein.

3.1. Locally Homogeneous Foliations and Complex Secondary Classes

Notation 3.1.1. Given a Lie group, we denote its Lie algebra by the corres-

ponding German lower case letter, e.g., if G is a Lie group, then its Lie algebra is

denoted by g.

Let G be a Lie group and K its connected closed Lie subgroup. Let H be a

connected subgroup ofG which containsK, and denote by F̃ the foliation ofG whose
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28 3. NON-TRIVIALITY OF THE GODBILLON–VEY CLASS

leaves are {gH g ∈ G}. This foliation induces a foliation F̂ of G/K invariant under

the left action of G. If in addition G/K admits a cocompact lattice Γ , a foliation

FΓ of M = Γ\G/K is induced.

Definition 3.1.2. A foliation FΓ obtained from a quadruplet (G,H,K, Γ ) as

above is called a locally homogeneous foliation. If K is trivial, then FΓ is called a

(G,H)-foliation or a homogeneous foliation.

Definition 3.1.3. Assume that H is a closed Lie subgroup of G. A foliation

F of M is said to be a transversely (G,G/H)-foliation or transversely homogeneous

foliation if F admits a foliation atlas ({Vλ×Bλ}, {(ψμλ, γμλ)}) as in Definition 1.1.1

such that Bλ is an open subset of G/H and γμλ is given by the natural left action

of G on G/H.

Locally homogeneous foliations are transversely (G,G/H)-foliations if H is

closed. Indeed, FΓ is locally given by the submersion from G/K to G/H and

the transition functions in the transverse direction is given by the left action of G.

Locally homogeneous and transversely homogeneous foliations are studied by

many people (cf. [12], [15], [63], [61], [20], [14], [44], etc.). For example, there are

following results. Some of statements are slightly modified to meet our notations

and conventions.

Theorem 3.1.4 (Benson–Ellis [14], see also [20], [44]). Let F be a transversely

(G,G/H)-foliation. If G is semisimple, then all real secondary classes of F are rigid.

Theorem 3.1.5. Let F be a (G,H)-foliation.

1) (Pittie [63] and Pelletier [61]) If H is nilpotent or reductive, then all real

secondary classes of F are trivial. If H is solvable, then only real secondary

classes which can be non-trivial are the non-zero multiples of the Godbillon–

Vey class.

2) (Pittie [63]) If (G,H) is a parabolic pair, namely, if G is semisimple and

H is parabolic, then only real secondary classes of the form hIcJ (F) with
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i1+cJ = codimRF+1 can be non-trivial, where i1 is the smallest entry of I.

Moreover, such non-trivial classes are cohomologous to scalar multiples

of h1hI′cq1(F).

There are examples where GVq(F) and h1hI′cq1(F) are non-trivial in the both cases,

where q = codimRF .

Assume now that g/h admits G-invariant complex structures. Then FΓ is trans-

versely holomorphic. It is the case if G and H are complex Lie groups. In what

follows, we pose the following

Assumption 3.1.6. Let G be a complex Lie group and let H be its closed con-

nected complex Lie subgroup. Assume that there is an AdK-invariant splitting

σ : g/h → g, i.e., the image is invariant under the action of AdK . Assume also

that there is an AdK-invariant Hermitian metric on g/h.

It is easy to verify that if σ is AdK -invariant, then Adk(σ(v)) = σ(Adk(v)) for

v ∈ g/h and k ∈ K. Note that a splitting σ and a Hermitian metric as above always

exist if K is compact.

Let F̂ be the foliation of G/K induced by the foliation F̃ of G as above. Then

the complex normal bundle Q(F̂) of F̂ is naturally isomorphic to G ×K (g/h),

where K acts on G × (g/h) on the right by (g, v) · k = (gk,Adk−1v). Hence the

normal bundle Q(FΓ ) is naturally isomorphic to Γ\G ×K (g/h). If we denote by

P = P (F̂) the principal bundle associated with Q(F̂), then P ∼= G ×K GL(g/h),

where (g,A) · k = (gk, k−1A) for (g,A) ∈ G×GL(g/h).

Connections of the following kind are relevant.

Definition 3.1.7. A connection on Q(FΓ ) is said to be locally homogeneous if

it is induced by a gl(g/h)-valued 1-form on the trivial bundle G×GL(g/h) and if it

is invariant under the left G-action and the right K-action as above.

The following theorem is known to hold under these assumptions, although the

theorem is usually stated for the real secondary classes derived from H∗(WOq).
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Theorem 3.1.8 (Kamber–Tondeur [49], Baker [12], Pittie [63]). Let (G,H,K, Γ )

be as above and assume that there are an AdK-invariant splitting of g → g/h and

an AdK-invariant Hermitian metric on g/h. Let gR be the Lie algebra g viewed as

a real Lie algebra. Then the characteristic mapping χC for FΓ is factored through

H∗(gR, k) if locally homogeneous connections are used in calculation. This mapping

is independent of the choice of locally homogeneous connections so that there is a

well-defined mapping from H∗(WUq) to H∗(gR, k) which factors the characteristic

mapping.

If g′ is a real Lie algebra and if k′ is a Lie subalgebra of g′, then the cohomology

group H∗(g′, k′) is by definition the cohomology of the complex

C∗(g′, k′) =
{
ω ∈ ∧∗

g′∗ iKω = 0, iKdω = 0 for all K ∈ k′
}
,

where iK denotes the interior product with K. We refer to [16] for more details.

Theorem 3.1.8 is quite useful when combined with the following theorem of

T. Kobayashi and K. Ono. The following is a quite reduced form.

Theorem 3.1.9 ([52, Proposition 3.9 and Example 3.6]). Let G′ be a real con-

nected semisimple Lie group and let K ′ be its compact subgroup. If Γ ′ is a cocompact

lattice of G′/K ′, then the natural mapping H∗(g′, k′) → H∗(Γ ′\G′/K ′) is injective.

By virtue of Theorems 3.1.8 and 3.1.9, it suffices to study the characteristic

classes of examples in Section 3.3 as an element ofH∗(gR, k) rather thanH∗(Γ\G/K).

From now on, we will give a proof Theorem 3.1.8 in steps by following Baker [12].

We do not assume that G is semisimple nor K is compact until Section 3.2.

There is a natural Bott connection as follows.

Definition 3.1.10 (cf. [12, Lemma 4.3]). Let π : g → g/h be the projection

and σ an AdK-invariant section to π. Set ρ = idg − σπ, and define a gl(g/h)-valued

1-form θ on G×GL(g/h) by setting

θ(g,A)(X,Y ) = AdA−1(L∗
g−1ρ∗ad)(X) + τA(Y ),

where (X,Y ) ∈ T(g,A)(G×GL(g/h)) and τ is the Maurer–Cartan form on GL(g/h).
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Note that ρ is also an AdK-invariant mapping from g to h.

Lemma 3.1.11 ([12]). θ induces a connection on P invariant under the natural

left action of G on P . Moreover, θ is associated with a Bott connection on the com-

plex normal bundle Q(F̂).

Proof. We will prove the lemma in steps.

Claim 1. θ projects down to P .

Let k ∈ K and denote by R• the right action of K on G×GL(g/h). Then

(R∗
kθ)(g,A) = R∗

kθ(gk,Adk−1A)

= R∗
k(AdA−1AdAdk

(L∗
g−1L∗

k−1ρ∗ad) + τk−1A)

= AdA−1AdAdk
(L∗

g−1Ad
∗
k−1ρ∗ad) + τA.

Hence it suffices to show that Ad∗k−1ρ∗ad = AdAdk−1 ◦ ρ∗ad. This is a consequence

of the following infinitesimal version.

Claim 2. ad∗wρ
∗ad = [adw, ρ

∗ad] if w ∈ k, where the right hand side is the Lie

bracket of adw and ρ∗ad in gl(g/h).

Indeed, for X,Y ∈ g, one has (ad∗wρ
∗ad(X))Y = adρ[w,X]Y . Since w ∈ k and ρ

is AdK-invariant,

adρ[w,X]Y = [[w, Y ], ρ(X)] + [w, [ρ(X), Y ]]

= −adρ(X)(adwY ) + adw(adρ(X)Y ).

Hence Claim 2 and Claim 1 are shown.

Let RA denote the right action of GL(g/h) on P , and given a vector v ∈ gl(g/h),

ṽ denotes the vertical fundamental vector field induced by v.

Claim 3. R∗
Aθ = AdA−1θ and θ(ṽ) = v.

If (X,Y ) ∈ T(g,B)(G×GL(g/h)), then

(R∗
Aθ)(g,B)(X,Y ) = θ(g,BA)(X,RA∗Y )

= AdA−1AdB−1adρ(Lg−1∗X) + τB(RA∗Y )

= AdA−1(θ(g,B)(X,Y )).

The second claim is clear.
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Claim 4. θ is left invariant.

Let L• be the left action of G on G×GL(g/h). Then,

(L∗
g1θ)(g2,A)(X,Y ) = AdA−1(L∗

g1−1L∗
g2−1ρ∗ad)(Lg1∗X) + τA(Y )

= θ(g2,A)(X,Y ).

Claim 5. θ is a Bott connection.

Let [g0] ∈ G/K and choose a local decomposition U1×U2 of G around g0, where

U1 and U2 are open sets such that U1 ⊂ K and U2 is diffeomorphic to an open set

of G/K containing [g0] (in terms of foliations, U1 × U2 is a foliation chart for the

foliation of G by cosets of K). Define a local section of P around [g0] by setting

s([g]) = [g, idg/h], where g ∈ U2. If X ∈ T[g0](g0H/K) and Y ∈ Q(F̂)[g0], then one

may assume that Lg0−1∗X ∈ h and Lg0−1∗Y ∈ g/h. It follows that

(s∗θ)[g0](X)Y = θ(g0,idg/h)(s∗X)s∗Y = adXY. �

Let {ω1, . . . , ωq} be a basis for (g/h)∗ and consider each ωi as an element of g∗

which vanishes when restricted to h. As H is a subgroup, there is a gl(g/h)-valued

1-form θ such that dω = −θ∧ω, where ω = t(ω1, . . . , ωq). Since ω can be considered

as an element of P , one has the following

Corollary 3.1.12. Assume that θ = 0 when restricted to the image of the

AdK-invariant splitting σ as above, then θ can be regarded as a left invariant Bott

connection on Q(F̂).

Fix now an AdK-invariant Hermitian metric on g/h so that AdK ⊂ U(g/h). Let

h = k⊕n⊕m be an AdK-invariant splitting such that k⊕n = k+ker ad and adn = 0,

and denote by ρ′ the projection from h to k. Finally, choose an AdAdK
-invariant

splitting gl(g/h) = adk ⊕ adm ⊕ l and denote by p the projection to adk.

Lemma 3.1.13 (cf. [12, Lemma 4.4]). If we set ρu = ρ′ ◦ ρ : g → k, then we have

the following properties :

1) p ◦ adρ(X) = adρu(X) for X ∈ g.
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2) If we set

θu(g,A)(X,Y ) = AdA−1(L∗
g−1ρ∗uad)(X) + τA(Y ),

then θu is a unitary connection.

Proof. Let X = X1 + X2 + X3 ∈ k ⊕ n ⊕ m = h. Then ρu(X) = X1 and

adX = adX1
+ adX3

. Hence p ◦ adX = adX1
= adρu(X). Since the mapping ρu is

AdK-invariant, we can show, by a similar argument as in the proof of Lemma 3.1.11,

that θu is a connection form on P . Finally, θu is u(g/h)-valued when restricted to

G×K U(g/h). Therefore θu is unitary. �

Proof of Theorem 3.1.8. Since the connections given by Lemmata 3.1.11

and 3.1.13 are left invariant, they induce connections on Q(F). When calculated by

these connections, the characteristic mapping is factored through H∗(gR, k). Thus

obtained mapping is shown to be independent of the choice of connections by stand-

ard arguments (cf. [19]). �

Let FΓ be a locally homogeneous, transversely holomorphic foliation associated

with (G,H,K, Γ ). A version of Theorem 3.1.8 for foliations with trivial normal

bundle can be also shown by similar arguments as above.

Theorem 3.1.14. Let FΓ , F̂ and (G,H,K, Γ ) be as above. Assume that Q(F̂)

admits a left invariant trivialization, say s. Then the characteristic mapping χ̂C

FΓ ,s

is factored through H2q+1(gR, k) by using a locally homogeneous Bott connection.

The factorization is independent of the choice of the connection and depends on left

invariant homotopy type of s. In particular, the Bott class is realized as an element

of H2q+1(gR, k) and independent of the choice of invariant trivializations and locally

homogeneous Bott connections.

The last part follows from the fact that the Bott class is independent of the

choice of trivializations.
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3.2. Calculation of the Lie Algebra Cohomology

In what follows, we assume that G is a complex semisimple Lie group and that

K is a compact connected Lie subgroup of G. Hence there are always cocompact

lattices of G/K, and Theorem 3.1.9 is valid.

Notation 3.2.1. Let g0 be a compact real form of g. We assume that k ⊂ g0.

The complex Lie algebra g considered as a real Lie algebra is denoted by gR. Let J

be the complex structure of g and let g− be the Lie algebra gR equipped with the

complex structure −J . The complex conjugate on g with respect to g0 is denoted

by σ, namely, σ(X + JY ) = X − JY for X,Y ∈ g0.

We will construct an isomorphism from H∗(gR, k) to H∗(G0 × (G0/K)), where

G0 is a compact Lie group with Lie algebra g0.

Definition 3.2.2. The complex conjugate of an element of ω ∈ ∧ g∗ is denoted

by ω ∈ ∧ g−∗. Their complexifications are denoted as follows:

ωC = ω ⊗ C ∈ (
∧
g∗R)⊗ C,

ωC = (ω)C.

Note that if ω restricted to g0 takes values in R (resp.
√−1R), then ω = σ∗ω

(resp. ω = −σ∗ω).

Definition 3.2.3. Let κ0 : g0⊕g0 → g0⊕
√−1Jg0 ⊂ gR⊗C be the isomorphism

of real Lie algebras defined by

κ0(X1, X2) =
1

2
(X1 −

√−1JX1) +
1

2
(X2 +

√−1JX2).

Since g0 ⊕ √−1Jg0 is a real form of gR ⊗ C, κ0 induces an isomorphism

κ : g⊕ g → gR ⊗ C by complexification. If X,Y, Z,W ∈ g0, then

κ(X + JY, Z + JW )

=
1

2
(X + JY + Z − JW ) +

√−1
1

2
(−JX + Y + JZ +W ).

The following formulae are frequently used.
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Lemma 3.2.4. If X ∈ g0, then we have

κ−1(X) = (X,X),

κ−1(
√−1X) = (JX, JX),

κ−1(JX) = (JX,−JX),

κ−1(
√−1JX) = (−X,X).

The following lemma can be easily shown from the above formulae.

Lemma 3.2.5. Let κ : g⊕g → gR⊗C be as above and Δk the diagonal embedding

of k into g⊕ g. Then κ−1(k) = Δk and κ−1(k⊗ C) = Δk⊗ C = {(k, k) k ∈ k⊗ C}.

AsC is chosen as the coefficients, there is a natural isomorphism fromH∗(gR, k;C)

toH∗(gR ⊗ C, k⊗ C;C). Hence κ induces an isomorphism

κ∗ : H∗(gR, k) → H∗(g⊕ g,Δk⊗ C).

Lemma 3.2.6. Let ω ∈ g∗. If we set ω1 = (ω, 0) ∈ g∗ ⊕ g∗ and ω2 = (0, ω) ∈
g∗ ⊕ g∗, then κ∗(ωC) = ω1. If ω|g0

is R-valued, then κ∗(ωC) = ω2. If ω|g0
is

√−1R-valued, then κ∗(ωC) = −ω2.

Proof. If X,Y, Z,W ∈ g0, then

κ∗(ωC)(X + JY, Z + JW )

=
1

2
(ω(X) + ω(JY ) + ω(Z)− ω(JW )) +

1

2
(ω(X) + ω(JY )− ω(Z) + ω(JW ))

= ω(X + JY ).

If we assume that ω|g0
is valued in R, then ω = σ∗ω. Hence

κ∗(ωC)(X + JY,Z + JW )

=
1

2
(ω(X) +ω(JY ) +ω(Z)−ω(JW )) +

√−1

2
(−ω(JX) +ω(Y ) +ω(JZ) +ω(W ))

=
1

2
(ω(X)−ω(JY ) +ω(Z) +ω(JW )) +

1

2
(−ω(X) +ω(JY ) +ω(Z) +ω(JW ))

= ω(Z + JW )

= ω2(X + JY,Z + JW ).

If ω|g0
is valued in

√−1R, then the equation κ∗(ωC) = −ω2 follows from similar

calculations. �
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Since g0 is a real form of g, there are isomorphisms as follows:

H∗(g⊕ g,Δ(k⊗ C)) ∼=H∗((g0 ⊗ C)⊕ (g0 ⊗ C),Δk⊗ C)

∼=H∗((g0 ⊕ g0)⊗ C,Δk⊗ C)

∼=H∗((G0 ×G0)/K),

where K acts on G0 × G0 diagonally on the right. The diffeomorphism τ : G0 ×
(G0/K) → (G0 ×G0)/K given by τ(g1, [g2]) = [g1g2, g2] induces an isomorphism

τ∗ : H∗((g0 ⊕ g0)⊗ C,Δk⊗ C) → H∗(g0 ⊗ C)⊗H∗(g0 ⊗ C, k⊗ C)

given by τ∗([α, β]) = ([α], [α + β]). Note that H∗(g0 ⊗ C) ⊗ H∗(g0 ⊗ C, k ⊗ C) ∼=
H∗(G0 × (G0/K)). Summing up, we obtained the following

Proposition 3.2.7. Let κ and τ be as above. Then

τ∗κ∗ : H∗(gR, k) → H∗(g0)⊗H∗(g0, k) ∼= H∗(G0 × (G0/K))

is an isomorphism such that

τ∗κ∗(ω) = (ω, ω),

τ∗κ∗(ω) =

{
(0, ω), if ω|g0

is valued in R,

(0,−ω), if ω|g0
is valued in

√−1R,

where ω ∈ g∗.

3.3. Examples

This is the main section of the first half of this monograph. We will construct ex-

amples of transversely holomorphic foliations with non-trivial Godbillon–Vey class.

We will also compare some of examples to show that they are not cobordant even

as real foliations. Recall that G is a complex semisimple Lie group, H is a com-

plex closed Lie subgroup and K is a compact connected Lie subgroup contained

in H. Inwhat follows, transversely (G,G/H)-foliations are called (G,G/H)-foliations

for short.
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Notation 3.3.1. Cochains in WO2q are regarded as cochains in WUq via the

mapping λ in Theorem 2.1. If α ∈ H∗(WUq), then the image of α under χFΓ
as an

element of H∗(gR, k) is denoted by α(K).

The following lemma shows that it is preferable to verify the non-triviality of

GV2q(K) for small K.

Lemma 3.3.2. Suppose that α(K) is non-trivial in H∗(gR, k). If K ′ is a compact

subgroup such that K ⊂ K ′ ⊂ H, then α(K ′) is non-trivial in H∗(gR, k′).

Proof. We have a natural mapping r : H∗(gR, k′) → H∗(gR, k). By the func-

toriality of the characteristic mapping, r(α(K ′)) = α(K). �

We have however the following

Proposition 3.3.3. vi({e}) = vi({e}) = 0 holds for all i. In particular,

GV2q({e}) = 0.

Proof. The bundle Q(F̂) admits a G-invariant trivialization because it is iso-

morphic to G × (g/h). Hence vi({e}) = vi({e}) = 0. The Godbillon–Vey class is

also trivial by Theorem 2.1. �

We recall the definition of several Lie algebras to fix notations. We denote by

Iq the identity matrix in M(q;C) and set Jq =

(
0 Iq

−Iq 0

)
∈M(2q;C).

Definition 3.3.4.

1) sl(q + 1;C) = {X ∈M(q + 1;C) trX = 0}.
2) su(q + 1) =

{
X ∈ sl(q + 1;C) X + tX = 0

}
.

3) so(q;F ) =
{
X ∈M(q;F ) X + tX = 0

}
, where F = R or F = C.

4) sp(q;C) =
{
X ∈M(2q;C) tXJq + JqX = 0

}
.

5) sp(q) = sp(q;R) = sp(q;C) ∩ su(2q).

For more details including the topology of homogeneous spaces, we refer to [59].
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Notation 3.3.5. In what follows, rows and columns of matrices are always

counted from zero. We denote by Eij (0 ≤ i, j ≤ q) the matrix such that the

(i, j)-entry is 1 and the other entries are 0.

Example 3.3.6. We will construct an (SL(q + 1;C),CP q)-foliation. Let g =

sl(q+1;C) and g0 = su(q+1). Let T q be the maximal torus of G realized as a subset

of diagonal matrices in the standard way, and let Uq, SUq and H be subgroups of

G defined by

Uq =

{(
a 0
0 B

)
B ∈ U(q), a = (detB)−1

}
,

SUq =

{(
1 0
0 B

)
B ∈ SU(q)

}
,

H =

{(
a ∗
0 B

)
B ∈ GL(q;C), a = (detB)−1

}
.

The subgroup Uq is also denoted by T 1 × SUq. Let K be a compact connected

subgroup of G such that T q ⊂ K ⊂ Uq. Let {ωij}0≤i,j≤n be the basis for gl(q+1;C)∗

dual to {Eij}0≤i,j≤n. We denote again by ωij the restriction of ωij to g. We have
q∑

i=0

ωii = 0 and dωij = −
q∑

k=0

ωik ∧ ωkj . If we set ω = t(ω10, ω20, . . . , ωq0), then

h = kerω and dω = −θ ∧ ω, where

θ =

⎛⎜⎝ω11 · · · ω1q

...
. . .

...
ωq1 · · · ωqq

⎞⎟⎠− ω00Iq.

Let σ : g/h → g be the splitting with the property σ([Ei0]) = Ei0 for i > 0. Then, σ

is AdUq
-invariant and the restriction of θ to σ(g/h) is trivial. Hence θ can be seen

as a Bott connection with respect to the basis {[Ei0]}i for g/h by Corollary 3.1.12.

Let g be the Hermitian metric on g/h given by g([X], [Y ]) = tr tσ([X])σ([Y ]) for

[X], [Y ] ∈ g/h. Then g is AdUq
-invariant and {[Ei0]}i is an orthonormal basis.

Hence the connection form of the unitary connection θu, given by Lemma 3.1.13,

with respect to {[Ei0]}i is skew-Hermitian.
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We denote cochains in WO2q and WUq evaluated by the Bott connection θ and

the unitary connection θu again by their own letters. Then we have

h1 =
√−1ũ1 =

q + 1

2π
(ω00 + ω00),

c1 = dh1 =
√−1(v1 − v1)

= −q + 1

2π

q∑
i=0

(ω0i ∧ ωi0 + ω0i ∧ ωi0).

It follows from Theorem 3.1.8 that

GV2q(K) = h1c
2q
1 = C (ω00 + ω00) ∧

q∧
i=1

(ω0i ∧ ωi0 ∧ ω0i ∧ ωi0)

holds in H2q+1(gR, k), where C = (2q)!

(
q + 1

2π

)2q+1

.

We now set Xij = Eij −Eji, Yij =
√−1(Eij +Eji) and Kk =

√−1(E00−Ekk),

where 1 ≤ k ≤ q. Then {Eij}0≤i<j≤q, {Yij}0≤i<j≤q and {Kk}1≤k≤q form a basis

for g0 = su(q + 1). Let αk, βij , γij be the dual of Kk, Xij , Yij , respectively. Note

that −βji = βij and γji = γij . If we denote the extensions of αk, βij and γij to g

by complexification again by the same letters, then

ω00 =
√−1(α1 + · · ·+ αq),

ωij = βij +
√−1γij , where i �= j.

The following equality holds by Lemma 3.2.6:

κ∗
(

q∧
i=1

(ω0i ∧ ωi0 ∧ ω0i ∧ ωi0)

)
=

q∧
i=1

((β1
0i +

√−1γ10i) ∧ (β1
i0 +

√−1γ1i0) ∧ (β2
0i −

√−1γ20i) ∧ (β2
i0 −

√−1γ2i0))

=
q∧

i=1

((β1
0i +

√−1γ10i) ∧ (β1
0i −

√−1γ10i) ∧ (β2
0i −

√−1γ20i) ∧ (β2
0i +

√−1γ20i))

=
q∧

i=1

(4β1
0i ∧ γ10i ∧ β2

0i ∧ γ20i),
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where the superscripts are as in Lemma 3.2.6. Hence the equality

κ∗(GV2q(K))

=C
√−1 (α1

0 − α2
0) ∧

q∧
i=1

(4β1
0i ∧ γ10i ∧ β2

0i ∧ γ20i)

= (2q)!

(
q + 1

π

)2q+1 √−1

2
(α1

0 − α2
0) ∧

q∧
i=1

(β1
0i ∧ γ10i ∧ β2

0i ∧ γ20i)

holds in H∗(g⊕ g,Δk⊗ C) ∼= H∗(g0 ⊕ g0,Δk), where α0 = α1 + · · ·+ αq.

Finally, the following equality holds by Proposition 3.2.7:

τ∗κ∗(GV2q(K))

= (2q)!

(
q + 1

π

)2q+1 √−1

2
α1
0 ∧
(

q∧
i=1

(β1
0i + β2

0i) ∧ (γ10i + γ20i)

)
∧
(

q∧
i=1

β2
0i ∧ γ20i

)
=(2q)!

(
q + 1

π

)2q+1 √−1

2
α1
0 ∧
(

q∧
i=1

β1
0i ∧ γ10i

)
∧
(

q∧
i=1

β2
0i ∧ γ20i

)
.

The non-triviality of GV2q(K) is shown as follows. First, α1
0 ∧
(

q∧
j=1

β1
0j ∧ γ10j

)
and

q∧
j=1

β2
0j ∧ γ20j are non-zero multiples of the volume forms of S2q+1 = SU(q + 1)/SUq

and CP q = SU(q+1)/(T 1×SUq), respectively. As the natural mappings π1 : SU(q+

1) → S2q+1 = SU(q + 1)/SUq and π2 : SU(q + 1)/T q → CP q = SU(q + 1)/(T 1 ×
SUq) induce injective mappings on the cohomology, GV2q(T

q) is non-trivial in the

cohomology. By Lemma 3.3.2, GV2q(K) is non-trivial so far as T q ⊂ K ⊂ Uq.

On the other hand, GV2q(K) is trivial if K ⊂ SUq. If K = SUq, then the

characteristic mapping is factored through H∗(SU(q + 1)) ⊗ H∗(SU(q + 1)/SUq),

which is trivial in degree 2. Therefore GV2q(K) is trivial by Theorem 2.1 because

ch1(K) is trivial. By Lemma 3.3.2, GV2q(K) is trivial if K ⊂ SUq.

Several remarks are in order. We retain the notations in Example 3.3.6.
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Remark 3.3.7. The relation between ξq and GV2q in Theorem 2.1 is verified

as follows. We have

v1 = − q + 1

2π
√−1

q∑
i=1

ω0i ∧ ωi0,

v1 =
q + 1

2π
√−1

q∑
i=1

ω0i ∧ ωi0.

Hence

κ∗v1 = − q + 1

2π
√−1

q∑
i=1

(β1
0i +

√−1γ10i) ∧ (−β1
0i +

√−1γ10i)

= −q + 1

π

q∑
i=1

β1
0i ∧ γ10i,

κ∗v1 =
q + 1

2π
√−1

q∑
i=1

(β2
0i −

√−1γ20i) ∧ (−β2
0i −

√−1γ20i)

= −q + 1

π

q∑
i=1

β2
0i ∧ γ20i.

It follows that

τ∗κ∗ ch1(K)q = q!

(
−q + 1

π

)q q∧
i=1

(β2
0i ∧ γ20i)

in H2q(SU(q + 1)× (SU(q + 1)/K)). On the other hand,

ξq(K) =
√−1ũ1(v

q
1 + vq−1

1 v1 + · · ·+ vq1)

=
√−1

(
q + 1

2π

)
q!

(
−q + 1

π

)q

α1
0 ∧

q∧
i=1

(β1
0i ∧ γ10i) +

q∑
i=1

ωi ∧ β2
0i ∧ γ20i

for some ωi, i = 1, . . . , q. Hence the equality GV2q(K) =
(2q)!

q! q!
ξq(K) ch1(K)q

certainly holds. Note that ξq(K) is non-trivial even if K = {e}.

Remark 3.3.8. Real secondary classes other than the Godbillon–Vey class also

can be computed. As an example, consider the case where q = 2. Since these

classes can be realized as classes in H∗(SU(3))⊗H∗(SU(3)/(T 1 × SU2)), it suffices

to compute the classes of degree 4q + 1 = 9 by 2) of Theorem 3.1.5 due to Pittie

[63]. Indeed, if hIcJ(T
1 ×SU2) is non-trivial, then i1 + |J | = 2q+1 = 5. Hence the
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degree of hIcJ (T
1 × SU2) is 9 + (2i2 − 1) + · · · + (2ir − 1), where I = {i1, . . . , ir},

so that the only possibility is I = {i1} because i2 ≥ 3.

The classes of degree 9 are h1c
4
1, h1c

2
1c2, h1c1c3, h1c4, h1c

2
2 and h3c2. By

Theorem 2.1, the following formulae hold for c2, c3, c4 and h3:

c2 = −(v2 − v1v1 + v2), c3 = −√−1(−v2v1 + v1v2), c4 = v2v2,

h3 = −
√−1

2
(−ũ2(v1 + v1) + ũ1(v2 + v2)).

Hence

h1c
4
1 = 6

√−1ũ1v
2
1v

2
1, h1c

2
1c2 =

√−1ũ1(v
2
1v2 + 2v21v

2
1 + v2v

2
1),

h1c1c3 =
√−1ũ1(v

2
1v2 + v2v

2
1), h1c4 =

√−1ũ1v2v2,

h1c
2
2 =

√−1ũ1(2v2v2 + v21v
2
1),

and

h3c2 =

√−1

2
(−ũ2(v1 + v1) + ũ1(v2 + v2))(v2 − v1v1 + v2)

=

√−1

2
(−ũ2(−v21v1 + v1v2 + v2v1 − v1v

2
1) + 2ũ1v2v2)

=

√−1

2
(−ũ2(v1 − v1)(v

2
1 + v2 − v2 − v21) + 2ũ1v2v2)

≡
√−1

2
(−ũ1(v2 − v2)(v

2
1 + v2 − v2 − v21) + 2ũ1v2v2)

=

√−1

2
ũ1(v2v

2
1 + v21v2),

where ‘≡’ means that the equality holds in H∗(WU2).

On the other hand, the curvature matrix of θ is given by

dθ + θ ∧ θ

=

(
dω11 − dω00 + ω12 ∧ ω21 dω12 + ω11 ∧ ω12 + ω12 ∧ ω22

dω21 + ω21 ∧ ω11 + ω22 ∧ ω21 dω22 − dω00 + ω21 ∧ ω12

)
=

(
2ω01 ∧ ω10 + ω02 ∧ ω20 −ω10 ∧ ω02

−ω20 ∧ ω01 ω01 ∧ ω10 + 2ω02 ∧ ω20

)
.
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If we use θ, then v1, v2 and ũ1 are calculated as follows:

v1 = − 3

2π
√−1

(ω01 ∧ ω10 + ω02 ∧ ω20),

v2 =

( −1

2π
√−1

)2

6ω01 ∧ ω10 ∧ ω02 ∧ ω20,

ũ1 =
3

2π
√−1

(ω00 + ω00).

If we set

(gv) =
3

(2π)5
(ω00 + ω00) ∧ ω01 ∧ ω10 ∧ ω02 ∧ ω20 ∧ ω01 ∧ ω10 ∧ ω02 ∧ ω20,

then

GV4 = h1c
4
1 = 6 · (2 · 32)2(gv) = 23 · 35 (gv),

h1c
2
1c2 =

(
(2 · 32) · 6 + 2(2 · 32)2 + 6 · (2 · 32)) (gv) = 25 · 33 (gv),

h1c1c3 =
(
(2 · 32) · 6 + 6 · (2 · 32)) (gv) = 23 · 33 (gv),

h1c4 = 62 (gv) = 22 · 32 (gv),
h1c

2
2 =

(
2 · 62 + (2 · 32)2) (gv) = 22 · 32 · 11 (gv),

h3c2 =
1

2

(
6 · (2 · 32) + (2 · 32) · 6) (gv) = 22 · 33(gv).

Hence

h1c
2
1c2(K) =

4

9
GV4(K), h1c1c3(K) =

1

9
GV4(K),

h1c4(K) =
1

54
GV4(K), h1c

2
2(K) =

11

54
GV4(K),

h3c2(K) =
1

18
GV4(K)

in H9(gR, k;C) if K satisfies T q ⊂ K ⊂ U2. There are the following relations:

h3c2 =
1

2
h1c1c3,

h1c4 =
1

2
h1c

2
2 −

1

12
h1c

4
1,

h1c1c3 = h1c
2
1c2 −

1

3
h1c

4
1.

Note that these relations hold for any transversely holomorphic foliations by The-

orem 2.6.
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We can also compute some complex secondary classes. We still assume that q =

2. The matrix valued 1-form
θ − tθ

2
induces a unitary connection by Lemma 3.1.13.

If we set ω̂ij = ωij + ωji, then

ũ2 =
1

8π2
((5ω̂00 + ω̂11) ∧ (ω01 ∧ ω10 − ω01 ∧ ω10)

+ (5ω̂00 + ω̂22) ∧ (ω02 ∧ ω20 − ω02 ∧ ω20)

+ (ω̂11 − ω̂22) ∧ ω̂21 ∧ ω̂12

− ω̂21 ∧ (ω10 ∧ ω02 − ω20 ∧ ω01)− ω̂12 ∧ (ω20 ∧ ω01 − ω10 ∧ ω02)).

Hence

ũ1ũ2v
q
1v

q
1(K) = ω̂11 ∧ ω̂22 ∧ ω01 ∧ ω10 ∧ ω02 ∧ ω20 ∧ ω̂21 ∧ ω̂12

holds up to multiplications of constants. As the above differential form is a non-

zero multiple of the volume form of SU(3)/(T 1 × SU2), the class ũ1ũ2v
q
1v

q
1(K) is

non-trivial.

Remark 3.3.9. The proof of the non-triviality of the Godbillon–Vey class in

Example 3.3.6 shows that the non-triviality of GV2q(T
q) follows from the non-

triviality of GV2q(T
1 × SUq). On the other hand, GV2q(SUq) is trivial. Let Γ be

a cocompact lattice of SL(q + 1;C)/(T 1 × SUq) such that

p : Γ\SL(q + 1;C)/SUq → Γ\SL(q + 1;C)/(T 1 × SUq)

is an S1-bundle. The classes ξq(T
1×SUq), ξq(SUq) = p∗ξq(T 1×SUq) and ch1(T

1×
SUq)

q are non-trivial by Remark 3.3.7. On the other hand, ch1(SUq)
q = p∗(ch1(T 1×

SUq))
q is trivial. Since GV2q(K) is decomposed into the product of ξq(K) and

ch1(K)q by Theorem 2.1, it can be said that the triviality of GV2q(SUq) is a con-

sequence of the triviality of ch1(SUq). The commutative diagram

S2q+1 ��

��

Γ\SL(q + 1;C)/SUq
��

p

��

Γ\SL(q + 1;C)/SU(q + 1)

CP q �� Γ\SL(q + 1;C)/(T 1 × SUq) �� Γ\SL(q + 1;C)/SU(q + 1),
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where the first column is the Hopf fibration, indicates that the (non-)triviality of

the Godbillon–Vey class is closely related with the Hopf fibration.

We calculated secondary classes by using Theorem 3.1.8 because it enables us

to compute characteristic classes other than the Godbillon–Vey class. On the other

hand, there is a simpler way to obtain the non-triviality of the Godbillon–Vey class.

Suppose that c1(F) ∈ H2(M ;Z) is divisible by m ∈ Z in the sense that there

exists an element α ∈ H2(M ;Z) such that mα = c1(F) holds in H2(M ;Z). Let

then Wm be the principal S1-bundle over M associated with α, and let Gm = π∗
mF ,

where πm : Wm → M is the projection. By the construction, KGm
is trivial, and a

trivialization can be obtained as follows. We regard S1 as the unit circle in C, and

let t be the natural coordinates. Let {Ui × S1} be a family of local trivializations

of Wm such that F is given by dz1 = · · · = dzq = 0 on Ui (we omit the indices

of zk concerning the covering). We may assume that the transition functions are

of the form ((x, z), t) �→ ((ϕ(x, z), γ(z)), h(z)t), where h(z)m =
detDγ(z)

|detDγ(z)| . Then,

the family {ωm,i}, where ωm,i = t−mdz1 ∧ · · · ∧ dzq, gives a trivialization of KGm
,

which we denote by ωm. Let ei =
∂

∂z1
∧ · · · ∧ ∂

∂zq
and νi = dz1 ∧ · · · ∧ dzq. Then,

ei and νi are the local trivialization of K−1
F and KF on Ui, respectively. Note that

KGm
is locally trivialized by ωi = t−mπ∗

mνi. Let {fi} be a family of positive real

functions such that γ∗jifj = fi |Jγji|, where Jγji = detDγji. Such a family exists

because F is transversally orientable. Let ∇b be a Bott connection on K−1
F and let

{αi} be the family of local connection forms of ∇b with respect to {fiei}. We have

γ∗jiαj − αi = −dJγji
Jγji

+
d |Jγji|
|Jγ| . Hence, if we set

τi = m
dt

t
+ π∗

mαi

on Ui × S1, then {τi} determines a globally well-defined 1-form τ , and dωm =

−τ ∧ ωm.

With these preparations, we have the following:
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Theorem 3.3.10 ([8, Theorem 2.3]). Let (M,F) be a transversely holomorphic

foliation of complex codimension q. Let Wm, πm and Gm be as above. Then, we

have the following.

1) Bottq(Gm) = u1v
q
1(Gm) and u1vJ(Gm, ωm), where |J | = q, are well-defined.

2) We have

πm!(u1u1vJvK(Gm, ωm)) = −mũ1vJvK(F),

where |J | = |K| = q and πm! denotes the integration along the fiber. In

particular,

πm!(
√−1 Bottq(Gm)Bottq(Gm)) = −m q! q!

(2q)!
GV2q(F).

(The constant
q! q!

(2q)!
is missing in the original statement.)

Proof. Since KGm
is trivial by the construction, the classes of the form

u1vJ(Gm, ωm), where |J | = q, are well-defined. Let ∇̃b be a Bott connection on

Q(F). We may assume that ∇̃b induces ∇b on K−1
F . Then u1vJ(Gm, ωm) is locally

represented by
−1

2π
√−1

(
π∗
mαi +m

dt

t

)
∧ π∗

mvJ(∇b).

Hence u1u1vJvK(Gm, ωm) is locally represented by

1

4π2

(
π∗
mαi ∧mdt̄

t̄
+m

dt

t
∧ π∗

mαi

)
∧ π∗

mvJ(∇b) ∧ π∗
mvK(∇b)

=
−1

4π2
π∗
m (αi + αi) ∧ π∗

mvJ(∇b) ∧ π∗
mvK(∇b) ∧mdt

t
.

On the other hand, ũ1vJ(F)vK(F) is locally represented by

−1

2π
√−1

(αi + αi) ∧ vJ(∇b) ∧ vK(∇b).

The formula follows from these equalities. �

Remark 3.3.11. The following equalities are known to hold [22]:

πm!(u1vJ(Gm, ωm)) = πm!(u1vJ(Gm, ωm)) = −mvJ(F),

πm!(Bottq(Gm)) = πm!(Bottq(Gm)) = −m ch1(F)q.

Theorem 3.3.10 can be seen as a foliation version of these formulae.
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By using Theorem 3.3.10, the Godbillon–Vey class can be calculated as follows.

First, the Bott class u1v
q
1({e}) is well-defined (Definition 1.1.5) as an element of

H∗(sl(q + 1;C)R) because the complex normal bundle of F{e} is trivial. Indeed, it

is easy to show that the Bott class is well-defined and non-trivial if K is contained

in SUq. Note that GV2q({e}) = 0 by Proposition 3.3.3. By a similar but easier

calculation as in Example 3.3.6, one has

u1u1v
q
1v

q
1({e}) =

(
q + 1

2π

)2q+2

ω00 ∧ ω00 ∧ (dω00)
q ∧ (dω00)

q.

The mapping τ∗κ∗ is now an isomorphism from H∗(sl(q + 1;C)R) to H∗(SU(q +

1))⊗H∗(SU(q + 1)). The image of u1u1v
q
1v

q
1({e}) under τ∗κ∗ is equal to

q! q!

4

(
q + 1

π

)2q+2

α1
0 ∧ α2

0 ∧
(

q∧
j=1

β1
0j ∧ γ10j

)
∧
(

q∧
j=1

β2
0j ∧ γ20j

)
.

By repeating a similar argument as in Example 3.3.6, one can show the non-triviality

of this class. See Chapter 5 for related constructions.

Example 3.3.12. SO(m;R) and so(m;R) are denoted by SO(m) and so(m) in

this example. Let G = SO(q + 2;C), g = so(q + 2;C) and g0 = so(q + 2). If we set

T [
q+2
2 ] =

⎧⎪⎪⎨⎪⎪⎩

(q+2)/2︷ ︸︸ ︷
SO(2)⊕ · · · ⊕ SO(2), if q is even,

(q+1)/2︷ ︸︸ ︷
SO(2)⊕ · · · ⊕ SO(2)⊕{1}, if q is odd,

then T [
q+2
2 ] is a maximal torus. Let Eij be as in Notation 3.3.5, and Xij = Eij−Eji.

Then {Xij 0 ≤ i < j ≤ q + 1} is a basis for g. Note that {Xij} is also a basis for

g0 = so(q + 2) over R.

Let h± be the Lie subalgebras of g defined by

h± =
〈
X01, X0k ±√−1X1k, Xij 2 ≤ k ≤ q + 1, 2 ≤ i < j ≤ q + 1

〉
C
,

and let H± be the corresponding Lie subgroups. Let K be a connected compact

Lie subgroup of G such that T [
q+2
2 ] ⊂ K ⊂ T 1 × SO(q) = SO(2) ⊕ SO(q). We

will show that GV2q(K) is non-trivial if and only if q is odd. In what follows, the
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quadruplet (G,H+,K, Γ ) is considered and h+ and H+ are simply denoted by h

and H, respectively, because the argument for (G,H−,K, Γ ) is completely parallel.

Let ωij be the dual of Xij (i �= j). We have dωij = −
∑

0≤k≤q+1

ωik ∧ ωkj , where

ωij = −ωji and ωii = 0. It is easy to see that h = ker
〈
ω0i +

√−1ω1i 2 ≤ i ≤ q + 1
〉
,

and one has

d(ω0i +
√−1ω1i) =

√−1ω01 ∧ (ω0i +
√−1ω1i) +

q+1∑
l=2

ωli ∧ (ω0l +
√−1ω1l).

Let ω = t(ω02 +
√−1ω12, . . . , ω0,q+1 +

√−1ω1,q+1) and

θ = −

⎛⎜⎜⎜⎝
√−1ω01 −ω23 −ω24 · · · −ω2,q+1

ω23

√−1ω01 −ω34 · · · −ω3,q+1

...
. . .

...

ω2,q+1 ω3,q+1 · · · · · · √−1ω01

⎞⎟⎟⎟⎠ .

Then the above equality is written as dω = −θ ∧ ω.
On the other hand, if σ : g/h → g is the splitting defined by σ([X0j−

√−1X1j ]) =

X0j −
√−1X1j , where j = 2, . . . , q + 1, then σ is AdT 1×SO(q+2)-invariant. To see

this, note first that

[Xij , Xkl] = δjkXil + δilXjk − δikXjl − δjlXik,

where δij = 1 if i = j, and δij = 0 if i �= j. Since the Lie algebra of T 1 × SO(q)

is generated by X01 and Xij , 2 ≤ i < j ≤ (q + 1), over R, it suffices to verify

that [X01, X0l −
√−1X1l] and [Xij , X0l −

√−1X1l] belong to the image of σ, where

l = 2, . . . , q + 1. If l ≥ 2, then

[X01, X0l −
√−1X1l] = −X1l −

√−1X0l = −√−1(X0l −
√−1X1l).

On the other hand,

[Xij , X0l −
√−1X1l] = (δilXj0 − δjlXi0)−

√−1(δilXj1 − δjlXi1)

= −δil(X0j −
√−1X1j) + δjl(X0i −

√−1X1i).

Thus σ is AdT 1×SO(q+2)-invariant.
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As the restriction of θ to the image of σ is trivial, θ can be used as a Bott

connection by Corollary 3.1.12. Moreover, if we define a Hermitian metric g on

g/h by g([X], [Y ]) =
1

4
tr tσ([X])σ([Y ]) for [X], [Y ] ∈ g/h, then g is AdT 1×SO(q+2)-

invariant, and {[X0j −
√−1X1j ]} is an orthonormal basis with respect to g. Hence

we may use a unitary connection represented by a skew-Hermitian matrix.

By Theorem 3.1.8, one has the following equalities:

h1 =
q
√−1

2π
(ω01 − ω01),

c1 =
q
√−1

2π

q+1∑
k=2

(ω0k ∧ ω1k − ω0k ∧ ω1k).

Hence

GV2q(K) =
√−1

( q
2π

)2q+1

(ω01 − ω01) ∧
q+1∧
l=2

(ω0l ∧ ω1l ∧ ω0l ∧ ω1l)

in H4q+1(gR, k). Since {Xij} is also a basis for g0 over R, we have

κ∗ GV2q(K) =
√−1

( q
2π

)2q+1

(ω1
01 − ω2

01) ∧
q+1∧
l=2

(ω1
0l ∧ ω1

1l ∧ ω2
0l ∧ ω2

1l)

by Lemma 3.2.6, where {ωij} is considered as the dual basis for g∗0.

Finally by Proposition 3.2.7,

τ∗κ∗ GV2q(K) =
√−1

( q
2π

)2q+1

ω1
01 ∧

q+1∧
l=2

(ω1
0l ∧ ω1

1l ∧ ω2
0l ∧ ω2

1l).

Let SOq = {1}⊕{1}⊕SO(q) ⊂ SO(q+2). Note that T 1×SO(q) = SO(2)⊕SO(q).

Let π1 : SO(q+2) → SO(q+2)/SOq and π2 : SO(q+2)/K → SO(q+2)/(T 1×SO(q))

be natural projections. We denote by volSO(q+2)/SOq
and volSO(2m+1)/(T 1×SO(2m−1))

the natural volume forms of SO(q + 2)/SOq and SO(2m + 1)/(T 1 × SO(2m − 1)),

respectively. Then τ∗κ∗ GV2q(K) is a non-zero multiple of (π∗
1volSO(q+2)/SOq

) ∧
(π∗

2volSO(2m+1)/(T 1×SO(2m−1))). It is classical that π
∗
1(volSO(q+2)/SOq

) is non-trivial

if and only if q is odd. On the other hand, it is easy to see that if q is odd, then

π∗
2(volSO(2m+1)/(T 1×SO(2m−1))) is non-trivial even if pulled-back to H∗(SO(2m +

1)/Tm), where q = 2m− 1. Therefore, τ∗κ∗(GV2q(K)) is non-trivial if q is odd and

T [
q+2
2 ] ⊂ K ⊂ T 1 × SO(q), and τ∗κ∗(GV2q(K

′)) is trivial for any closed subgroup

K ′ of T 1 × SO(q) if q is even.



50 3. NON-TRIVIALITY OF THE GODBILLON–VEY CLASS

Example 3.3.13. Let g = sp(n+1;C), G = Sp(n+1;C), and g0 = sp(n+1;R) =

sp(n+ 1) ∩ su(2n+ 2). Note that

sp(n+ 1;C) =

{(
A B
C −tA

)
A,B,C ∈M(n+ 1;C), B = tB and C = tC

}
,

sp(n+ 1;R) =

{(
A B
C −tA

)
tA+A = 0, B = tB, C = tC and B + tC = 0

}
=

{(
A B
−B A

)
A = −tA, B = tB

}
.

LetXij = Eij−Ej+n,i+n, Ykk = Ek,k+n, Ykl = Ek,l+n+El,k+n, Zk′k′ = Ek′+n,k′ and

Zk′l′ = Ek′+n,l′ + El′+n,k′ , where 0 ≤ i, j ≤ n, 0 ≤ k < l ≤ n and 0 ≤ k′ < l′ ≤ n.

Then {Xij , Ykl, Zk′l′}0≤i,j≤n,0≤k≤l≤n,0≤k′≤l′≤n is a basis for g over C. We regard

sp(n;C) as a Lie subalgebra of sp(n+ 1;C) by realizing sp(n;C) as

sp(n;C) = 〈Xij , Ykl, Zk′l′ 1 ≤ i, j ≤ n, 1 ≤ k ≤ l ≤ n, 1 ≤ k′ ≤ l′ ≤ n〉
C
.

Then, sp(n;R) is also realized as a real Lie subalgebra of sp(n+ 1;C) via inclusion

to sp(n;C). Let Tn+1 be the maximal torus generated by
√−1Xii, 0 ≤ i ≤ n, over

R, and let T 1 × Sp(n;R) be the real subgroup of Sp(n + 1;C) whose Lie algebra

is generated over R by
√−1X00 and sp(n;R). Note that Tn+1 ⊂ T 1 × Sp(n;R) ⊂

Sp(n+ 1;C).

In what follows, K is assumed to be a compact connected real Lie subgroup

such that T 1 × Sp(n;R) ⊃ K ⊃ Tn+1. Let ωij , ηkl and ζkl be the dual of Xij , Ykl

and Zkl, respectively, where ηlk = ηkl and ζlk = ζkl. Then

dωij = −
n∑

s=0

ωis ∧ ωsj −
n∑

t=0

ηit ∧ ζtj ,

dηkl = −
n∑

s=0

ωks ∧ ηsl +
n∑

t=0

ηkt ∧ ωlt,

dζk′l′ = −
n∑

s=0

ζk′s ∧ ωsl′ +
n∑

t=0

ωtk′ ∧ ζtl′ .

Let h = ker〈ωi0, ζ0j〉1≤i≤n, 0≤j≤n. Then h is a Lie subalgebra of g, and

h = 〈X00, Xij , Ykl, Zk′l′ 1 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ k ≤ l ≤ n, 1 ≤ k′ ≤ l′ ≤ n〉 .

The foliation induced from h is of complex codimension q = 2n+ 1.
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Let σ : g/h → g be a splitting defined by

σ([Xi0]) = Xi0, σ([Z0j ]) = Z0j .

Then σ is AdT 1×Sp(n;R)-invariant. An AdT 1×Sp(n;R)-invariant Hermitian metric g

on g/h is defined by g([X], [Y ]) = tr tσ([X])σ([Y ]), and an orthonormal basis with

respect to g is

{
1√
2
[Xi0], [Z0j ]

}
.

Let ω = t(
√
2ω10,

√
2ω20, . . . ,

√
2ωn0, ζ00, ζ01, . . . , ζ0n) and set

θ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11 − ω00 ω12 . . . ω1n

√
2η10

√
2η11 . . .

√
2η1n

ω21 ω22 − ω00 . . . ω2n

√
2η20

√
2η21 . . .

√
2η2n

...
. . .

...
...

...
...

ωn1 . . . ωn,n−1 ωnn − ω00

√
2ηn0

√
2ηn1 . . .

√
2ηnn

1√
2
ζ01

1√
2
ζ02 . . .

1√
2
ζ0n −2ω00 −ω10 . . . −ωn0

1√
2
ζ11

1√
2
ζ12 . . .

1√
2
ζ1n −ω01 −ω11 − ω00 . . . −ωn1

...
...

...
...

. . .
...

1√
2
ζn1

1√
2
ζn2 . . .

1√
2
ζnn −ω0n −ω1n . . . −ωnn − ω00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then dω = −θ̃ ∧ ω. By Definition 3.1.10 and Corollary 3.1.12, a Bott connection is

given by

θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11 − ω00 ω12 . . . ω1n

√
2η10

√
2η11 . . .

√
2η1n

ω21 ω22 − ω00 . . . ω2n

√
2η20

√
2η21 . . .

√
2η2n

...
. . .

...
...

...
...

ωn1 . . . ωn,n−1 ωnn − ω00

√
2ηn0

√
2ηn1 . . .

√
2ηnn

0 0 . . . 0 −2ω00 0 . . . 0

1√
2
ζ11

1√
2
ζ12 . . .

1√
2
ζ1n −ω01 −ω11 − ω00 . . . −ωn1

...
...

...
...

. . .
...

1√
2
ζn1

1√
2
ζn2 . . .

1√
2
ζnn −ω0n −ω1n . . . −ωnn − ω00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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If we use θ, then h1 and v1 are calculated as follows:

h1 =
2n+ 2

2π
(ω00 + ω00) =

q + 1

2π
(ω00 + ω00),

v1 =
q + 1

2π
√−1

dω00.

It follows that

GV2q(K) =
(2q)!

q! q!

(
q + 1

2π

)2q+1

(ω00 + ω00) ∧ (dω00)
q ∧ (dω00)

q

=(2q)!

(
q + 1

2π

)2q+1

(ω00 + ω00) ∧
(

n∧
j=1

ω0j ∧ ωj0

)
∧
(

n∧
j=0

η0j ∧ ζ0j
)

∧
(

n∧
j=1

ω0j ∧ ωj0

)
∧
(

n∧
j=0

η0j ∧ ζ0j
)
.

We adopt {√−1Xii, Xjk − Xkj ,
√−1(Xjk + Xkj), Yij − Zij ,

√−1(Yij + Zij)} as

a basis for sp(n + 1;R). If we denote by αii, βjk, γjk, μjk, νjk (0 ≤ i ≤ n,

0 ≤ j < k ≤ n) their respective dual forms, then the extensions of these forms to g

by complexification satisfy the following relations:

ωii =
√−1αii, ωjk = βjk +

√−1γjk, ωkj = −βjk +
√−1γjk,

ηij = μij +
√−1νij , ζij = −μij +

√−1νij .

Hence

τ∗κ∗ GV2q(K) =

(
q + 1

2π

)2q+1

22q−2(2q)!α1
00 ∧

(
n∧

j=1

β1
0j ∧ γ10j

)
∧
(

n∧
j=0

μ1
0j ∧ ν10j

)

∧
(

n∧
j=1

β2
0j ∧ γ20j

)
∧
(

n∧
j=0

μ2
0j ∧ ν20j

)
.

Finally, as in the previous examples, themappings π1 : Sp(n+1) → Sp(n+1)/Sp(n) =

S2q+1 and π2 : Sp(n + 1)/Tn+1 → Sp(n + 1)/(T 1 × Sp(n)) = CP q induce injective

maps on the cohomology, where q = 2n + 1, and Sp(n;R) is simply denoted by

Sp(n). Hence GV2q(K) is non-trivial.

Foliations with non-trivial Godbillon–Vey class can be also constructed by using

an exceptional Lie group.
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Example 3.3.14. Let G be the exceptional complex simple Lie group G2. Let

g2 be the Lie algebra of G2. Then as found in [29],

g2 =

〈
Zi, Xi, Yi, 1 ≤ i ≤ 6

Z3 = Z1 + 3Z2, Z4 = 2Z2 + 3Z2,

Z5 = Z1 + Z2, Z6 = Z1 + 2Z2,

[Xi, Yi] = Zi, [Zi, Xi] = 2Xi, [Zi, Yi] = −2Yi

〉
C

.

Let γi, αi, βi be the dual of Zi, Xi, Yi, respectively. Then they satisfy the following

relations, namely,

dγ1 = −α1 ∧ β1 − α3 ∧ β3 − 2α4 ∧ β4 − α5 ∧ β5 − α6 ∧ β6,
dγ2 = −α2 ∧ β2 − 3α3 ∧ β3 − 3α4 ∧ β4 − α5 ∧ β5 − 2α6 ∧ β6,
dα1 = −2γ1 ∧ α1 + γ2 ∧ α1 + β2 ∧ α3 + 2β3 ∧ α4 − β4 ∧ α5,

dα2 = 3γ1 ∧ α2 − 2γ2 ∧ α2 − 3β1 ∧ α3 − β5 ∧ α6,

dα3 = −α1 ∧ α2 + γ1 ∧ α3 − γ2 ∧ α3 − 2β1 ∧ α4 − β4 ∧ α6,

dα4 = −2α1 ∧ α3 − γ1 ∧ α4 + β1 ∧ α5 + β3 ∧ α6,

dα5 = 3α1 ∧ α4 − 3γ1 ∧ α5 + γ2 ∧ α5 + β2 ∧ α6,

dα6 = 3α3 ∧ α4 + α2 ∧ α5 − γ2 ∧ α6,

dβ1 = 2γ1 ∧ β1 − γ2 ∧ β1 − α2 ∧ β3 − 2α3 ∧ β4 + α4 ∧ β5,
dβ2 = −3γ1 ∧ β2 + 2γ2 ∧ β2 + 3α1 ∧ β3 + α5 ∧ β6,
dβ3 = β1 ∧ β2 − γ1 ∧ β3 + γ2 ∧ β3 + 2α1 ∧ β4 + α4 ∧ β6,
dβ4 = 2β1 ∧ β3 + γ1 ∧ β4 − α1 ∧ β5 − α3 ∧ β6,
dβ5 = −3β1 ∧ β4 + 3γ1 ∧ β5 − γ2 ∧ β5 − α2 ∧ β6,
dβ6 = −3β3 ∧ β4 − β2 ∧ β5 + γ2 ∧ β6.

It is well-known that the following real Lie subalgebra g0 is a compact real form

of g2, namely,

g0 = 〈√−1Zi, Xi − Yi,
√−1(Xi + Yi)〉R.

The compactness follows from the fact that the Killing form restricted to g0 is

negative definite.
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Let ζi, λi and μi be the dual of
√−1Zi, (Xi − Yi),

√−1(Xi + Yi), respectively.

If we denote again by the same symbols their extensions to g2 by complexification,

then γi =
√−1ζi, αi = λi +

√−1μi, and βi = −λi +
√−1μi.

Let h1 and h2 be complex Lie subalgebras of g2 defined respectively by

h1 = ker〈β2, β3, β4, β5, β6〉, h2 = ker〈β1, β3, β4, β5, β6〉.
Let i be either 1 or 2, and let Hi be the Lie subgroup with Lie algebra hi. Then

Hi contains the maximal torus T 2 generated by Z1 and Z2. Let su(2)i be a Lie

subalgebra defined by su(2)i = 〈√−1Zi, (Xi − Yi),
√−1(Xi + Yi)〉R, and let dwi

be the inclusion of su(2)i into g2. Then each dwi induces an embedding of SU(2)

into G2, which we denote by wi. The image of wi is denoted by SU(2)i. We repeat

the same construction after setting u(2)i = 〈√−1Z1,
√−1Z2, (Xi −Yi),

√−1(Xi +

Yi)〉R. If we denote the image by U(2)i, then U(2)i is isomorphic to U(2). Note that

SU(2)i ⊂ U(2)i ⊂ GR

2 , where G
R

2 is the compact real form of G2 whose Lie algebra

is g0. In what follows, Ki is assumed to be a compact connected Lie subgroup such

that T 2 ⊂ Ki ⊂ U(2)i when the foliation induced by hi is considered.

First we study the foliation induced by h1. In order to apply Theorem 3.1.8, let

σ1 : g2/h1 → g2 be the section defined by

σ1([Yi]) = Yi, i = 2, 3, 4, 5, 6.

Then σ1 is AdU(2)1 -invariant. The Hermitian metric g1 with respect to which

{
√
3[Y2], [Y3], [Y4],

√
3[Y5], [Y6]} is an orthonormal basis is AdU(2)1 -invariant. This is

shown by direct calculations, for example,

g1([X1 − Y1, Y2], Y3) + g1(Y2, [X1 − Y1, Y3]) = g1(Y3, Y3) + g1(Y2,−3Y2) = 0.

Let ω1 =
t
(

1√
3
β2, β3, β4,

1√
3
β5, β6

)
. We have dω1 = −θ̃1 ∧ ω1, where

θ̃1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3γ1 − 2γ2 −
√
3α1 0 0 − 1√

3
α5

−
√
3β1 γ1 − γ2 −2α1 0 −α4

0 −2β1 −γ1
√
3α1 α3

0 0
√
3β1 −3γ1 + γ2

1√
3
α2

0 0 3β3
√
3β2 −γ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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By Definition 3.1.10 and Lemma 3.1.11, the gl(5;C)-valued 1-form

θ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3γ1 − 2γ2 −
√
3α1 0 0 − 1√

3
α5

−
√
3β1 γ1 − γ2 −2α1 0 −α4

0 −2β1 −γ1
√
3α1 α3

0 0
√
3β1 −3γ1 + γ2

1√
3
α2

0 0 0 0 −γ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a Bott connection. Hence h1 =

3

2π
(γ2 + γ2) and v1 =

3

2π
√−1

dγ2. Since

dγ2 = −α2 ∧ β2 − 3α3 ∧ β3 − 3α4 ∧ β4 − α5 ∧ β5 − 2α6 ∧ β6

and since GV10 =
10!

5! 5!
h1v

5
1v

5
1,

GV10(h1,K1)

=

(
3

2π

)11

(2 · 32 · (5!))2(γ2 + γ2) ∧
(

6∧
i=2

αi ∧ βi
)
∧
(

6∧
i=2

αi ∧ βi
)

=
28 · 317 · 52
(2π)11

(γ2 + γ2) ∧
(

6∧
i=2

αi ∧ βi
)
∧
(

6∧
i=2

αi ∧ βi
)
,

where GV10(h1,K1) denotes the Godbillon–Vey class of the foliation given by the

quadruplet (G2, H1,K1, Γ ), where Γ is any cocompact lattice of G2/K1. By Prop-

osition 3.2.7,

τ∗κ∗ GV10(h1,K1) =
218 · 317 · 52

(2π)11
√−1 ζ12 ∧

(
6∧

i=2

λ1i ∧ μ1
i

)
∧
(

6∧
i=2

λ2i ∧ μ2
i

)
.

It is clear that ζ12∧
(

6∧
i=2

λ1i ∧ μ1
i

)
and

6∧
i=2

λ1i ∧μ1
i are the volume forms of GR

2 /SU(2)1

and GR

2 /U(2)1, respectively, where G
R

2 is the compact Lie group with Lie algebra

g0. By Lemma 3.3.15 below, τ∗κ∗ GV10(h1,K1) is non-trivial.

The foliation induced by h2 can be studied in a similar way. We define a linear

mapping σ2 : g2/h2 → g2 by setting σ2([Yj ]) = Yj , j = 1, 3, 4, 5, 6. Then σ2 is

AdU(2)2 -invariant. Let g2 be the Hermitian metric on g2/h2 with respect to which

{[Y1], [Y3], [Y4], [Y5], [Y6]} is an orthonormal basis. Then g2 is AdU(2)2 -invariant.



56 3. NON-TRIVIALITY OF THE GODBILLON–VEY CLASS

Let ω2 = t(β1, β3, β4, β5, β6) and

θ̃2 =

⎛⎜⎜⎜⎜⎝
−2γ1 + γ2 α2 2α3 −α4 0

β2 γ1 − γ2 −2α1 0 −α4

0 −2β1 −γ1 α1 α3

0 0 3β1 −3γ1 + γ2 α2

0 0 3β3 β2 −γ2

⎞⎟⎟⎟⎟⎠ .

Then dω2 = −θ̃2 ∧ ω2. Hence

θ2 =

⎛⎜⎜⎜⎜⎝
−2γ1 + γ2 α2 2α3 −α4 0

β2 γ1 − γ2 −2α1 0 −α4

0 0 −γ1 α1 α3

0 0 0 −3γ1 + γ2 α2

0 0 0 β2 −γ2

⎞⎟⎟⎟⎟⎠
induces a Bott connection. The characteristic homomorphism is calculated as fol-

lows. Firstly, one has

h1 =
5

2π
(γ1 + γ1),

v1 =
5

2π
√−1

dγ1

=
5

2π
√−1

(−α1 ∧ β1 − α3 ∧ β3 − 2α4 ∧ β4 − α5 ∧ β5 − α6 ∧ β6).

Hence

GV10(h2,K2) =

(
5

2π

)11

(2 · 5!)2(γ1 + γ1) ∧
(∧

i�=2

αi ∧ βi
)

∧
(∧

i�=2

αi ∧ βi
)

=
26 · 32 · 513
(2π)11

(γ1 + γ1) ∧
(∧

i�=2

αi ∧ βi
)

∧
(∧

i�=2

αi ∧ βi
)
.

By Proposition 3.2.7,

τ∗κ∗ GV10(h2,K2) =
√−1

216 · 32 · 513
(2π)11

γ11 ∧
(∧

i�=2

λ1i ∧ μ1
i

)
∧
(∧

i�=2

λ2i ∧ μ2
i

)
.

As in the previous case, this is the product of the volume forms of GR

2 /SU(2)2 and

GR

2 /U(2)2. Hence τ
∗κ∗ GV10(h2,K2) is non-trivial by the following Lemma 3.3.15.

Lemma 3.3.15. We retain the notations in Example 3.3.14.

1) The pull-back of the volume forms of GR

2 /SU(2)i, i = 1, 2, are non-trivial

in H∗(GR

2 ).
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2) The classes represented by
6∧

i=2

(λi ∧ μi) and
∧
i�=2

(λi ∧ μi) are non-trivial in

H∗(GR

2 /T
2).

Proof. First we show 2). The equality

dζ1 = −2λ1 ∧ μ1 − 2λ3 ∧ μ3 − 4λ4 ∧ μ4 − 2λ5 ∧ μ5 − 2λ6 ∧ μ6

implies that dζ1 determines a class in H2(GR

2 /T
2). The product dζ1∧

(
6∧

i=2

λi ∧ μi

)
is easily seen to be a non-zero multiple of the volume form of GR

2 /T
2. Therefore

6∧
i=2

λi∧μi is non-trivial in H
∗(GR

2 /T
2). The non-triviality of

∧
i�=2

λi∧μi is shown by

considering the product with the class represented by dζ2.

In order to show 1), let ω1 and ω2 be

ωi = ζ3−i ∧
(∧

j �=i

λj ∧ μj

)
,

where i = 1, 2. We will show that [σ]∪ [ωi] �= 0 for some [σ] ∈ H3(g0;R). First note

that we may work on g because H3(g0;C) ∼= H3(g0;R)⊗C ∼= H3(g2;C). If we define

σ′ ∈ (g32)
∗ by σ(X,Y, Z) = tr(ad[X,Y ]adZ), then by the proof of Theorem 21.1 in [24],

σ′ is a cocycle representing a non-trivial class in H3(g2;C). Up to multiplication of

a non-zero constant, σ′ is of the form

σ′ = −9(2γ1 − γ2) ∧ α1 ∧ β1 + 3(3γ1 − 2γ2) ∧ α2 ∧ β2 + 9(γ1 − γ2) ∧ α3 ∧ β3
− 9γ1 ∧ α4 ∧ β4 − 3(3γ1 − γ2) ∧ α5 ∧ β5 − 3γ2 ∧ α6 ∧ β6
+ (terms not involving γi).

On the other hand, the complexification of ωi is a non-zero multiple of

γ3−i ∧
∧
j �=i

(αj ∧ βj).

Hence [σ′] ∪ [ωi] is represented by a non-zero multiple of

γ1 ∧ γ2 ∧
6∧

j=1

(αj ∧ βj). �
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Remark 3.3.16. By following [23], one can show that

σ′ =6γ1 ∧ dγ1 − 3γ1 ∧ dγ2 − 3γ2 ∧ dγ1 + 2γ2 ∧ dγ2
+ 3α1 ∧ dβ1 + 3β1 ∧ dα1 + α2 ∧ dβ2 + β2 ∧ dα2 + 3α3 ∧ dβ3 + 3β3 ∧ dα3

+ 3α4 ∧ dβ4 + 3β4 ∧ dα4 + α5 ∧ dβ5 + β5 ∧ dα5 + α6 ∧ dβ6 + β6 ∧ dα6

holds in the proof of Lemma 3.3.15. This follows from the fact that

3γ21 − 3γ1γ2 + γ22 + 3α1β1 + α2β2 + 3α3β3 + 3α4β4 + α5β5 + α6β6

is a primitive element of I(g), where I(g) is the set of left invariant symmetric

polynomials invariant also under the adjoint action. Note also that H3(g2;C) is in

fact isomorphic to C.

Remark 3.3.17. Some other foliations G2 with non-trivial Godbillon–Vey class

can be obtained by considering the action of the Weyl group. Let σ1 be the auto-

morphism of G2 which maps (Z1, Z2) to (2Z1 + 3Z2,−Z1 − Z2), and let σ2 be the

automorphism which maps (Z1, Z2) to (Z1,−Z1−Z2). Then they generate the Weyl

group. We set

ω1 = t(β2, β3, β4, β5, β6),

ω2 = t(β1, β3, β4, β5, β6),

ω3 = t(β1, α2, β4, β5, β6),

ω4 = t(β1, α2, α3, β5, α6),

ω5 = t(β1, α2, α3, α4, α6),

ω6 = t(β1, α2, α3, β4, β5),

ω′
1 = t(α2, α3, α4, α5, α6),

ω′
2 = t(α1, α3, α4, α5, α6),

ω′
3 = t(α1, β2, α4, α5, α6),

ω′
4 = t(α1, β2, β3, α5, β6),

ω′
5 = t(α1, β2, β3, β4, β6),

ω′
6 = t(α1, β2, β3, α4, α5),

and let hi = kerωi and h′i = kerω′
i. Then they are Lie subalgebras of g2. First

consider the action of σ1. From h1, one obtains h
′
4, h

′
3, h1, h4, h3 and then h1 again.

From h2, one obtains h
′
5, h

′
6, h

′
2, h5, h6 and then h2 again. On the other hand, under

the action of σ2, one obtains h′1 from h1 and h5 from h2, respectively.
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3.4. Comparison of Examples

It is well-known that SL(2;C) is a double (and the universal) covering of SO(3;C).

This is still true as foliated spaces, namely, we have the following

Proposition 3.4.1. There is a covering map SL(2;C) to SO(3;C) which pre-

serves the foliations defined in Examples 3.3.6 and 3.3.12.

Proof. First recall a description of a covering map by following [29] and [60].

Let {X0, X1, X2} be a basis for sl(2;C), where

X0 =

(
1 0
0 −1

)
, X1 =

(
0 1
0 0

)
, X2 =

(
0 0
1 0

)
,

and denote by F+ the foliation of SL(2;C) induced by X1 and denote by F− the

foliation induced byX2. Let {Xij = Eij − Eji 0 ≤ i < j ≤ 2} be a basis for so(3;C)
and denote by G± the foliation of SO(3;C) induced from h± given in Example 3.3.12.

Let ϕ be a linear isomorphism from sl(2;C) to C3 given by ϕ(aX0 + bX1 + cX2) =
t
(

1

2
√−1

(b− c),
1

2
(b+ c),−a

)
. For g =

(
α β
γ δ

)
, we define ι(g) ∈ GL(3;C) by

ι(g)t(z1, z2, z3) = ϕ ◦Adg ◦ ϕ−1(t(z1, z2, z3)). Then

ι(g) =

⎛⎜⎜⎜⎜⎜⎜⎝

α2 + β2 + γ2 + δ2

2

α2 − β2 + γ2 − δ2

2
√−1

−√−1(αβ + γδ)

α2 + β2 − γ2 − δ2

−2
√−1

α2 − β2 − γ2 + δ2

2
αβ − γδ

√−1(αγ + βδ) αγ − βδ αδ + βγ

⎞⎟⎟⎟⎟⎟⎟⎠ .

It follows that ι is a homomorphism from SL(2;C) to SO(3;C). The differential

ι∗ : sl(2;C) → so(3;C) is given by ι∗(X0) = −2
√−1X01, ι∗(X1) = −√−1X02+X12

and ι∗(X2) = −√−1X02 −X12. Hence ι is a local isomorphism which maps F± to

G±, respectively. Since ker ι = {±I2}, each leaf of G± is doubly covered by a leaf of

F±. Thus ι is certainly a required covering map. �

The following proposition is obvious from the construction.

Proposition 3.4.2. The foliation of Sp(n + 1;C) given by Example 3.3.13 is

the pull-back of the foliation of SL(2n+2;C) given by Example 3.3.6 by the natural

inclusion.
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Hence the foliations of Sp(n+ 1;C) and SL(2n+ 2;C) in Examples 3.3.12 and

3.3.13 are derived from the same ΓC

2n+1-structure. In particular, the foliations we

constructed on Sp(1;C) and on SL(2;C) are isomorphic as foliated spaces. Conse-

quently, there is also a double covering map from Sp(1;C) to SO(3;C) as foliated

spaces.

On the other hand, the foliations obtained by using SL(q+1;C) and SO(q+2;C)

are non-cobordant even as real foliations if q is an odd integer greater than 1. This

can be seen as follows. We denote by V2 the second Chern character of the complex

normal bundle. Then V2 = v21 − 2v2, and we have the following

Proposition 3.4.3. If q > 1, then V2 and v21 are related as follows:

1) V2 =
1

q + 1
v21 for the foliations constructed using SL(q + 1;C) in Ex-

ample 3.3.6,

2) V2 =
q − 2

q2
v21 for the foliations constructed using SO(q + 2;C) in Ex-

ample 3.3.12,

when evaluated by the Bott connections as in Examples 3.3.6 and 3.3.12.

Proof. Let θ1 be the Bott connection in Example 3.3.6 for SL(q + 1;C), and

let R1 = dθ1 + θ1 ∧ θ1 be the curvature form of θ1. We have

θ1 =

⎛⎜⎝ω11 · · · ω1q

...
. . .

...
ωq1 · · · ωqq

⎞⎟⎠− ω00Iq,

and

R1 =

⎛⎜⎜⎜⎝
−dω00 − ω10 ∧ ω01 −ω10 ∧ ω02 · · · −ω10 ∧ ω0q

−ω20 ∧ ω01 −dω00 − ω20 ∧ ω02 · · · −ω20 ∧ ω0q

...
. . .

...
−ωq0 ∧ ω01 −ωq0 ∧ ω02 · · · −dω00 − ωq0 ∧ ω0q

⎞⎟⎟⎟⎠ .

Hence

v1 =
−1

2π
√−1

trR1 =
(q + 1)

2π
√−1

dω00,

V2 =
−1

4π2
trR2

1 =
−1

4π2
(q + 1)(dω00)

2.

Thus V2 =
1

q + 1
v21 .
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On the other hand, if θ2 is the Bott connection in Example 3.3.12 for

SO(q + 2;C), then

θ2 = −

⎛⎜⎜⎜⎝
√−1ω01 −ω23 −ω24 · · · −ω2,q+1

ω23

√−1ω01 −ω34 · · · −ω3,q+1

...
. . .

...

ω2,q+1 ω3,q+1 · · · · · · √−1ω01

⎞⎟⎟⎟⎠ .

The curvature matrix R2 of θ2 is given by

R2 =

⎛⎜⎜⎜⎝
−√−1 dω01 −ϕ23 · · · −ϕ2,(q+1)

ϕ23 −√−1 dω01 · · · −ϕ3,(q+1)

...
. . .

...

ϕ2,(q+1) ϕ3,q+1) · · · −√−1 dω01

⎞⎟⎟⎟⎠ ,

where ϕij = ωi0 ∧ ω0j + ωi1 ∧ ω1j . Hence

v1 =
−1

2π
√−1

trR2 =
q

2π
dω01,

V2 =
−1

4π2
trR2

2 =
q − 2

4π2
(dω01)

2.

It follows that V2 =
q − 2

q2
v21 . �

Corollary 3.4.4. The foliations obtained by using SL(q+1;C) and SO(q+2;C)

are non-cobordant even as real foliations if q is an odd integer greater than 1.

Proof. By Theorem 2.1, c2 = −v2 + v1v1 − v2 holds in WUq. In the both

cases, vq−2
1 V2 = kvq1 holds when evaluated by a Bott connection, where k =

1

q + 1

for SL(q + 1;C) and k =
q − 2

q2
for SO(q + 2;C). We have

GV2q −2h1c
2q−2
1 c2 = (

√−1)2q−1ũ1(v1 − v1)
2q−2(v21 − 2v2 + v21 − 2v2)

=
√−1

(2q − 2)!

q! (q − 2)!
ũ1(v

q
1v

q−2
1 (v21 − 2v2) + vq−2

1 (v21 − 2v2)v
q
1)

=
√−1

(2q − 2)!

q! (q − 2)!
(2k)ũ1v

q
1v

q
1

=
k(q − 1)

2q − 1
GV2q,

from which the corollary follows. �
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To be more precise, these foliations are non-cobordant even as Γ2q-structures.

Corollary 3.4.4 also implies that the foliation obtained by using Sp(2;C) in Ex-

ample 3.3.13 is not isomorphic to the pull-back of the foliation obtained by using

SO(5;C) in Example 3.3.12 although there is a double covering Sp(2;C) → SO(5;C).

Other classes are also compared as follows when q = 3.

Example 3.4.5. We compare the previous examples constructed by using

SL(4;C), SO(5;C) and Sp(2;C) by examining the secondary classes of degree 13.

The Vey basis for H13(WO6) is{
h1c

6
1 = GV6 , h1c

4
1c2, h1c

3
1c3, h1c

2
1c4, h1c

2
1c

2
2, h1c1c5,

h1c1c2c3, h1c2c4, h1c
3
2, h1c

2
3, h1c6, h3c4, h3c

2
2

}
,

and the image of the subfamily

{h1c23, h1c1c2c3, h1c31c3, h1c41c2, h1c21c22, h1c61, h3c22}

by [λ] is a basis for the image of H13(WO6) in H
13(WU3) by Theorem 2.7. On the

other hand, there are relations of the form v1v2 = αv31 , v3 = βv31 as differential forms

when calculated by Bott connections. The values (α, β) are respectively (2−3·3, 2−4),

(22 ·3−2, 2·3−3), (2−3 ·3, 2−4) for SL(4;C), SO(5;C) and Sp(2;C). Hence the ratio of

elements of H13(WO6) to the Godbillon–Vey class in H13(WU3) can be calculated

as in the proof of Corollary 3.4.4. The result is shown in Table 3.4.1, where the

values in the table are the ratio to GV6, for example, h1c
4
1c2 = 2−2 · 32 · 5−1h1c

6
1 for

SL(4;C).

Note that the ratios are identical for SL(4;C) and Sp(2;C). Indeed, the ratios

to GV6 are already determined on the Lie algebra level by the construction. On the

other hand, the foliations of SL(4;C) and that of Sp(2;C) are essentially the same

at least on the Lie algebra level by Proposition 3.4.2.

Remark 3.4.6. It can be seen that if ω is a member of the Vey basis for

H13(WO6) as above, then the ratio of ω(F) to GV6(F) = h1c
6
1(F) is always less

than 1 except the ratio to GV6(F) itself by Table 3.4.1 and formulae in Theorem 2.7,

where F is the one of the above foliations. It follows that if we introduce a metric on
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SL(4;C) SO(5;C) Sp(2;C)

h1c
6
1 1 1 1

h1c
4
1c2 2−2·32·5−1 2−1·3−2·5−1·43 2−2·32·5−1

h1c
3
1c3 2−5·5−1·19 3−3·5−1·19 2−5·5−1·19

h1c
2
1c

2
2 2−6·13 2−1·3−4·37 2−6·13

h1c1c2c3 2−8·3·5−1·23 2·3−5·5−1·41 2−8·3·5−1·23
h1c

2
3 2−9·5−1·37 2·3−6·5−1·37 2−9·5−1·37

h3c
2
2 2−11·5−1·11·23 2−1·3−7·5−1·709 2−11·5−1·11·23
Table 3.4.1. Ratio of real secondary classes to GV6.

H13(WO6) for which the Vey basis is a orthonormal basis, then the characteristic

mapping is bounded by GV6(F) on the unit ball and attains the maximal value

GV6(F) precisely at GV6. We do not know if this fact has any meaning, and we do

not have any explanation for this fact, either.

We now compare foliations in Example 3.3.14 obtained by using G2, and show

that those foliations are non-cobordant even as Γ10-structures. If we denote by R(θ)

the curvature form of θ, then v21 − 2v2 =

( −1

2π
√−1

)2

trR(θ)2. Hence

v31(v
2
1 − 2v2)(h1,K1) =

1

27
v51(h1,K1),

v31(v
2
1 − 2v2)(h2,K2) =

3

25
v51(h2,K2).

We can show these relations as follows by using the curvature matrices R(θ1) and

R(θ2) (Tables 3.4.2 and 3.4.3). We set [i, j, k] = αi ∧ βi ∧ αj ∧ βj ∧ αk ∧ βk, and
define the symbols [i, j] and [i, j, k, l,m] in the same way. If θ = θ1, one has

trR(θ1) = 3α2 ∧ β2 + 9α3 ∧ β3 + 9α4 ∧ β4 + 3α5 ∧ β5 + 6α6 ∧ β6,
(trR(θ1))

3 = 33 · 6 (9[2, 3, 4] + 3[2, 3, 5] + 6[2, 3, 6] + 3[2, 4, 5] + 6[2, 4, 6]

+ 2[2, 5, 6] + 9[3, 4, 5] + 18[3, 4, 6] + 6[3, 5, 6] + 6[4, 5, 6]),

(trR(θ1))
5 = 35 · 5! · 2 · 32[2, 3, 4, 5, 6] = 24 · 38 · 5[2, 3, 4, 5, 6].
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R
(θ

1 )
=
d
θ
1
+
θ
1 ∧

θ
1

= ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2α
2 ∧

β
2
+

3α
3 ∧

β
3

−
α
5 ∧

β
5
+
α
6 ∧

β
6

− √
3(β

2 ∧
α
3

+
2β

3 ∧
α
4

−
β
4 ∧

α
5 )

0
0

−
1√3
β
2 ∧

α
6

√
3(α

2 ∧
β
3

+
2α

3 ∧
β
4

−
α
4 ∧

β
5 )

α
2 ∧

β
2
+

2α
3 ∧

β
3

+
α
4 ∧

β
4
+
α
6 ∧

β
6

−
2(β

2 ∧
α
3

+
2β

3 ∧
α
4

−
β
4 ∧

α
5 )

0
−
β
3 ∧

α
6

0
2(α

2 ∧
β
3

+
2α

3 ∧
β
4

−
α
4 ∧

β
5 )

α
3 ∧

β
3
+

2α
4 ∧

β
4

+
α
5 ∧

β
5
+
α
6 ∧

β
6

√
3(β

2 ∧
α
3

+
2β

3 ∧
α
4

−
β
4 ∧

α
5 )

−
β
4 ∧

α
6

0
0

− √
3(α

2 ∧
β
3

+
2α

3 ∧
β
4

−
α
4 ∧

β
5 )

−
α
2 ∧

β
2
+
3α

4 ∧
β
4

+
2α

5 ∧
β
5
+
α
6 ∧

β
6

−
1√3
β
5 ∧

α
6

0
0

0
0

α
2 ∧

β
2
+

3α
3 ∧

β
3

+
3α

4 ∧
β
4
+
α
5 ∧

β
5

+
2α

6 ∧
β
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 3.4.2. The curvature form of θ1.
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R
(θ

2 )
=
d
θ
2
+
θ
2 ∧

θ
2

= ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2α
1 ∧

β
1 −

α
3 ∧

β
3

+
α
4 ∧

β
4
+
α
5 ∧

β
5

−
3β

1 ∧
α
3 −

β
5 ∧

α
6

−
4β

1 ∧
α
4 −

2β
4 ∧

α
6

−
β
1 ∧

α
5 −

β
3 ∧

α
6

0

3α
1 ∧

β
3
+
α
5 ∧

β
6

−
α
1 ∧

β
1
+

2α
3 ∧

β
3

+
α
4 ∧

β
4
+
α
6 ∧

β
6

−
4β

3 ∧
α
4
+

2β
4 ∧

α
5

0
−
β
1 ∧

α
5 −

β
3 ∧

α
6

0
0

α
1 ∧

β
1
+
α
3 ∧

β
3

+
2α

4 ∧
β
4
+
α
5 ∧

β
5

+
α
6 ∧

β
6

2β
3 ∧

α
4 −

β
4 ∧

α
5

−
2β

1 ∧
α
4 −

β
4 ∧

α
6

0
0

0
3α

1 ∧
β
1
+
3α

4 ∧
β
4

+
2α

5 ∧
β
5
+
α
6 ∧

β
6

−
3β

1 ∧
α
3 −

β
5 ∧

α
6

0
0

0
3α

1 ∧
β
3
+
α
5 ∧

β
6

3α
3 ∧

β
3
+

3α
4 ∧

β
4

+
α
5 ∧

β
5
+

2α
6 ∧

β
6 ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 3.4.3. The curvature form of θ2.



66 3. NON-TRIVIALITY OF THE GODBILLON–VEY CLASS

Let tr′R(θ1)2 be the terms of trR(θ1)
2 which contain [l,m]. Then

(trR(θ1))
3 trR(θ1)

2 = (trR(θ1))
3 tr′R(θ1)2.

We have

tr′R(θ1)2 =2[2, 3] + 2[2, 4]− 6[2, 5] + 8[2, 6]− 54[3, 4]

+ 2[3, 5] + 24[3, 6] + 2[4, 5] + 24[4, 6] + 8[5, 6].

Hence

(trR(θ1))
3 trR(θ1)

2 = 24 · 35 · 5[2, 3, 4, 5, 6] = 3−3(trR(θ1))
5.

If θ = θ2, then one can show that

(trR(θ2))
3 trR(θ2)

2 = 3 · 5−2(trR(θ2))
5.

Hence the normal bundles of the foliations induced by h1 and h2 are not isomorphic

as complex vector bundles. Moreover, they are non-cobordant as Γ10-structures.

Indeed, by repeating the proof of Corollary 3.4.4, one can show that

h1c
10
1 (h1,K1)− 2h1c

8
1c2(h1,K1) = 22 · 3−5h1c

10
1 (h1,K1),

h1c
10
1 (h2,K2)− 2h1c

8
1c2(h2,K2) = 22 · 3−1 · 5−2h1c

10
1 (h2,K2).

It follows that

h1c
8
1c2(h1,K1) = 2−1 · 3−5 · 239 GV10(h1,K1),

h1c
8
1c2(h2,K2) = 2

1 · 3−1 · 5−2 · 71 GV10(h2,K2).

Note that the foliation induced by h1 is neither cobordant to the foliations of

SL(6;C) nor that of SO(7;C) in Examples 3.3.6 and 3.3.12 by Proposition 3.4.3

and Corollary 3.4.4, because

h1c
8
1c2 = 2−1 · 3−3 · 5 GV10 for SL(6;C),

h1c
8
1c2 = 2

1 · 3−1 · 5−2 · 71 GV10 for SO(7;C).

On the other hand, the foliation induced by h2 is obtained from the foliation of

SO(7;C) at least at the Lie algebra level. Indeed, let i : g2 ↪→ so(7;C) be the
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inclusion of Lie algebras determined by requiring

i(Z1) = −√−1(X01 − 2X23 +X45),

i(Z2) = −√−1(X23 −X45),

i(X1) =
1

2
((X05 +X14 − 2X36)−

√−1(X04 −X15 + 2X26)),

i(Y1) =
1

2
(−(X05 +X14 − 2X36)−

√−1(X04 −X15 + 2X26)),

i(X2) =
1

2
(−(X25 −X34)−

√−1(X24 +X35)),

i(Y2) =
1

2
((X25 −X34)−

√−1(X24 +X35)).

Then i∗(h+) = h2, where h+ and Xij are as in Example 3.3.12.

The examples constructed using Aq = SL(q + 1;C), Bm = SO(2m + 1;C)

(q = 2m − 1), Cn+1 = Sp(n + 1;C) (q = 2n + 1) and G2 (q = 5) have certain

common properties. Let Xn be one of these groups. If Xcrf
n is the compact real

form of Xn, and T is the maximal torus as in Section 3.3, then

T ⊂ K ⊂ T 1 ×Xcrf
n−1 ⊂ T 1 ×Xn−1 ⊂ H ⊂ Xn,

where the inclusion of Xn−1 into Xn is realized by considering the inclusion of

corresponding Dynkin diagrams. Hence we regard G1 = SL(2;C).

Let xn be the Lie algebra of Xn and let x̃n−1 = t1 ⊕ xn−1. Then there is a

splitting xn = x̃n−1⊕a as complex vector spaces so that one can find a decomposition

a = a+ ⊕ a− such that the both x̃n−1 ⊕ a± are complex Lie subalgebras. These

subalgebras are h appeared in the examples in Section 3.3. The Godbillon–Vey

class is realized as the pull-back of the product of the volume forms of Xcrf
n /Xcrf

n−1

and Xcrf
n /(T 1 ×Xcrf

n−1).

The Godbillon–Vey classes of foliations constructed using SO(q + 2;C) in Ex-

ample 3.3.12 are trivial if q is even. In fact, we have the following

Proposition 3.4.7. Assume that T 1 × SO(2n − 2;C) and the maximal torus

Tn are realized as in Example 3.3.12. If n > 2, then there is no Lie subalgebra h of

so(2n;C) with the following properties :
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1) h contains t1 ⊕ so(2n− 2;C).

2) The Godbillon–Vey class of the foliation of Γ\SO(2n;C)/Tn defined by h

is non-trivial as an element of H4q+1(so(2n;C), tn;C).

Proof. We retain the notations in Example 3.3.12. Set Y0i = X0i +
√−1X1i

and Z0i = X0i −
√−1X1i for i ≥ 2. Let k be the Lie subalgebra t1 ⊕ so(2n− 2;C)

and h a Lie subalgebra having the properties 1) and 2). Then h/k is invariant under

the action of adk. It we define linear subspaces a± of h/k by

a+ = (〈Y02, Y03, . . . , Y0,2n−1〉+ k)/k,

a− = (〈Z02, Z03, . . . , Z0,2n−1〉+ k)/k,

then h/k = a+ ⊕ a−. Let i± be the inclusions of a± to h/k, and let p± be the

projections from h/k to a± which correspond to the direct sum decomposition of h/k.

Since adX01
Y0i =

√−1Y0i and adX01
Z0i = −√−1Z0i, we have h/k = i+p+(h/k) ⊕

i−p−(h/k). Hence it suffices to study invariant subspaces of a±.

We denote for a while a+ by a, and assume that a′ is an invariant subspace of

a. Let i, j be integers such that 2 ≤ i < j < 2n, and let V ±
ij = Y0i ±

√−1Y0j .

If we set b±ij = CV ±
ij and zij = 〈Y0k | k �= i, j〉, then a = b+ij ⊕ b−ij ⊕ zij . Let

ι±ij and ιij be the inclusions from bij and zij to a, and let π±
ij and πij be the

projections from a to b±ij and zij determined by the direct sum decomposition. Then

a′ = ι+ijπ
+
ij(a

′) ⊕ ι−ijπ
−
ij(a

′) ⊕ ιijπij(a
′). If ι±ijπ

±
ij(a

′) = {0} for any pair (i, j), then

a′ = {0}. On the contrary, if ι+ijπ
+
ij(a

′) �= {0} for a pair (i, j), then ι+ijπ
+
ij(a

′) = CV +
ij

and Y0i +
√−1Y0j ∈ a′. Since n > 2, we can choose an integer k other than i, j and

such that 2 ≤ k ≤ 2n − 1. For such a k, adXik
(adXik

Y0i +
√−1Y0j) = −Y0i and

therefore Y0i ∈ a′. Since adXik
Y0i = −Y0k for k ≥ 2, k �= i, and adX01

Y0i = −Y1i,
this implies that a′ = a.

By the same argument, (h/k) ∩ a− is either {0} or a−. Hence h is either t1 ×
so(2n− 2;C), so(2n;C) or the Lie algebras h± defined in Example 3.3.12. It is easy

to show that the Godbillon–Vey class of the foliation induced by t1 × so(2n− 2;C)

is trivial. �
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Remark 3.4.8. It is well-known that so(4;C) ∼= sl(2;C)⊕sl(2;C) and so(6;C) ∼=
sl(4;C). Hence it is possible, despite Proposition 3.4.7, to construct foliations with

non-trivial Godbillon–Vey classes at least at the Lie algebra level.

The Godbillon–Vey classes of examples in Section 3.3 are realized by pulling-

back the product of volume forms of Xcrf
n /(T 1 ×Xcrf

n−1) and X
crf
n /Xcrf

n−1 to Xcrf
n ×

(Xcrf
n /Tm), where Tm is a maximal torus. We call this property (V). Note that

the pull-back of the volume form of Xcrf
n /Xcrf

n−1 to Xcrf
n remains non-trivial if the

Godbillon–Vey class is non-trivial. In this line, we have the following.

Proposition 3.4.9. Consider Xn−1 as a subgroup of Xn via the inclusion of

corresponding Dynkin diagrams. The mapping π∗ : H∗(Xcrf
n /Xcrf

n−1) → H∗(Xcrf
n ) an-

nihilates the volume if the pair (Xn, Xn−1) is either (F4, Sp(3;C)), (F4, SO(7;C)),

(E6, SL(6;C)), (E6, SO(10;C)), (E7, E6) or (E8, E7). Hence examples with the

above property (V) do not exist for these pairs.

Proof. It is known the cohomology of these groups are as follows [23]:

H∗(f4) ∼=
∧
[e3, e11, e15, e23],

H∗(e6) ∼=
∧
[e3, e9, e11, e15, e17, e23],

H∗(e7) ∼=
∧
[e3, e11, e15, e19, e23, e27, e35],

H∗(e8) ∼=
∧
[e3, e15, e23, e27, e35, e39, e47, e59],

where ei denotes the generators of degree i. The dimensions of Sp(3;C) (or SO(7;C))

and F4 are 21 and 52, respectively. However, H31(f4) = {0}. In order to prove the

claim for E6, first consider E5 = SL(6;C). Then H∗(sl(6;C)) ∼= ∧[e3, e5, e7, e9, e11].
Since the embedding is induced from the inclusion of corresponding Dynkin dia-

grams, we may assume that the image of ei under π∗ is again ei if and only if ei

is non-trivial in the image. If π∗ does not annihilate the volume form, there is a

non-trivial class in H43(e6) written in terms of e15 and e23. It is clearly impossible.



70 3. NON-TRIVIALITY OF THE GODBILLON–VEY CLASS

If E5 is considered as SO(10;C), the proof is done simply by counting dimension as

in the case of F4. The claim for other groups are also shown in this way. �

More systematic treatment seems appropriate for examining all possible pairs

(Xn, Xn−1). We will not pursue it here.




